R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

#Install Required packages to connect MySQL Accessing MySQL

# Connection to MySQL
#install.packages(RMySQL)
library(RMySQL)
## Loading required package: DBI
mydb1 <- dbDriver("MySQL")
mydb <- dbConnect(mydb1, user='root', password='sarat2019', dbname='Custom', host='localhost')

#Read reviewdata table and movies_list table and movie_reviews table

dbListTables(mydb)
## [1] "moviereviews" "movies_list"  "reviewdata"
dbListFields(mydb, 'reviewdata')
##  [1] "name_of_reviewer" "ip_address"       "age"             
##  [4] "gender"           "movie1_rating"    "movie2_rating"   
##  [7] "movie3_rating"    "movie4_rating"    "movie5_rating"   
## [10] "movie6_rating"    "comments"
reviewdata <- dbGetQuery(mydb, "select * from reviewdata")
reviewdata
##    name_of_reviewer ip_address age gender movie1_rating movie2_rating
## 1           Anirudh             30   Male             4             4
## 2               Anu             27 Female             5             3
## 3            Arnavi             18 Female             4             2
## 4             Chang             45   Male             5             2
## 5             cindy             30 Female             4             4
## 6        Dan Eckert             70   Male             4             3
## 7            Harris             35   Male             3             2
## 8        Jim Morgan             50   Male             4             4
## 9              John             34   Male             4             3
## 10            Krish             25   Male             5             4
## 11          malinda             29 Female             4             3
## 12             Mary             65 Female             2             2
## 13          Michael             50   Male             3             2
## 14         Michelle             56 Female             3             3
## 15              Sam             25   Male             4             3
## 16             Sara             16 Female             5             2
## 17             Siri             28 Female             3             2
## 18        Stephanie             21 Female             3             3
## 19           victor             17   Male             5             1
##    movie3_rating movie4_rating movie5_rating movie6_rating
## 1              5             4             4             3
## 2              5             5             4             4
## 3              5             5             4             4
## 4              3             3             3             4
## 5              3             5             4             4
## 6              5             5             3             4
## 7              4             3             5             3
## 8              3             5             5             4
## 9              4             4             3             3
## 10             4             3             3             4
## 11             5             5             5             4
## 12             5             3             2             4
## 13             4             4             2             5
## 14             5             4             2             3
## 15             2             4             5             5
## 16             5             4             4             2
## 17             4             4             2             2
## 18             5             2             2             5
## 19             1             4             3             4
##                                              comments
## 1                                                    
## 2                                                    
## 3                                                    
## 4                                                    
## 5                                                    
## 6                                                    
## 7                                                    
## 8                                                    
## 9                                                    
## 10                                                   
## 11                                                   
## 12                                                   
## 13                                                   
## 14                                                   
## 15                                                   
## 16                                                   
## 17                                                   
## 18 I like Hobbs& Shaw This yearmoviereviewsreviewdata
## 19
#Analysis results based on age wise 10-20,20-30,30-40,40-50,50-60,60-70 and genre