library(dplyr)
library(fmi2)
library(ggplot2)
library(lubridate)
tulliniemi_data <- fmi2::obs_weather_hourly(starttime = "2019-02-01",
endtime = "2019-02-02",
fmisid = 100946)
# Get only wind speed (MIN, AVG and MAX)
wind_data <- tulliniemi_data %>%
# Get wind speed variables
dplyr::filter(grepl("^WS_PT1H", variable)) %>%
# Make them ordered factors
dplyr::mutate(variable = factor(variable,
levels = c("WS_PT1H_MAX", "WS_PT1H_AVG",
"WS_PT1H_MIN"),
ordered = TRUE)) %>%
# Add hour information per group (i.e. factor)
dplyr::group_by(variable) %>%
dplyr::mutate(time = as.POSIXct(lubridate::ymd(time) + lubridate::hours(1:24))) %>%
dplyr::ungroup()
wind_data %>%
ggplot(aes(x = time, y = value, color = variable)) +
scale_x_datetime(date_minor_breaks = "1 hour") +
geom_line() + theme_minimal()
