1 FRESA.CAD ARCENE Benchmark

1.1 ARCENE


trainLabeled <- read.delim("./Arcene/ARCENE/trainSet.txt")
validLabeled <- read.delim("./Arcene/ARCENE/arcene_valid.txt")

trainLabeled$Labels <-  1*(trainLabeled$Labels > 0)
validLabeled$Labels <-  1*(validLabeled$Labels > 0)

sum(trainLabeled$Labels)
sum(validLabeled$Labels)

arcene <- rbind(trainLabeled,validLabeled)
arcene <- as.data.frame(arcene)

ExperimentName <- "ARCENE_V75"
bswimsReps <- 10;
theData <- arcene;
theOutcome <- "Labels";
reps <- 60;
fraction <- 0.75;

BSWiMSFileName <- paste(ExperimentName,"FRESAMethod.RDATA",sep = "_")
CVFileName <- paste(ExperimentName,"CVMethod.RDATA",sep = "_")

1.2 Benchmarking


BSWiMSMODEL <- BSWiMS.model(formula = paste(theOutcome," ~ 1"),data = theData,NumberofRepeats = 1)


save(BSWiMSMODEL,file = BSWiMSFileName)

load(file = BSWiMSFileName)

par(mfrow = c(2,2),cex=0.6);
cp <- BinaryBenchmark(theData,theOutcome,reps,fraction)

save(cp,file = CVFileName)
par(mfrow = c(1,1),cex=1.0);


load(file = CVFileName)

1.3 Results

1.3.1 Classifier Results


hm <- heatMaps(Outcome = "Outcome",data = cp$testPredictions,title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45) 


#The Times
par(mfrow = c(2,1),cex=1.0);
pander::pander(cp$cpuElapsedTimes)
BSWiMS RF RPART LASSO SVM KNN ENS
46.35 62.75 6.062 2.064 0.04 0.01983 111.2
par(mfrow = c(1,1),cex=1.0);
learningTime <- -1*cp$cpuElapsedTimes
pr <- plot(cp)

1.3.2 Radar Plots

op <- par(no.readonly = TRUE)

library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))

mNames <- names(cp$cpuElapsedTimes)

classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")

classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.5 ,title = "Prediction Model")

legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


filnames <- c("BSWiMS","LASSO_MIN","RF","IDI","tStudent","kendall","mRMR.classic")

filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));

filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));

filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.6,title = "Filter Method" )


legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


detach("package:fmsb", unload=TRUE)

par(mfrow = c(1,1))
par(op)

1.3.3 Feature Analysis



rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.1,]
gplots::heatmap.2(as.matrix(selFrequency),trace = "none",mar = c(10,10),main = "Features",cexRow = 0.25,cexCol = 0.5)



topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network",cexRow = 0.5,cexCol = 0.5)

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
  • coefficients:

    Table continues below
      Estimate lower OR upper u.Accuracy r.Accuracy
    V2134 -0.001704 0.9981 0.9983 0.9985 0.675 0.75
    V8685 -0.002132 0.9976 0.9979 0.9982 0.56 0.76
    V9818 -0.002505 0.9969 0.9975 0.9981 0.57 0.735
    V2556 0.000729 1.001 1.001 1.001 0.71 0.715
    V2294 0.001176 1.001 1.001 1.002 0.69 0.775
    V2804 0.004186 1.003 1.004 1.005 0.675 0.82
    V6959 -0.0009317 0.9988 0.9991 0.9993 0.58 0.745
    V5417 -0.002602 0.9966 0.9974 0.9982 0.57 0.815
    V9635 -0.002057 0.9973 0.9979 0.9986 0.495 0.735
    V8156 -0.001134 0.9985 0.9989 0.9992 0.58 0.78
    V6239 -0.003003 0.996 0.997 0.998 0.655 0.78
    V2256 -0.001324 0.9982 0.9987 0.9991 0.585 0.74
    V6594 0.0007884 1.001 1.001 1.001 0.665 0.765
    V9395 -0.001996 0.9974 0.998 0.9987 0.555 0.76
    V9215 -0.002468 0.9967 0.9975 0.9983 0.58 0.81
    V9275 -0.004022 0.9947 0.996 0.9973 0.565 0.84
    V34 -0.00129 0.9983 0.9987 0.9991 0.57 0.745
    V5761 -0.0007928 0.9989 0.9992 0.9995 0.56 0.725
    V2750 -0.008007 0.9893 0.992 0.9948 0.56 0.855
    V4580 -0.004844 0.9935 0.9952 0.9968 0.56 0.79
    V4290 -0.001773 0.9976 0.9982 0.9989 0.665 0.72
    V5391 -0.0007635 0.999 0.9992 0.9995 0.685 0.8
    V6584 -0.00164 0.9978 0.9984 0.9989 0.535 0.75
    V7728 -0.003072 0.9958 0.9969 0.998 0.565 0.83
    V22 0.005036 1.003 1.005 1.007 0.605 0.825
    V7748 -0.003928 0.9947 0.9961 0.9975 0.66 0.805
    V7319 -0.001464 0.998 0.9985 0.9991 0.48 0.78
    V86 -0.001604 0.9978 0.9984 0.999 0.675 0.705
    V9585 -0.005611 0.9923 0.9944 0.9965 0.685 0.85
    V7272 -0.001276 0.9982 0.9987 0.9992 0.66 0.78
    V3170 -0.005465 0.9925 0.9946 0.9966 0.56 0.765
    V6511 0.0004981 1 1 1.001 0.635 0.79
    V4584 -0.0009363 0.9987 0.9991 0.9994 0.51 0.77
    V4194 -0.004057 0.9943 0.996 0.9976 0.655 0.825
    V5069 0.005116 1.003 1.005 1.007 0.56 0.81
    V8055 -0.00185 0.9974 0.9982 0.9989 0.55 0.81
    V256 -0.002022 0.9971 0.998 0.9988 0.505 0.815
    V4352 -0.003606 0.9949 0.9964 0.9979 0.62 0.855
    V1046 -0.007007 0.9901 0.993 0.9959 0.56 0.88
    V6111 -0.003491 0.9951 0.9965 0.998 0.54 0.815
    V6146 0.0005967 1 1.001 1.001 0.615 0.805
    V2515 -0.001835 0.9974 0.9982 0.9989 0.555 0.77
    V3591 0.0006718 1 1.001 1.001 0.625 0.78
    V130 -0.00722 0.9898 0.9928 0.9959 0.56 0.79
    V9432 0.0003485 1 1 1 0.695 0.785
    V1936 0.0008359 1 1.001 1.001 0.69 0.805
    V2747 0.0005391 1 1.001 1.001 0.54 0.78
    V2242 0.0006586 1 1.001 1.001 0.58 0.795
    V533 -0.001313 0.9981 0.9987 0.9993 0.67 0.77
    V3206 -0.002486 0.9964 0.9975 0.9986 0.65 0.79
    V762 0.002817 1.002 1.003 1.004 0.59 0.81
    V7857 -0.001865 0.9973 0.9981 0.999 0.675 0.76
    V3708 -0.001677 0.9976 0.9983 0.9991 0.54 0.775
    V7976 0.0004925 1 1 1.001 0.595 0.77
    V8502 -0.002102 0.9969 0.9979 0.9989 0.665 0.795
    V7220 -0.002444 0.9965 0.9976 0.9987 0.68 0.79
    V5801 0.0008284 1 1.001 1.001 0.705 0.855
    V6508 -0.001492 0.9978 0.9985 0.9992 0.695 0.875
    V6163 -0.001404 0.998 0.9986 0.9992 0.49 0.805
    V1184 -0.001079 0.9984 0.9989 0.9994 0.555 0.82
    V4301 -0.003449 0.995 0.9966 0.9982 0.56 0.775
    V5005 0.0009395 1.001 1.001 1.001 0.695 0.825
    V6688 -0.001667 0.9975 0.9983 0.9991 0.555 0.775
    V4070 0.00118 1.001 1.001 1.002 0.69 0.875
    V2064 -0.004154 0.9939 0.9959 0.9978 0.56 0.875
    V3222 -0.0008748 0.9987 0.9991 0.9996 0.565 0.755
    V729 -0.000856 0.9987 0.9991 0.9996 0.57 0.82
    V7891 0.0009756 1 1.001 1.001 0.685 0.805
    V5473 -0.00123 0.9982 0.9988 0.9994 0.665 0.78
    V5400 -0.004823 0.9928 0.9952 0.9976 0.635 0.82
    V819 -0.001041 0.9984 0.999 0.9995 0.525 0.8
    V5489 -0.0005666 0.9991 0.9994 0.9997 0.65 0.865
    V8749 -0.002053 0.9969 0.9979 0.999 0.56 0.805
    V5672 0.002274 1.001 1.002 1.003 0.595 0.86
    V8650 0.00273 1.001 1.003 1.004 0.6 0.87
    V9213 -0.005285 0.9921 0.9947 0.9974 0.56 0.77
    V7402 -0.004599 0.9931 0.9954 0.9977 0.56 0.87
    V3557 -0.0003388 0.9995 0.9997 0.9998 0.695 0.78
    V7513 -0.004291 0.9935 0.9957 0.9979 0.63 0.85
    V1451 0.001211 1.001 1.001 1.002 0.555 0.835
    V4069 -0.0007956 0.9988 0.9992 0.9996 0.585 0.775
    V2358 0.001014 1 1.001 1.002 0.585 0.79
    V9965 -0.001354 0.9979 0.9986 0.9994 0.535 0.825
    V1248 -0.001476 0.9978 0.9985 0.9993 0.58 0.77
    V9070 -0.002689 0.9959 0.9973 0.9987 0.575 0.78
    V4406 -0.0005463 0.9992 0.9995 0.9997 0.59 0.82
    V1967 -0.0005941 0.9991 0.9994 0.9997 0.69 0.81
    V3161 0.0008534 1 1.001 1.001 0.585 0.795
    V872 -0.00108 0.9983 0.9989 0.9995 0.675 0.795
    V5321 -0.004448 0.9932 0.9956 0.9979 0.56 0.85
    V167 -0.001165 0.9982 0.9988 0.9995 0.51 0.82
    V9735 0.0002626 1 1 1 0.685 0.8
    V1975 -0.003744 0.9942 0.9963 0.9983 0.68 0.86
    V4564 -0.001317 0.998 0.9987 0.9994 0.56 0.84
    V5466 -0.2421 0.6864 0.785 0.8978 0.56 0.855
    V9947 0.003156 1.001 1.003 1.005 0.56 0.82
    V4542 -0.0006869 0.9989 0.9993 0.9997 0.56 0.815
    V3365 -0.001061 0.9983 0.9989 0.9995 0.685 0.845
    V7435 0.000534 1 1.001 1.001 0.55 0.77
    V782 -0.001145 0.9982 0.9989 0.9995 0.695 0.78
    V1787 -0.00218 0.9965 0.9978 0.9991 0.685 0.825
    V5 -0.001349 0.9978 0.9987 0.9995 0.665 0.775
    V6164 -0.001531 0.9975 0.9985 0.9994 0.48 0.79
    V4198 -0.001401 0.9977 0.9986 0.9995 0.635 0.84
    V723 -0.002311 0.9961 0.9977 0.9993 0.65 0.81
    Table continues below
      full.Accuracy u.AUC r.AUC full.AUC IDI NRI
    V2134 0.875 0.6879 0.7463 0.8762 0.2862 1.078
    V8685 0.875 0.5 0.7589 0.8762 0.237 1.084
    V9818 0.835 0.5747 0.733 0.8369 0.2347 1.05
    V2556 0.855 0.7045 0.7127 0.8511 0.2209 1.128
    V2294 0.83 0.6843 0.7784 0.8336 0.1903 1.2
    V2804 0.895 0.6636 0.8198 0.8941 0.1637 1.099
    V6959 0.815 0.569 0.7382 0.8117 0.1709 0.8263
    V5417 0.875 0.5613 0.8141 0.8738 0.1689 0.892
    V9635 0.835 0.47 0.7305 0.8344 0.1495 0.8068
    V8156 0.855 0.586 0.7804 0.8511 0.1497 0.6818
    V6239 0.83 0.6774 0.7768 0.8336 0.1447 1.148
    V2256 0.795 0.5905 0.7508 0.7963 0.1483 0.6023
    V6594 0.835 0.6656 0.767 0.8344 0.1328 0.9156
    V9395 0.855 0.5722 0.7601 0.8511 0.1357 0.8279
    V9215 0.845 0.586 0.8145 0.8458 0.1459 0.9984
    V9275 0.89 0.5678 0.8389 0.8908 0.1354 1.034
    V34 0.82 0.5674 0.7528 0.8247 0.1297 0.5536
    V5761 0.795 0.5499 0.7313 0.7999 0.144 0.474
    V2750 0.895 0.5 0.8547 0.8941 0.1215 1.032
    V4580 0.835 0.5 0.7821 0.8344 0.1035 0.9903
    V4290 0.81 0.6692 0.7135 0.806 0.1276 0.9838
    V5391 0.845 0.6956 0.8007 0.8458 0.1178 0.8685
    V6584 0.815 0.5325 0.7463 0.8141 0.1248 0.6753
    V7728 0.895 0.5386 0.8287 0.8941 0.131 1
    V22 0.895 0.5706 0.8206 0.8941 0.1258 1.045
    V7748 0.875 0.6684 0.8028 0.8738 0.1183 1.209
    V7319 0.845 0.4554 0.7792 0.8458 0.1069 0.7159
    V86 0.795 0.683 0.7037 0.7999 0.1141 0.7955
    V9585 0.845 0.7041 0.8502 0.8458 0.1055 1.151
    V7272 0.795 0.683 0.7817 0.7999 0.0924 0.8847
    V3170 0.8 0.5 0.7646 0.7995 0.07861 0.5341
    V6511 0.815 0.6193 0.7869 0.8117 0.09844 0.5974
    V4584 0.81 0.4968 0.7679 0.806 0.1124 0.7776
    V4194 0.85 0.6798 0.8267 0.8515 0.1022 1.174
    V5069 0.845 0.5 0.8121 0.8458 0.09829 1.128
    V8055 0.85 0.5361 0.8145 0.8515 0.1073 0.8328
    V256 0.83 0.4935 0.8141 0.8336 0.09637 0.6542
    V4352 0.89 0.6266 0.8535 0.8908 0.08608 0.9399
    V1046 0.89 0.5 0.8807 0.8908 0.06775 0.974
    V6111 0.875 0.554 0.8117 0.8738 0.08499 0.9083
    V6146 0.875 0.599 0.804 0.8762 0.08022 0.5844
    V2515 0.815 0.5686 0.7666 0.8117 0.07655 0.3766
    V3591 0.82 0.6067 0.7877 0.8247 0.09777 0.6997
    V130 0.82 0.5 0.7967 0.8247 0.06357 0.6688
    V9432 0.835 0.6912 0.7898 0.8369 0.1015 0.6688
    V1936 0.85 0.6818 0.8076 0.8478 0.106 0.8994
    V2747 0.795 0.5114 0.7853 0.7963 0.097 0.7208
    V2242 0.8 0.5593 0.8036 0.8007 0.09945 0.6039
    V533 0.82 0.6907 0.7703 0.8247 0.06407 0.5179
    V3206 0.85 0.6741 0.7881 0.8478 0.08146 0.9269
    V762 0.845 0.5548 0.8121 0.8458 0.09084 0.4205
    V7857 0.815 0.683 0.7601 0.8141 0.08208 0.7776
    V3708 0.835 0.554 0.7772 0.8344 0.07206 0.5877
    V7976 0.8 0.5751 0.7764 0.7995 0.0939 0.5633
    V8502 0.85 0.6692 0.7926 0.8515 0.07854 1.034
    V7220 0.85 0.6887 0.793 0.8478 0.05969 0.7062
    V5801 0.89 0.7062 0.8547 0.8908 0.06615 0.75
    V6508 0.895 0.7045 0.8726 0.8941 0.07967 0.9659
    V6163 0.85 0.4752 0.8088 0.8478 0.07836 0.6786
    V1184 0.845 0.5199 0.821 0.8458 0.07752 1.034
    V4301 0.795 0.5 0.7772 0.7963 0.05748 0.4659
    V5005 0.845 0.696 0.8267 0.8458 0.07879 0.6461
    V6688 0.815 0.5722 0.7723 0.8141 0.07394 0.4659
    V4070 0.895 0.683 0.8738 0.8941 0.08022 0.9773
    V2064 0.895 0.5718 0.8774 0.8941 0.06936 1.054
    V3222 0.8 0.569 0.7593 0.8007 0.06797 0.4545
    V729 0.83 0.5625 0.8186 0.8336 0.06545 0.6234
    V7891 0.85 0.6871 0.8113 0.8515 0.07532 0.7435
    V5473 0.815 0.668 0.7744 0.8117 0.07191 0.6494
    V5400 0.85 0.6607 0.8186 0.8515 0.0659 0.7289
    V819 0.8 0.5211 0.8019 0.8007 0.06816 0.6023
    V5489 0.89 0.6388 0.8649 0.8908 0.0585 0.7159
    V8749 0.845 0.5 0.8052 0.8458 0.05735 0.4334
    V5672 0.89 0.5629 0.858 0.8908 0.06616 0.4497
    V8650 0.895 0.5686 0.8681 0.8941 0.05488 0.6997
    V9213 0.8 0.5 0.7691 0.8007 0.04509 0.414
    V7402 0.89 0.5 0.8693 0.8908 0.06297 1.166
    V3557 0.81 0.7021 0.7756 0.806 0.06857 0.6282
    V7513 0.845 0.655 0.849 0.8458 0.04981 0.7273
    V1451 0.875 0.5101 0.832 0.8762 0.06029 0.862
    V4069 0.8 0.5905 0.7784 0.7995 0.05914 0.3263
    V2358 0.855 0.5588 0.7869 0.8511 0.06436 0.664
    V9965 0.85 0.5373 0.8255 0.8478 0.06039 0.737
    V1248 0.81 0.5946 0.7666 0.806 0.05768 0.2094
    V9070 0.845 0.5864 0.7804 0.8458 0.05201 0.5211
    V4406 0.83 0.5816 0.8259 0.8336 0.06009 0.4903
    V1967 0.835 0.6964 0.8072 0.8344 0.05704 0.7468
    V3161 0.835 0.5601 0.7975 0.8369 0.07767 0.6412
    V872 0.795 0.6952 0.7938 0.7963 0.04499 0.4156
    V5321 0.875 0.5 0.849 0.8738 0.05966 0.9018
    V167 0.875 0.4907 0.821 0.8762 0.05721 0.6169
    V9735 0.815 0.6847 0.7983 0.8141 0.05636 0.6364
    V1975 0.89 0.6997 0.8592 0.8908 0.05371 0.5779
    V4564 0.875 0.5 0.8377 0.8738 0.05281 0.8417
    V5466 0.875 0.5 0.8523 0.8738 0.04637 1.144
    V9947 0.85 0.5 0.8247 0.8515 0.04956 0.4253
    V4542 0.85 0.5 0.8129 0.8478 0.04916 0.6834
    V3365 0.875 0.6859 0.8446 0.8738 0.0556 0.8791
    V7435 0.835 0.5142 0.7703 0.8369 0.04955 0.5795
    V782 0.8 0.7143 0.778 0.7995 0.03793 0.1104
    V1787 0.845 0.7041 0.8206 0.8458 0.0465 0.763
    V5 0.8 0.6838 0.7723 0.8007 0.03853 0.1867
    V6164 0.8 0.4785 0.7906 0.7995 0.043 0.3782
    V4198 0.875 0.6437 0.8401 0.8762 0.03432 0.3409
    V723 0.835 0.6729 0.8097 0.8369 0.03443 0.3864
      z.IDI z.NRI Frequency
    V2134 9.429 9.081 0.05
    V8685 8.296 9.033 0.05
    V9818 7.962 8.708 0.05
    V2556 7.818 9.809 0.05
    V2294 6.846 10.68 0.05
    V2804 6.813 9.231 0.05
    V6959 6.564 6.459 0.05
    V5417 6.436 7.088 0.05
    V9635 6.351 6.203 0.05
    V8156 6.13 5.565 0.05
    V6239 6.118 10.37 0.05
    V2256 6.069 4.544 0.05
    V6594 6.064 7.282 0.05
    V9395 6.027 6.628 0.05
    V9215 5.979 8.341 0.05
    V9275 5.949 8.709 0.05
    V34 5.817 4.194 0.05
    V5761 5.787 3.438 0.05
    V2750 5.7 8.516 0.05
    V4580 5.669 8.392 0.05
    V4290 5.582 8.047 0.05
    V5391 5.508 7.042 0.05
    V6584 5.485 5.254 0.05
    V7728 5.462 8.106 0.05
    V22 5.425 8.749 0.05
    V7748 5.423 10.97 0.05
    V7319 5.252 5.627 0.05
    V86 5.248 6.22 0.05
    V9585 5.152 10.14 0.05
    V7272 5.098 7.751 0.05
    V3170 5.096 5.438 0.05
    V6511 5.044 4.399 0.05
    V4584 4.926 6.066 0.05
    V4194 4.837 10.5 0.05
    V5069 4.829 9.589 0.05
    V8055 4.795 6.422 0.05
    V256 4.751 4.882 0.05
    V4352 4.731 7.709 0.05
    V1046 4.721 8.603 0.05
    V6111 4.66 7.456 0.05
    V6146 4.66 4.289 0.05
    V2515 4.653 2.985 0.05
    V3591 4.642 5.286 0.05
    V130 4.606 6.97 0.05
    V9432 4.593 5.051 0.05
    V1936 4.584 7.06 0.05
    V2747 4.559 5.425 0.05
    V2242 4.555 4.45 0.05
    V533 4.538 3.92 0.05
    V3206 4.434 7.641 0.05
    V762 4.416 3.29 0.05
    V7857 4.403 6.066 0.05
    V3708 4.379 4.749 0.05
    V7976 4.375 4.124 0.05
    V8502 4.323 8.709 0.05
    V7220 4.317 5.468 0.05
    V5801 4.287 5.77 0.05
    V6508 4.281 7.869 0.05
    V6163 4.252 5.179 0.05
    V1184 4.238 8.709 0.05
    V4301 4.202 4.442 0.05
    V5005 4.197 4.848 0.05
    V6688 4.125 3.662 0.05
    V4070 4.115 7.857 0.05
    V2064 4.075 9.213 0.05
    V3222 4.037 3.393 0.05
    V729 3.989 4.649 0.05
    V7891 3.975 5.627 0.05
    V5473 3.93 4.832 0.05
    V5400 3.904 6.49 0.05
    V819 3.903 4.544 0.05
    V5489 3.892 5.627 0.05
    V8749 3.891 3.313 0.05
    V5672 3.873 3.366 0.05
    V8650 3.871 5.286 0.05
    V9213 3.855 4.619 0.05
    V7402 3.853 10.58 0.05
    V3557 3.851 4.705 0.05
    V7513 3.848 6.086 0.05
    V1451 3.828 6.742 0.05
    V4069 3.789 2.514 0.05
    V2358 3.771 4.971 0.05
    V9965 3.752 5.69 0.05
    V1248 3.752 1.603 0.05
    V9070 3.727 4.287 0.05
    V4406 3.702 3.661 0.05
    V1967 3.696 5.842 0.05
    V3161 3.693 4.789 0.05
    V872 3.681 3.179 0.05
    V5321 3.659 7.821 0.05
    V167 3.637 4.55 0.05
    V9735 3.635 4.738 0.05
    V1975 3.618 4.263 0.05
    V4564 3.612 6.892 0.05
    V5466 3.533 10.7 0.05
    V9947 3.526 3.077 0.05
    V4542 3.48 5.248 0.05
    V3365 3.427 6.979 0.05
    V7435 3.368 4.254 0.05
    V782 3.314 0.7831 0.05
    V1787 3.312 6.387 0.05
    V5 3.176 1.326 0.05
    V6164 3.103 2.808 0.05
    V4198 2.958 2.715 0.05
    V723 2.87 2.833 0.05
  • Accuracy: 0.91
  • tAUC: 0.9111
  • sensitivity: 0.9205
  • specificity: 0.9018
  • bootstrap:



hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.5,srtCol = 45)


vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")] 

100 : V3504 200 : V1617 300 : V473 400 : V9092 500 : V4064


cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
  controlMean controlStd caseMean caseStd ROCAUC
V5005 239.3 83.62 314.7 72.85 0.772
V4960 123.7 97.33 47.51 49.25 0.7513
V2309 112.6 89 43.06 45.32 0.7509
V8368 116 90.62 44.89 46.06 0.7508
V312 121.6 94.73 47.18 48.01 0.7499
V3365 119.1 92.52 46.26 46.93 0.7493
V9617 108.8 87.49 40.89 44.75 0.7491
V414 125.3 100.4 47.47 50.45 0.7488
V9092 123.6 132.6 33.89 63.11 0.7485
V1936 243.1 79.21 316 79.48 0.748
V3783 398.6 159.9 530.9 140.9 0.7478
V3913 401.2 163.3 531.2 161.7 0.7477
V2556 255.3 92.59 324.8 64.88 0.7475
V9735 377.8 135 484 95.31 0.7453
V9432 392.5 153.2 519.6 124 0.745
V5801 385 144.3 503.2 107 0.7443
V7891 233.4 94.59 307.9 70.05 0.7441
V376 104.8 86.18 38.53 44.25 0.7425
V8585 117.7 123 30.88 59.46 0.7424
V1748 120.2 125.8 31.7 60.63 0.7413
V1148 121.8 128.1 32.58 61.86 0.7413
V2866 100.8 84.78 36.1 43.67 0.7406
V4147 82.43 101.7 21.93 43.72 0.7403
V2227 114.6 119.7 30 58.22 0.7403
V10 104.5 109.1 27.8 53.8 0.7395
V965 91.01 106.3 24.81 47.13 0.739
V66 98.75 101.2 27.45 51.87 0.7389
V540 87.76 87.73 26.7 47.89 0.7384
V4070 234.6 95.72 311.7 81.57 0.7383
V6594 210.4 98.05 288.8 76.94 0.7377
  WilcoxRes.p Frequency
V5005 0 0.785
V4960 0 0.1583
V2309 0 0.16
V8368 0 0.1483
V312 0 0.4767
V3365 0 0.275
V9617 0 0.1433
V414 0 0.145
V9092 0 0.1233
V1936 0 0.6783
V3783 0 0.2517
V3913 0 0.1433
V2556 0 0.59
V9735 0 0.5317
V9432 0 0.1683
V5801 0 0.385
V7891 0 0.42
V376 0 0.1183
V8585 0 0.1383
V1748 0 0.175
V1148 0 0.1417
V2866 0 0.1067
V4147 0 0.12
V2227 0 0.1383
V10 0 0.2167
V965 0 0.11
V66 0 0.1017
V540 0 0.1017
V4070 0 0.69
V6594 0 0.1567