knitr::opts_chunk$set(echo = TRUE)
setwd("G:/UAAAN/MATERIAS/2019/REGRESION APLICADA/DATOS")
library(corrplot)
## corrplot 0.84 loaded
library(ecospat)
## Loading required package: ade4
## Loading required package: ape
## Loading required package: gbm
## Loaded gbm 2.1.5
## Loading required package: sp
library(ggplot2)
library(ggpubr)
## Loading required package: magrittr
##
## Attaching package: 'ggpubr'
## The following object is masked from 'package:ape':
##
## rotate
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
##
## Attaching package: 'Hmisc'
## The following object is masked from 'package:ape':
##
## zoom
## The following objects are masked from 'package:base':
##
## format.pval, units
mis_datos<-read.csv("Pinus_halepensis.csv", header = T) #entre comillas es el archivo a abrir
head(mis_datos)
## ID DB H DC VT BH BF BT PBH PBF
## 1 1 55.40 10.60 8.78 0.82 201.30 518.43 719.73 27.97 72.03
## 2 2 54.30 11.10 8.00 0.86 166.56 498.91 665.47 25.03 74.97
## 3 3 30.20 7.20 5.50 0.14 72.19 82.52 154.71 46.66 53.34
## 4 4 57.50 9.57 8.50 0.60 191.30 348.40 539.70 35.45 64.55
## 5 5 39.30 8.60 8.90 0.34 70.60 212.33 282.93 24.95 75.05
## 6 6 75.45 12.99 12.30 1.34 487.67 864.70 1352.37 36.06 63.94
attach(mis_datos) #este es muy importante
library("pastecs")
##
## Attaching package: 'pastecs'
## The following object is masked from 'package:magrittr':
##
## extract
round(stat.desc(mis_datos [2:9]), digits = 2)
## DB H DC VT BH BF BT PBH
## nbr.val 40.00 40.00 40.00 40.00 40.00 40.00 40.00 40.00
## nbr.null 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## nbr.na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
## min 26.90 7.12 4.48 0.13 23.41 78.65 102.06 22.77
## max 75.45 13.86 12.30 1.34 487.67 864.70 1352.37 46.90
## range 48.55 6.74 7.82 1.21 464.26 786.05 1250.31 24.13
## sum 1874.50 393.23 303.21 23.71 7033.63 13961.87 20995.50 1371.55
## median 46.45 9.49 7.28 0.55 178.81 299.61 524.47 34.77
## mean 46.86 9.83 7.58 0.59 175.84 349.05 524.89 34.29
## SE.mean 1.70 0.30 0.28 0.05 13.27 28.95 40.83 1.04
## CI.mean.0.95 3.44 0.60 0.56 0.10 26.83 58.55 82.60 2.09
## var 115.65 3.49 3.07 0.10 7040.39 33516.31 66697.67 42.90
## std.dev 10.75 1.87 1.75 0.31 83.91 183.07 258.26 6.55
## coef.var 0.23 0.19 0.23 0.53 0.48 0.52 0.49 0.19
plot(DB, H, xlab = "Diámetro basal (cm)", ylab = "Altura (m)",
lty=1:5, pch=1, col=3)
shapiro.test(mis_datos$DB) #
##
## Shapiro-Wilk normality test
##
## data: mis_datos$DB
## W = 0.97914, p-value = 0.6577
ggqqplot(mis_datos$DB, ylab = "DB", color = 3)
boxplot(mis_datos$DB, col = 3, plot = TRUE)
hist(mis_datos$DB, col = 3) #
cor_2 <- rcorr(as.matrix(mis_datos))
## Warning in sqrt(1 - h * h): Se han producido NaNs
cor_2
## ID DB H DC VT BH BF BT PBH PBF
## ID 1.00 -0.36 -0.21 -0.38 -0.29 -0.25 -0.32 -0.31 0.04 -0.04
## DB -0.36 1.00 0.59 0.71 0.88 0.86 0.84 0.88 -0.09 0.09
## H -0.21 0.59 1.00 0.56 0.74 0.53 0.68 0.65 -0.36 0.36
## DC -0.38 0.71 0.56 1.00 0.76 0.75 0.80 0.81 -0.20 0.20
## VT -0.29 0.88 0.74 0.76 1.00 0.82 0.95 0.94 -0.35 0.35
## BH -0.25 0.86 0.53 0.75 0.82 1.00 0.85 0.93 0.08 -0.08
## BF -0.32 0.84 0.68 0.80 0.95 0.85 1.00 0.99 -0.39 0.39
## BT -0.31 0.88 0.65 0.81 0.94 0.93 0.99 1.00 -0.25 0.25
## PBH 0.04 -0.09 -0.36 -0.20 -0.35 0.08 -0.39 -0.25 1.00 -1.00
## PBF -0.04 0.09 0.36 0.20 0.35 -0.08 0.39 0.25 -1.00 1.00
##
## n= 40
##
##
## P
## ID DB H DC VT BH BF BT PBH PBF
## ID 0.0233 0.1900 0.0169 0.0685 0.1221 0.0464 0.0554 0.8263 0.8263
## DB 0.0233 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5809 0.5809
## H 0.1900 0.0000 0.0002 0.0000 0.0004 0.0000 0.0000 0.0234 0.0234
## DC 0.0169 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.2081 0.2081
## VT 0.0685 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0274 0.0274
## BH 0.1221 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.6031 0.6031
## BF 0.0464 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0122 0.0122
## BT 0.0554 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1186 0.1186
## PBH 0.8263 0.5809 0.0234 0.2081 0.0274 0.6031 0.0122 0.1186
## PBF 0.8263 0.5809 0.0234 0.2081 0.0274 0.6031 0.0122 0.1186
Que tipo de correlacion es la adecuada (Pearson, Spearman, Kendall)
Que variable climática responde mejor al MEI
Cuanto explica el fenomeno del ENSO la variable climática.
alt text