library(readxl)
clean_stratified <- read.csv("~/Desktop/Columbia research/Social Capital and EQI/clean_stratified.csv")
landfilllmopdata <- read_excel("/Users/zhongming/Downloads/landfilllmopdata.xlsx", sheet = "LMOP Database")

-
/
                                                               
library(dplyr)
df=d%>%group_by(state,county_name)%>%summarise(rate=mean(rate),landfill=n(),waste=sum(waste),gas=sum(gas))
library(stringr)
clean_stratified$county_name=str_replace(clean_stratified$county_name," County","")
ds=clean_stratified%>%left_join(df,by=c("state","county_name"))
Column `state` joining factor and character vector, coercing into character vector
ds=ds%>%mutate(waste_per=waste/total_pop,rate_per=rate/total_pop,gas_per=gas/total_pop,landfill_per=landfill/total_pop)

Gas ~ Landfill

library(lme4)
data=ds
data[c(6:52)]=scale(data[c(6:52)])
summary(lmer(gas_per ~ landfill_per+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: gas_per ~ landfill_per + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  1035.1   1051.9   -513.6   1027.1      480 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.6629 -0.2222  0.0653  0.2415 10.7035 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.07303  0.2702  
 Residual             0.45037  0.6711  
Number of obs: 484, groups:  state, 45

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.44237    0.05806   7.619
landfill_per  1.68317    0.07464  22.551

Correlation of Fixed Effects:
            (Intr)
landfill_pr 0.312 

Waste ~ Landfill

summary(lmer(waste_per ~ landfill_per+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: waste_per ~ landfill_per + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  3043.1   3063.2  -1517.6   3035.1     1106 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.9276 -0.0913 -0.0102  0.0655 28.4580 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.1170   0.3421  
 Residual             0.8549   0.9246  
Number of obs: 1110, groups:  state, 49

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.11167    0.06188   1.805
landfill_per  0.46014    0.04339  10.606

Correlation of Fixed Effects:
            (Intr)
landfill_pr 0.107 

Gas~ Landfil+SK

summary(lmer(gas_per ~ landfill_per+sk09+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: gas_per ~ landfill_per + sk09 + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  1023.8   1044.7   -506.9   1013.8      478 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-6.5190 -0.2150  0.0375  0.2565 10.6248 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.07275  0.2697  
 Residual             0.43964  0.6631  
Number of obs: 483, groups:  state, 44

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.41860    0.05823   7.189
landfill_per  1.77545    0.07830  22.675
sk09         -0.21199    0.06041  -3.509

Correlation of Fixed Effects:
            (Intr) lndfl_
landfill_pr  0.249       
sk09         0.118 -0.334

Waste ~ Landfill+SK09

summary(lmer(waste_per ~ landfill_per+sk09+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: waste_per ~ landfill_per + sk09 + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  3037.3   3062.3  -1513.6   3027.3     1101 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-5.8033 -0.0979 -0.0096  0.0716 28.3869 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.1189   0.3448  
 Residual             0.8572   0.9259  
Number of obs: 1106, groups:  state, 47

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.12022    0.06338   1.897
landfill_per  0.45168    0.04478  10.086
sk09          0.04176    0.05276   0.792

Correlation of Fixed Effects:
            (Intr) lndfl_
landfill_pr  0.063       
sk09         0.150 -0.241

airEQI~ Landfill

summary(lmer(air_EQI_22July2013 ~ landfill_per+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: air_EQI_22July2013 ~ landfill_per + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2406.0   2427.1  -1199.0   2398.0     1432 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.6200 -0.6612 -0.0179  0.6137  7.2308 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.1862   0.4316  
 Residual             0.2833   0.5323  
Number of obs: 1436, groups:  state, 50

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.34017    0.06458   5.268
landfill_per -0.46990    0.01652 -28.453

Correlation of Fixed Effects:
            (Intr)
landfill_pr 0.003 

airEQI ~ Landfill+SK

summary(lmer(air_EQI_22July2013 ~ landfill_per+sk09+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: air_EQI_22July2013 ~ landfill_per + sk09 + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  2361.4   2387.8  -1175.7   2351.4     1426 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5804 -0.6723 -0.0252  0.6312  6.3967 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.1750   0.4184  
 Residual             0.2764   0.5257  
Number of obs: 1431, groups:  state, 48

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.34906    0.06357   5.491
landfill_per -0.42714    0.01807 -23.636
sk09         -0.14611    0.02606  -5.608

Correlation of Fixed Effects:
            (Intr) lndfl_
landfill_pr -0.019       
sk09         0.046 -0.431

Waste Accept ~ landfill+SK

summary(lmer(rate_per ~ landfill_per+sk09+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: rate_per ~ landfill_per + sk09 + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  3208.2   3233.4  -1599.1   3198.2     1138 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.4679 -0.0800 -0.0261  0.0234 30.7699 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.08579  0.2929  
 Residual             0.92082  0.9596  
Number of obs: 1143, groups:  state, 47

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.03380    0.05634   0.600
landfill_per  0.19623    0.03357   5.846
sk09          0.01316    0.04946   0.266

Correlation of Fixed Effects:
            (Intr) lndfl_
landfill_pr -0.051       
sk09         0.159 -0.377

Waste Accept ~ landfill

summary(lmer(rate_per ~ landfill_per+ (1|state), data=data,REML=F))
Linear mixed model fit by maximum likelihood  ['lmerMod']
Formula: rate_per ~ landfill_per + (1 | state)
   Data: data

     AIC      BIC   logLik deviance df.resid 
  3211.8   3232.0  -1601.9   3203.8     1142 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.5153 -0.0768 -0.0262  0.0218 30.8197 

Random effects:
 Groups   Name        Variance Std.Dev.
 state    (Intercept) 0.08419  0.2901  
 Residual             0.91885  0.9586  
Number of obs: 1146, groups:  state, 49

Fixed effects:
             Estimate Std. Error t value
(Intercept)   0.03087    0.05501   0.561
landfill_per  0.19950    0.03104   6.428

Correlation of Fixed Effects:
            (Intr)
landfill_pr 0.012 
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKYGBge3J9CmxpYnJhcnkocmVhZHhsKQpjbGVhbl9zdHJhdGlmaWVkIDwtIHJlYWQuY3N2KCJ+L0Rlc2t0b3AvQ29sdW1iaWEgcmVzZWFyY2gvU29jaWFsIENhcGl0YWwgYW5kIEVRSS9jbGVhbl9zdHJhdGlmaWVkLmNzdiIpCmxhbmRmaWxsbG1vcGRhdGEgPC0gcmVhZF9leGNlbCgiL1VzZXJzL3pob25nbWluZy9Eb3dubG9hZHMvbGFuZGZpbGxsbW9wZGF0YS54bHN4Iiwgc2hlZXQgPSAiTE1PUCBEYXRhYmFzZSIpCmQ9bGFuZGZpbGxsbW9wZGF0YVtjKDQsOCwyNiwyNCwzMSldCm5hbWVzKGQpPWMoInN0YXRlIiwiY291bnR5X25hbWUiLCJyYXRlIiwid2FzdGUiLCJnYXMiKQpgYGAKCmBgYHtyfQpsaWJyYXJ5KGRwbHlyKQpkZj1kJT4lZ3JvdXBfYnkoc3RhdGUsY291bnR5X25hbWUpJT4lc3VtbWFyaXNlKHJhdGU9bWVhbihyYXRlKSxsYW5kZmlsbD1uKCksd2FzdGU9c3VtKHdhc3RlKSxnYXM9c3VtKGdhcykpCmBgYAoKYGBge3J9CmxpYnJhcnkoc3RyaW5ncikKY2xlYW5fc3RyYXRpZmllZCRjb3VudHlfbmFtZT1zdHJfcmVwbGFjZShjbGVhbl9zdHJhdGlmaWVkJGNvdW50eV9uYW1lLCIgQ291bnR5IiwiIikKZHM9Y2xlYW5fc3RyYXRpZmllZCU+JWxlZnRfam9pbihkZixieT1jKCJzdGF0ZSIsImNvdW50eV9uYW1lIikpCmBgYApgYGB7cn0KZHM9ZHMlPiVtdXRhdGUod2FzdGVfcGVyPXdhc3RlL3RvdGFsX3BvcCxyYXRlX3Blcj1yYXRlL3RvdGFsX3BvcCxnYXNfcGVyPWdhcy90b3RhbF9wb3AsbGFuZGZpbGxfcGVyPWxhbmRmaWxsL3RvdGFsX3BvcCkKYGBgCgojIEdhcyB+IExhbmRmaWxsCmBgYHtyfQpsaWJyYXJ5KGxtZTQpCmRhdGE9ZHMKZGF0YVtjKDY6NTIpXT1zY2FsZShkYXRhW2MoNjo1MildKQpzdW1tYXJ5KGxtZXIoZ2FzX3BlciB+IGxhbmRmaWxsX3BlcisgKDF8c3RhdGUpLCBkYXRhPWRhdGEsUkVNTD1GKSkKYGBgCgojIFdhc3RlIH4gTGFuZGZpbGwKYGBge3J9CnN1bW1hcnkobG1lcih3YXN0ZV9wZXIgfiBsYW5kZmlsbF9wZXIrICgxfHN0YXRlKSwgZGF0YT1kYXRhLFJFTUw9RikpCmBgYAoKIyBHYXN+IExhbmRmaWwrU0sKYGBge3J9CnN1bW1hcnkobG1lcihnYXNfcGVyIH4gbGFuZGZpbGxfcGVyK3NrMDkrICgxfHN0YXRlKSwgZGF0YT1kYXRhLFJFTUw9RikpCmBgYAoKIyBXYXN0ZSB+IExhbmRmaWxsK1NLMDkKYGBge3J9CnN1bW1hcnkobG1lcih3YXN0ZV9wZXIgfiBsYW5kZmlsbF9wZXIrc2swOSsgKDF8c3RhdGUpLCBkYXRhPWRhdGEsUkVNTD1GKSkKYGBgCgojIGFpckVRSX4gTGFuZGZpbGwKYGBge3J9CnN1bW1hcnkobG1lcihhaXJfRVFJXzIySnVseTIwMTMgfiBsYW5kZmlsbF9wZXIrICgxfHN0YXRlKSwgZGF0YT1kYXRhLFJFTUw9RikpCmBgYAoKIyBhaXJFUUkgfiBMYW5kZmlsbCtTSwpgYGB7cn0Kc3VtbWFyeShsbWVyKGFpcl9FUUlfMjJKdWx5MjAxMyB+IGxhbmRmaWxsX3BlcitzazA5KyAoMXxzdGF0ZSksIGRhdGE9ZGF0YSxSRU1MPUYpKQpgYGAKCiMgV2FzdGUgQWNjZXB0IH4gbGFuZGZpbGwrU0sKYGBge3J9CnN1bW1hcnkobG1lcihyYXRlX3BlciB+IGxhbmRmaWxsX3BlcitzazA5KyAoMXxzdGF0ZSksIGRhdGE9ZGF0YSxSRU1MPUYpKQpgYGAKCiMgV2FzdGUgQWNjZXB0IH4gbGFuZGZpbGwKYGBge3J9CnN1bW1hcnkobG1lcihyYXRlX3BlciB+IGxhbmRmaWxsX3BlcisgKDF8c3RhdGUpLCBkYXRhPWRhdGEsUkVNTD1GKSkKYGBgCgoK