In response to reviewer 1.
ME_DATA_PATH <- here("data/0_metaanalysis_data.csv")
ma_raw <- read_csv(ME_DATA_PATH) %>%
select(1:4, 6:8, 10:16, 18,19,21, 27:29, 31:34, 48:50, 59) %>%
mutate_if(is.character, as.factor)
AVG_MONTH <- 30.43688
ma_c <- ma_raw %>%
filter(!is.na(d_calc)) %>%
mutate(mean_age = mean_age_1/AVG_MONTH,
year = as.numeric(str_sub(short_cite, -5, -2)),
condition_type = as.factor(ifelse(infant_type == "typical" & ME_trial_type == "FN", "TFN",
ifelse(infant_type == "typical" & ME_trial_type == "NN", "TNN",
as.character(infant_type))))) %>%
filter(mean_age < 144) # (12 yo), excludes MR population
# filter(!(study_ID %in% c("williams2009", "frank1999"))) # for checking that holds when exclude dissertations [it does]
overall_mean <- mean(ma_c$d_calc)
overall_sd <- sd(ma_c$d_calc)
plus2 <- overall_mean + (2*(overall_sd))
minus2 <- overall_mean - (2*(overall_sd))
plus3 <- overall_mean + (3*(overall_sd))
minus3 <- overall_mean - (3*(overall_sd))
twosd_outliers <- ma_c %>%
filter(d_calc > plus2 | d_calc < minus2) %>%
data.frame()
threesd_outliers <- ma_c %>%
filter(d_calc > plus3 | d_calc < minus3) %>%
data.frame()
There are 8 conditions that are 2sds beyond the mean; There are 3 conditions that are 3sds beyond the mean:
kable(threesd_outliers)
| study_ID | short_cite | long_cite | peer_reviewed | expt_num | response_mode | dependent_measure | infant_type | infant_type2 | group_name_1 | n_1 | mean_age_1 | same_infant | x_1 | SD_1 | t | d | num_trials | object_stimulus | N_AFC | mean_production_vocab | ME_trial_type | lab_group | data_source | d_notes | d_calc | d_var_calc | es_method | mean_age | year | condition_type |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| estis2015 | Estis & Beverly (2015) | Estis, J. M., & Beverly, B. L. (2015). Children with SLI exhibit delays resolving ambiguous reference. Journal of child language, 42(1), 180-195. | yes | 1 | behavior | target_selection | NT | SLI | experimental | 8 | 2617.571 | 25 | 0.960 | 0.070 | NA | NA | 10 | objects | N_AFC-2 | NA | FN | estis | paper | NA | 6.571429 | 2.823980 | group_means_one | 85.99998 | 2015 | NT |
| frank2016 | Frank et al. (2016) | Frank, M. C., Sugarman, E., Horowitz, A., Lewis, M. L., & Yurovsky, D. (2016). Using tablets to collect data from young children. Journal of Cognition and Development,17(1), 1-17. | yes | 1 | behavior | target_selection | typical | typical | experimental | 20 | 1636.320 | 39 | 0.970 | 0.060 | NA | 7.833333 | 8 | digital | N_AFC-2 | NA | FN | framkm | paper | NA | 7.833333 | 1.584028 | group_means_one | 53.76110 | 2016 | TFN |
| gollek2016 | Gollek & Doherty (2016) | Gollek, C.& Doherty, M.J. (2016). Metacognitive developments in word learning: Mutual exclusivity and theory of mind. Journal of Experimental Child Psychology. 148, 51-69. | yes | 3 | behavior | target_selection | typical | typical | disambiguation - younger | 15 | 1278.349 | 42 | 0.986 | 0.052 | NA | NA | 5 | objects | N_AFC-2 | NA | FN | gollek | paper | NA | 9.346154 | 2.978353 | group_means_one | 42.00000 | 2016 | TFN |
There’s heteroskedasticity if we include the outliers; it goes away if you exclude them.
model <- lm(d_calc ~ mean_age, data = ma_c, weights = n_1)
olsrr::ols_test_breusch_pagan(model)
##
## Breusch Pagan Test for Heteroskedasticity
## -----------------------------------------
## Ho: the variance is constant
## Ha: the variance is not constant
##
## Data
## ----------------------------------
## Response : d_calc
## Variables: fitted values of d_calc
##
## Test Summary
## -------------------------------
## DF = 1
## Chi2 = 11.94575
## Prob > Chi2 = 0.0005477213
olsrr::ols_test_f(model)
##
## F Test for Heteroskedasticity
## -----------------------------
## Ho: Variance is homogenous
## Ha: Variance is not homogenous
##
## Variables: fitted values of d_calc
##
## Test Summary
## --------------------------
## Num DF = 1
## Den DF = 144
## F = 3.12629
## Prob > F = 0.07915652
model <- lm(d_calc ~ mean_age, data = ma_c %>% filter(d_calc > plus3 | d_calc < minus3), weights = n_1)
olsrr::ols_test_breusch_pagan(model)
##
## Breusch Pagan Test for Heteroskedasticity
## -----------------------------------------
## Ho: the variance is constant
## Ha: the variance is not constant
##
## Data
## ----------------------------------
## Response : d_calc
## Variables: fitted values of d_calc
##
## Test Summary
## ----------------------------
## DF = 1
## Chi2 = 0.1313952
## Prob > Chi2 = 0.7169899
olsrr::ols_test_f(model)
##
## F Test for Heteroskedasticity
## -----------------------------
## Ho: Variance is homogenous
## Ha: Variance is not homogenous
##
## Variables: fitted values of d_calc
##
## Test Summary
## -------------------------
## Num DF = 1
## Den DF = 1
## F = 8.231854
## Prob > F = 0.2135048