1 FRESA.CAD Benchmark

1.3 Results

1.3.2 Radar Plots

op <- par(no.readonly = TRUE)

library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))

mNames <- names(cp$cpuElapsedTimes)

classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")

classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.5 ,title = "Prediction Model")

legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


filnames <- c("BSWiMS","LASSO_MIN","RF","IDI","tStudent","kendall","mRMR.classic")

filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));

filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));

filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.6,title = "Filter Method" )


legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)

1.3.3 Feature Analysis

  • coefficients:

    Table continues below
      Estimate lower OR upper u.Accuracy r.Accuracy
    V494 -0.1099 0.8821 0.8959 0.9099 0.8226 0.6452
    V378 -0.2057 0.7908 0.8141 0.8381 0.8333 0.6452
    V1773 0.4673 1.481 1.596 1.719 0.828 0.6882
    V514 0.1331 1.121 1.142 1.164 0.828 0.6452
    V246 -0.09924 0.8929 0.9055 0.9183 0.8387 0.6452
    V268 -0.2298 0.7693 0.7947 0.8209 0.8548 0.6344
    V1424 -0.06845 0.9234 0.9338 0.9444 0.8118 0.6452
    V898 -0.06184 0.9304 0.94 0.9498 0.8226 0.6452
    V250 -0.0712 0.918 0.9313 0.9447 0.8333 0.6452
    V1636 -0.2533 0.7287 0.7762 0.8269 0.8817 0.672
    V1731 0.106 1.089 1.112 1.135 0.7742 0.6452
    V67 -0.238 0.7507 0.7882 0.8276 0.7903 0.6344
    V965 0.08831 1.066 1.092 1.119 0.8065 0.6452
    V1111 0.5024 1.411 1.653 1.935 0.7419 0.8333
    V626 0.2552 1.188 1.291 1.402 0.7742 0.7796
    V813 -0.433 0.5626 0.6486 0.7478 0.8333 0.7419
    V1211 -0.3072 0.6592 0.7355 0.8207 0.6882 0.828
    V1885 -0.1881 0.7734 0.8285 0.8876 0.8065 0.7419
    V1772 0.1991 1.132 1.22 1.315 0.8065 0.8333
    V1550 0.1213 1.077 1.129 1.183 0.7258 0.8011
    V740 -0.1646 0.7942 0.8483 0.906 0.7796 0.7742
    V577 0.2862 1.186 1.331 1.495 0.672 0.8817
    V138 -0.3505 0.6095 0.7043 0.814 0.7419 0.8065
    V1347 0.2346 1.145 1.264 1.396 0.6344 0.8548
    V766 -0.08942 0.8802 0.9145 0.95 0.8387 0.8118
    V781 0.1088 1.061 1.115 1.171 0.8011 0.7258
    V139 0.1519 1.078 1.164 1.257 0.8011 0.8548
    V1844 -0.1053 0.853 0.9001 0.9498 0.8333 0.8065
    V1583 0.1119 1.053 1.118 1.187 0.8548 0.8011
    V1043 0.1425 1.068 1.153 1.246 0.8118 0.8387
    V1994 0.149 1.066 1.161 1.264 0.6344 0.7903
    Table continues below
      full.Accuracy u.AUC r.AUC full.AUC IDI NRI
    V494 0.8226 0.8352 0.5 0.8352 0.5924 1.467
    V378 0.8333 0.8333 0.5 0.8333 0.6011 1.367
    V1773 0.8925 0.8189 0.7038 0.8894 0.5652 1.65
    V514 0.828 0.8428 0.5 0.8428 0.5179 1.467
    V246 0.8387 0.8375 0.5 0.8375 0.5114 1.45
    V268 0.871 0.8466 0.6178 0.8659 0.4945 1.5
    V1424 0.8118 0.8167 0.5 0.8167 0.4932 1.283
    V898 0.8226 0.842 0.5 0.842 0.4589 1.4
    V250 0.8333 0.8231 0.5 0.8231 0.4404 1.117
    V1636 0.8871 0.8879 0.6572 0.8955 0.4371 1.667
    V1731 0.7742 0.7739 0.5 0.7739 0.423 1.2
    V67 0.8172 0.7864 0.6348 0.8208 0.4036 1.3
    V965 0.8065 0.8193 0.5 0.8193 0.3629 1.317
    V1111 0.8387 0.7625 0.8265 0.8477 0.3407 1.567
    V626 0.914 0.7807 0.7814 0.9163 0.2847 0.9833
    V813 0.8387 0.8265 0.7625 0.8477 0.3228 1.55
    V1211 0.8925 0.7038 0.8189 0.8894 0.2796 1.467
    V1885 0.8925 0.7989 0.7591 0.8996 0.2406 1.233
    V1772 0.8978 0.8125 0.8299 0.9004 0.2383 1.1
    V1550 0.8656 0.7193 0.8049 0.8754 0.2116 1.067
    V740 0.914 0.7814 0.7807 0.9163 0.204 1.2
    V577 0.8871 0.6572 0.8879 0.8955 0.2159 1.05
    V138 0.8925 0.7591 0.7989 0.8996 0.1948 1.05
    V1347 0.871 0.6178 0.8466 0.8659 0.2056 0.9333
    V766 0.8871 0.8239 0.8133 0.8886 0.1811 0.7333
    V781 0.8656 0.8049 0.7193 0.8754 0.1806 0.9833
    V139 0.8763 0.8049 0.8466 0.8837 0.1373 0.6833
    V1844 0.8978 0.8299 0.8125 0.9004 0.1545 0.9333
    V1583 0.8763 0.8466 0.8049 0.8837 0.1297 0.7167
    V1043 0.8871 0.8133 0.8239 0.8886 0.1444 0.5833
    V1994 0.8172 0.6348 0.7864 0.8208 0.1182 0.7333
      z.IDI z.NRI Frequency
    V494 10.86 9.782 0.05
    V378 10.56 8.425 0.05
    V1773 10.34 13.42 0.05
    V514 9.951 9.916 0.05
    V246 9.569 9.49 0.05
    V268 9.047 10.41 0.05
    V1424 8.999 7.813 0.05
    V898 8.97 9.536 0.05
    V250 8.062 6.15 0.05
    V1636 7.861 13.82 0.05
    V1731 7.602 6.808 0.05
    V67 7.17 8.011 0.05
    V965 7.018 7.978 0.05
    V1111 6.225 11.49 0.05
    V626 5.983 5.905 0.05
    V813 5.914 11 0.05
    V1211 5.486 10.23 0.05
    V1885 5.344 7.062 0.05
    V1772 5.183 6.063 0.05
    V1550 4.907 6.257 0.05
    V740 4.846 7.309 0.05
    V577 4.81 5.73 0.05
    V138 4.72 5.626 0.05
    V1347 4.555 5.072 0.05
    V766 4.544 3.621 0.05
    V781 4.27 5.537 0.05
    V139 3.865 3.323 0.05
    V1844 3.787 4.958 0.05
    V1583 3.619 3.463 0.05
    V1043 3.577 2.752 0.05
    V1994 3.283 3.669 0.05
  • Accuracy: 0.9194
  • tAUC: 0.917
  • sensitivity: 0.925
  • specificity: 0.9091
  • bootstrap:

100 : V610

Features (continued below)
  controlMean controlStd caseMean caseStd ROCAUC
V378 0.741 0.4201 -0.0097 0.3183 0.9341
V494 1.207 0.5516 0.0745 0.516 0.9205
V1636 -0.07 0.4481 -1.098 0.5804 0.9045
V1424 1.121 0.8332 -0.3798 0.8767 0.8909
V626 0.2895 0.5038 1.138 0.482 0.8898
V250 2.091 0.7986 0.7251 0.637 0.8886
V1772 -1.061 0.4778 -0.2618 0.5116 0.8852
V1043 -0.5278 0.3595 0.2742 0.6335 0.8795
V1844 0.3261 0.5442 -0.8701 0.8825 0.8761
V1773 -1.319 0.45 -0.6071 0.4575 0.8727
V514 0.6087 0.3459 1.367 0.5933 0.8648
V766 1.239 1.037 -0.0012 0.6195 0.8648
V740 1.026 0.6136 0.1875 0.6158 0.8648
V1885 -0.8892 0.5478 -1.622 0.4309 0.8602
V67 2.144 0.4965 1.444 0.4422 0.8568
V813 0.3412 0.397 -0.2195 0.3996 0.8568
V246 1.583 0.7959 0.5808 0.5056 0.8557
V268 1.596 0.8016 0.6233 0.5027 0.8557
V823 1.855 0.7811 0.5968 0.8911 0.8557
V1495 0.4171 0.8022 -0.8496 0.859 0.8557
V1583 -1.312 0.5631 -0.5262 0.518 0.8523
V139 1.312 0.3371 1.895 0.4572 0.8523
V898 1.226 0.6475 -0.0314 0.9014 0.8511
V965 -0.3606 0.4413 0.3658 0.5746 0.8511
V1731 -0.6813 0.569 0.1531 0.5689 0.85
V138 1.237 0.2782 0.8257 0.3015 0.8489
V825 0.2442 0.4281 -0.3768 0.4734 0.8443
V781 0.3102 0.5331 1.052 0.5429 0.8432
V1061 -0.5987 0.4012 0.0075 0.4601 0.8386
V392 0.4058 0.4568 1.024 0.4519 0.8386
  WilcoxRes.p Frequency
V378 0 0.9013
V494 0 0.9173
V1636 0 0.8227
V1424 0 0.7027
V626 0 0.7427
V250 0 0.7613
V1772 0 0.7493
V1043 0 0.608
V1844 0 0.5773
V1773 0 0.836
V514 0 0.5947
V766 0 0.2533
V740 0 0.556
V1885 0 0.6853
V67 0 0.6653
V813 0 0.6107
V246 0 0.2667
V268 0 0.2213
V823 0 0.252
V1495 0 0.1467
V1583 0 0.7547
V139 0 0.2693
V898 0 0.7267
V965 0 0.4933
V1731 0 0.536
V138 0 0.5507
V825 0 0.1787
V781 0 0.4493
V1061 0 0.3307
V392 0 0.528