library("fda.usc")
## Loading required package: fda
## Loading required package: splines
## Loading required package: Matrix
##
## Attaching package: 'fda'
## The following object is masked from 'package:graphics':
##
## matplot
## Loading required package: MASS
## Loading required package: mgcv
## Loading required package: nlme
## This is mgcv 1.8-24. For overview type 'help("mgcv-package")'.
## Loading required package: rpart
library("chipPCR")
library("signal")
##
## Attaching package: 'signal'
## The following objects are masked from 'package:stats':
##
## filter, poly
setwd("~/Dropbox/Marcos_Biomech/Sherveen S2/EMG")
nombres=list.files(pattern = ".csv",recursive = TRUE)
nombre= substr(nombres,0,7)
nombre2=setdiff(strsplit(nombres,""),strsplit(nombre,""))
nombre2= lapply(nombre2,function(x){paste0(x,sep="",collapse = "")})
datos= read.csv("Par_001/Par_001_HIIT_06.csv",header = FALSE)
datos2= read.csv("Par_001/Par_001_HIIT_06_events.csv")
datos$tiempo= datos[,1]/250
datos$tiemporeal= seq(min(datos$tiempo),length.out=length(datos$tiempo),max(datos$tiempo)+0.004)
colnames(datos)=c("Frame","VL","VM","RF","BF","GMAX","GMED","time","realtime")
stance= datos2[seq(1,by=2,length=20),]
swing= datos2[seq(2,by=2,length=19),]
pasosstance= 1:19
pasosstance= as.list(pasosstance)
pasosswing= 1:19
pasosswing= as.list(pasosswing)
W=0.1
b1 <- butter(4, W=0.1)
model1= filtfilt(b1,datos$VL)
model2= filtfilt(b1,datos$VM)
model3= filtfilt(b1,datos$RF)
model4= filtfilt(b1,datos$BF)
model5= filtfilt(b1,datos$GMAX)
model6= filtfilt(b1,datos$GMED)
residuos1= (model1-datos$VL)^2
residuos2= (model2-datos$VL)^2
residuos3= (model3-datos$VL)^2
residuos4= (model4-datos$VL)^2
residuos5= (model5-datos$VL)^2
residuos6= (model6-datos$VL)^2
datos$VL= model1
datos$VM= model2
datos$RF= model3
datos$BF= model4
datos$GMAX= model5
datos$GMED= model6
# par(mfrow= c(2,3))
# plot(datos$realtime,residuos1)
# plot(datos$realtime,residuos2)
# plot(datos$realtime,residuos3)
# plot(datos$realtime,residuos4)
# plot(datos$realtime,residuos5)
# plot(datos$realtime,residuos6)
# plot(datos$realtime,model1, type='o', pch=20, col='red')
#
# par(mfrow= c(2,1))
#
# plot(datos$realtime[1:1000],model1[1:1000])
# plot(datos$realtime[1:1000],datos$VL[1:1000])
for(j in 2:7){
}
for(j in 2:7){
for(i in 1:18){
pasosstance[[i]]= datos[datos$realtime>=stance[i]&datos$realtime<swing[i],]
pasosswing[[i]]=datos[datos$realtime>=swing[i]&datos$realtime<stance[i+1],]
# plot(fdata(pasosstance[[i]][,4],argvals =pasosstance[[i]][,8]),main= paste(colnames(datos)[j],"Stance",sep=""))
# plot(fdata(pasosswing[[i]][,4],argvals =pasosswing[[i]][,8]),main=paste(colnames(datos)[j],"Swing",sep=""))
plot(pasosstance[[i]][,j],main= paste(colnames(datos)[j],"Stance",sep=""))
# plot(pasosswing[[i]][,j],main= paste(colnames(datos)[j],"Swing",sep=""))
}}












































































































pasosstance[[19]]= datos[datos$realtime>=stance[19]&datos$realtime<swing[19],]
pasosswing[[19]]=datos[datos$realtime>=swing[19]&datos$realtime<stance[20],]
plot(fdata(pasosstance[[19]][,4],argvals =pasosstance[[19]][,8]))

plot(fdata(pasosswing[[19]][,4],argvals =pasosswing[[19]][,8]))

plot(pasosstance[[19]][,4])

plot(pasosswing[[19]][,4])
