Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 922 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 103. 105. 102 105. 67649400 98.7
## 2 2016-01-05 106. 106. 102. 103. 55791000 96.3
## 3 2016-01-06 101. 102. 99.9 101. 68457400 94.4
## 4 2016-01-07 98.7 100. 96.4 96.4 81094400 90.4
## 5 2016-01-08 98.6 99.1 96.8 97.0 70798000 90.9
## 6 2016-01-11 99.0 99.1 97.3 98.5 49739400 92.4
## 7 2016-01-12 101. 101. 98.8 100.0 49154200 93.7
## 8 2016-01-13 100. 101. 97.3 97.4 62439600 91.3
## 9 2016-01-14 98.0 100. 95.7 99.5 63170100 93.3
## 10 2016-01-15 96.2 97.7 95.4 97.1 79833900 91.0
## # … with 912 more rows
## Examine data
glimpse(stocks)
## Observations: 922
## Variables: 7
## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-0…
## $ open <dbl> 102.61, 105.75, 100.56, 98.68, 98.55, 98.97, 100.55, 10…
## $ high <dbl> 105.37, 105.85, 102.37, 100.13, 99.11, 99.06, 100.69, 1…
## $ low <dbl> 102.00, 102.41, 99.87, 96.43, 96.76, 97.34, 98.84, 97.3…
## $ close <dbl> 105.35, 102.71, 100.70, 96.45, 96.96, 98.53, 99.96, 97.…
## $ volume <dbl> 67649400, 55791000, 68457400, 81094400, 70798000, 49739…
## $ adjusted <dbl> 98.74225, 96.26781, 94.38389, 90.40047, 90.87848, 92.35…
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("MSFT", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 922 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 54.3 54.8 53.4 54.8 53778000 50.7
## 2 2016-01-05 54.9 55.4 54.5 55.0 34079700 50.9
## 3 2016-01-06 54.3 54.4 53.6 54.0 39518900 50.0
## 4 2016-01-07 52.7 53.5 52.1 52.2 56564900 48.3
## 5 2016-01-08 52.4 53.3 52.2 52.3 48754000 48.4
## 6 2016-01-11 52.5 52.8 51.5 52.3 36943800 48.4
## 7 2016-01-12 52.8 53.1 52.1 52.8 36095500 48.8
## 8 2016-01-13 53.8 54.1 51.3 51.6 66883600 47.8
## 9 2016-01-14 52 53.4 51.6 53.1 52381900 49.1
## 10 2016-01-15 51.3 52.0 50.3 51.0 71820700 47.2
## # … with 912 more rows
## Examine data
glimpse(stocks)
## Observations: 922
## Variables: 7
## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-0…
## $ open <dbl> 54.32, 54.93, 54.32, 52.70, 52.37, 52.51, 52.76, 53.80,…
## $ high <dbl> 54.80, 55.39, 54.40, 53.49, 53.28, 52.85, 53.10, 54.07,…
## $ low <dbl> 53.39, 54.54, 53.64, 52.07, 52.15, 51.46, 52.06, 51.30,…
## $ close <dbl> 54.80, 55.05, 54.05, 52.17, 52.33, 52.30, 52.78, 51.64,…
## $ volume <dbl> 53778000, 34079700, 39518900, 56564900, 48754000, 36943…
## $ adjusted <dbl> 50.70846, 50.93979, 50.01446, 48.27483, 48.42288, 48.39…
The variables are date, open, high, low, close, volume, and adjusted.
Variables and data types, the other basic data types are numeric, character, and logical.
922 rows.
Daily information about stock prices.
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()