Use the given code below to answer the questions.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 922 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 103. 105. 102 105. 67649400 98.7
## 2 2016-01-05 106. 106. 102. 103. 55791000 96.3
## 3 2016-01-06 101. 102. 99.9 101. 68457400 94.4
## 4 2016-01-07 98.7 100. 96.4 96.4 81094400 90.4
## 5 2016-01-08 98.6 99.1 96.8 97.0 70798000 90.9
## 6 2016-01-11 99.0 99.1 97.3 98.5 49739400 92.4
## 7 2016-01-12 101. 101. 98.8 100.0 49154200 93.7
## 8 2016-01-13 100. 101. 97.3 97.4 62439600 91.3
## 9 2016-01-14 98.0 100. 95.7 99.5 63170100 93.3
## 10 2016-01-15 96.2 97.7 95.4 97.1 79833900 91.0
## # … with 912 more rows
## Examine data
glimpse(stocks)
## Observations: 922
## Variables: 7
## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-0…
## $ open <dbl> 102.61, 105.75, 100.56, 98.68, 98.55, 98.97, 100.55, 10…
## $ high <dbl> 105.37, 105.85, 102.37, 100.13, 99.11, 99.06, 100.69, 1…
## $ low <dbl> 102.00, 102.41, 99.87, 96.43, 96.76, 97.34, 98.84, 97.3…
## $ close <dbl> 105.35, 102.71, 100.70, 96.45, 96.96, 98.53, 99.96, 97.…
## $ volume <dbl> 67649400, 55791000, 68457400, 81094400, 70798000, 49739…
## $ adjusted <dbl> 98.74225, 96.26781, 94.38389, 90.40047, 90.87848, 92.35…
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol for Microsoft. You may find the ticker symbol for Microsoft from Yahoo Finance.
## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis
## Import data
stocks <- tq_get("MSFT", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 922 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 54.3 54.8 53.4 54.8 53778000 50.7
## 2 2016-01-05 54.9 55.4 54.5 55.0 34079700 50.9
## 3 2016-01-06 54.3 54.4 53.6 54.0 39518900 50.0
## 4 2016-01-07 52.7 53.5 52.1 52.2 56564900 48.3
## 5 2016-01-08 52.4 53.3 52.2 52.3 48754000 48.4
## 6 2016-01-11 52.5 52.8 51.5 52.3 36943800 48.4
## 7 2016-01-12 52.8 53.1 52.1 52.8 36095500 48.8
## 8 2016-01-13 53.8 54.1 51.3 51.6 66883600 47.8
## 9 2016-01-14 52 53.4 51.6 53.1 52381900 49.1
## 10 2016-01-15 51.3 52.0 50.3 51.0 71820700 47.2
## # … with 912 more rows
## Examine data
glimpse(stocks)
## Observations: 922
## Variables: 7
## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-0…
## $ open <dbl> 54.32, 54.93, 54.32, 52.70, 52.37, 52.51, 52.76, 53.80,…
## $ high <dbl> 54.80, 55.39, 54.40, 53.49, 53.28, 52.85, 53.10, 54.07,…
## $ low <dbl> 53.39, 54.54, 53.64, 52.07, 52.15, 51.46, 52.06, 51.30,…
## $ close <dbl> 54.80, 55.05, 54.05, 52.17, 52.33, 52.30, 52.78, 51.64,…
## $ volume <dbl> 53778000, 34079700, 39518900, 56564900, 48754000, 36943…
## $ adjusted <dbl> 50.70846, 50.93979, 50.01446, 48.27483, 48.42288, 48.39…
There are 7 columns
The variables are date, open, high, low, close, volume, adjusted
Numeric data, character data, logical data
922
The daily information about the stock of the company
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
## Visualize
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()
Hint: Change message
, warning
, collapse
, echo
and results
in the chunk options. Refer to the RMarkdown Reference Guide.