Use the given code below to answer the questions.
## ── Attaching packages ─────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1 ✔ purrr 0.3.2
## ✔ tibble 2.1.3 ✔ dplyr 0.8.3
## ✔ tidyr 0.8.3 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## ── Conflicts ────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## Loading required package: lubridate
##
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
##
## date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
## # A tibble: 922 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 103. 105. 102 105. 67649400 98.7
## 2 2016-01-05 106. 106. 102. 103. 55791000 96.3
## 3 2016-01-06 101. 102. 99.9 101. 68457400 94.4
## 4 2016-01-07 98.7 100. 96.4 96.4 81094400 90.4
## 5 2016-01-08 98.6 99.1 96.8 97.0 70798000 90.9
## 6 2016-01-11 99.0 99.1 97.3 98.5 49739400 92.4
## 7 2016-01-12 101. 101. 98.8 100.0 49154200 93.7
## 8 2016-01-13 100. 101. 97.3 97.4 62439600 91.3
## 9 2016-01-14 98.0 100. 95.7 99.5 63170100 93.3
## 10 2016-01-15 96.2 97.7 95.4 97.1 79833900 91.0
## # … with 912 more rows
## Observations: 922
## Variables: 7
## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-0…
## $ open <dbl> 102.61, 105.75, 100.56, 98.68, 98.55, 98.97, 100.55, 10…
## $ high <dbl> 105.37, 105.85, 102.37, 100.13, 99.11, 99.06, 100.69, 1…
## $ low <dbl> 102.00, 102.41, 99.87, 96.43, 96.76, 97.34, 98.84, 97.3…
## $ close <dbl> 105.35, 102.71, 100.70, 96.45, 96.96, 98.53, 99.96, 97.…
## $ volume <dbl> 67649400, 55791000, 68457400, 81094400, 70798000, 49739…
## $ adjusted <dbl> 98.74225, 96.26781, 94.38389, 90.40047, 90.87848, 92.35…
Hint: Insert a new code chunk below and type in the code, using the tq_get() function above. Replace the ticker symbol for Microsoft. You may find the ticker symbol for Microsoft from Yahoo Finance.
## # A tibble: 922 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 54.3 54.8 53.4 54.8 53778000 50.7
## 2 2016-01-05 54.9 55.4 54.5 55.0 34079700 50.9
## 3 2016-01-06 54.3 54.4 53.6 54.0 39518900 50.0
## 4 2016-01-07 52.7 53.5 52.1 52.2 56564900 48.3
## 5 2016-01-08 52.4 53.3 52.2 52.3 48754000 48.4
## 6 2016-01-11 52.5 52.8 51.5 52.3 36943800 48.4
## 7 2016-01-12 52.8 53.1 52.1 52.8 36095500 48.8
## 8 2016-01-13 53.8 54.1 51.3 51.6 66883600 47.8
## 9 2016-01-14 52 53.4 51.6 53.1 52381900 49.1
## 10 2016-01-15 51.3 52.0 50.3 51.0 71820700 47.2
## # … with 912 more rows
Hint: Insert a new code chunk below and type in the code, using the glimpse() function above.
## Observations: 922
## Variables: 7
## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-0…
## $ open <dbl> 54.32, 54.93, 54.32, 52.70, 52.37, 52.51, 52.76, 53.80,…
## $ high <dbl> 54.80, 55.39, 54.40, 53.49, 53.28, 52.85, 53.10, 54.07,…
## $ low <dbl> 53.39, 54.54, 53.64, 52.07, 52.15, 51.46, 52.06, 51.30,…
## $ close <dbl> 54.80, 55.05, 54.05, 52.17, 52.33, 52.30, 52.78, 51.64,…
## $ volume <dbl> 53778000, 34079700, 39518900, 56564900, 48754000, 36943…
## $ adjusted <dbl> 50.70846, 50.93979, 50.01446, 48.27483, 48.42288, 48.39…
date, open, high, low, close, volume, adjusted
Hint: Watch the video, “Basic Data Types”, in DataCamp: Introduction to R for Finance: Ch1 The Basics.
numeric data, character data, logical data
922
Hint: Insert a new code chunk below and type in the code, using the ggplot() function above. For more information on the ggplot() function, refer to Ch2 Introduction to ggplot2 in one of our e-textbooks, Data Visualization with R.
Hint: Change message
, warning
, collapse
, echo
and results
in the chunk options. Refer to the RMarkdown Reference Guide.