Use the given code below to answer the questions.

## ── Attaching packages ───────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1     ✔ purrr   0.3.2
## ✔ tibble  2.1.3     ✔ dplyr   0.8.3
## ✔ tidyr   0.8.3     ✔ stringr 1.4.0
## ✔ readr   1.3.1     ✔ forcats 0.4.0
## ── Conflicts ──────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Registered S3 method overwritten by 'xts':
##   method     from
##   as.zoo.xts zoo
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.

Q1 Get Microsoft stock prices, instead of Apple.

## Load package
library(tidyverse) # for cleaning, plotting, etc
library(tidyquant) # for financial analysis

## Import data
stocks <- tq_get("MSFT", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 922 x 7
##    date        open  high   low close   volume adjusted
##    <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 2016-01-04  54.3  54.8  53.4  54.8 53778000     50.7
##  2 2016-01-05  54.9  55.4  54.5  55.0 34079700     50.9
##  3 2016-01-06  54.3  54.4  53.6  54.0 39518900     50.0
##  4 2016-01-07  52.7  53.5  52.1  52.2 56564900     48.3
##  5 2016-01-08  52.4  53.3  52.2  52.3 48754000     48.4
##  6 2016-01-11  52.5  52.8  51.5  52.3 36943800     48.4
##  7 2016-01-12  52.8  53.1  52.1  52.8 36095500     48.8
##  8 2016-01-13  53.8  54.1  51.3  51.6 66883600     47.8
##  9 2016-01-14  52    53.4  51.6  53.1 52381900     49.1
## 10 2016-01-15  51.3  52.0  50.3  51.0 71820700     47.2
## # … with 912 more rows

Q2 How many columns (variables) are there?

glimpse(stocks)
## Observations: 922
## Variables: 7
## $ date     <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-0…
## $ open     <dbl> 54.32, 54.93, 54.32, 52.70, 52.37, 52.51, 52.76, 53.80,…
## $ high     <dbl> 54.80, 55.39, 54.40, 53.49, 53.28, 52.85, 53.10, 54.07,…
## $ low      <dbl> 53.39, 54.54, 53.64, 52.07, 52.15, 51.46, 52.06, 51.30,…
## $ close    <dbl> 54.80, 55.05, 54.05, 52.17, 52.33, 52.30, 52.78, 51.64,…
## $ volume   <dbl> 53778000, 34079700, 39518900, 56564900, 48754000, 36943…
## $ adjusted <dbl> 50.70846, 50.93979, 50.01446, 48.27483, 48.42288, 48.39…

Q3 What are the variables?

data,open,high,low,close,volume,adjusted

Q4 What type of data are they? What are other basic data types?

numerics, integers, logical, characters.

Q5 How many rows are there?

922

Q6 What does the row represent?

stocks

Q7 Create a line plot for the data.

 ## Visualize
stocks %>%
  ggplot(aes(x = date, y = close)) +
  geom_line()

Q8 Hide the messages and warings but display the code and results of the code on the webpage.

Q9 Display the title and your name correctly at the top of the webpage.

Q10 Use the correct slug.