## vars n mean sd median trimmed
## Rank 1 5001 2501.64 1443.51 2.502e+03 2501.73
## Name* 2 5001 2501.00 1443.81 2.501e+03 2501.00
## Growth_Rate 3 5001 4.61 14.12 1.420e+00 2.14
## Revenue 4 5001 48222535.49 240542281.14 1.090e+07 17334966.26
## Industry* 5 5001 12.10 7.33 1.300e+01 12.05
## Employees 6 4989 232.72 1353.13 5.300e+01 81.78
## City* 7 5001 732.00 441.12 7.610e+02 731.74
## State* 8 5001 24.80 15.64 2.300e+01 24.44
## mad min max range skew kurtosis
## Rank 1853.25 1.0e+00 5.0000e+03 4.9990e+03 0.00 -1.20
## Name* 1853.25 1.0e+00 5.0010e+03 5.0000e+03 0.00 -1.20
## Growth_Rate 1.22 3.4e-01 4.2148e+02 4.2114e+02 12.55 242.34
## Revenue 10674720.00 2.0e+06 1.0100e+10 1.0098e+10 22.17 722.66
## Industry* 8.90 1.0e+00 2.5000e+01 2.4000e+01 -0.10 -1.18
## Employees 53.37 1.0e+00 6.6803e+04 6.6802e+04 29.81 1268.67
## City* 604.90 1.0e+00 1.5190e+03 1.5180e+03 -0.04 -1.26
## State* 19.27 1.0e+00 5.2000e+01 5.1000e+01 0.12 -1.46
## se
## Rank 20.41
## Name* 20.42
## Growth_Rate 0.20
## Revenue 3401441.44
## Industry* 0.10
## Employees 19.16
## City* 6.24
## State* 0.22
## Growth_Rate Revenue Employees
## Growth_Rate 1.000000000 0.006304135 NA
## Revenue 0.006304135 1.000000000 NA
## Employees NA NA 1
Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.
Quick data check
## Rank Name Growth_Rate Revenue Industry Employees City State state city
## 32 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## geo_state lon lat
## 32 FALSE TRUE TRUE
## [1] 4989 13
## Source : https://maps.googleapis.com/maps/api/staticmap?center=united%20states&zoom=4&size=640x640&scale=2&maptype=terrain&language=en-EN&key=xxx
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=united+states&key=xxx
## Warning: Ignoring unknown aesthetics: show_guide
Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.
## # A tibble: 1 x 2
## state count_per_state
## <chr> <int>
## 1 NY 311
Below I print several visualizations.
## NULL
## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.
Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.
industry_revenue <- inc %>%
mutate(rev_per_employee= Revenue/Employees)
g <- ggplot(industry_revenue, aes(Industry, rev_per_employee,10))
g + geom_boxplot() +
# geom_dotplot(binaxis='y',
# stackdir='center',
# dotsize = .5,
# fill="red") +
theme(axis.text.x = element_text(angle=90, vjust=0.6)) +
labs(title="US Revenue per Employee by industry",
x="Industry",
y="Log Transformed Revenue per Employee by company")+
scale_y_continuous(trans = 'log10',
breaks = trans_breaks('log10', function(x) 10^x),
labels = trans_format('log10', math_format(10^.x)))+
coord_flip()