Chapter 16 – Single-Factor Studies


Load the data sets

env <- new.env()
load("../data.rda", envir = env)

FIGURE 16.2 (p 680)

Analysis of Variance Model Representation–Incentive Pay Example

This example is not computationally interesting, but I present a brute force way of depicting the representations in R, given the relevant information provided on page 683.

curve(dnorm(x, mean = 58, sd = 4), 40, 110, ylim = c(0, .2), xlab = "", ylab = "", col = "green")
text(58, .11, "Type 2", cex = .75)

curve(dnorm(x, mean = 70, sd = 4), add = TRUE, col = "blue")
text(70, .11, "Type 1", cex = .75)

curve(dnorm(x, mean = 84, sd = 4), add = TRUE, col = "red")
text(84, .11, "Type 4", cex = .75)

curve(dnorm(x, mean = 90, sd = 4), add = TRUE)
text(90, .11, "Type 3", cex = .75)
points(c(51, 78), c(0, 0), pch = 19)

plot of chunk unnamed-chunk-2

Input Kenton Food Company Data

df  <- get("CH16TA01", envir = env)
names(df) <- c("y", "x1", "x2")

TABLE 16.1 (p 686)

Number of Cases Sold by Stores for Each of Four Package Designs–Kenton Food Company Example

One may be tempted to use xtabs and addmargins to accomplish a similar table, but there are 2 problems with this. First, the sums of package sums or the means of package means, cannot be calculated in addmargins and requires processing the resultant margin table. Second, xtabs automatically fills the non-combination as 0. This posses problems for the means.

Regardless, getting an accurate count requires a little trickery. The reason is that the use of length will recognize NA or 0 as a record in the count. Instead, if you have NA you can say sum(!is.na(x)) to boolean (unit) sum all the non-NA values. In a similar fashion below, we simply boolean sum the values that are nonzero. The rest are processed using tapply, which is the preferred vector way of handling grouped operations. There is also by that is more flexible in that it can handle non-vector (data frame) objects.

cbind('Table' = addmargins(xtabs(y ~ x1 + x2, df), 2),
      'Mean'  = tapply(df$y, df$x1, mean),
      'n'     = tapply(df$y, df$x1, function(r) sum(r > 0)))
##    1  2  3  4  5 Sum Mean n
## 1 11 17 16 14 15  73 14.6 5
## 2 12 10 15 19 11  67 13.4 5
## 3 23 20 18 17  0  78 19.5 4
## 4 27 33 22 26 28 136 27.2 5

with(df, c("Y.."   = sum(tapply(y, x1, sum)), 
           "Ybar." = mean(tapply(y, x1, mean)),
           "n.."   = sum(tapply(y, x1, function(r) sum(r > 0)))))
##    Y..  Ybar.    n.. 
## 354.00  18.68  19.00

FIGURE 16.3 (p 686)

Plot of Number of Cases Sold by Package Design–Kenton Food Company Example

Since the last chapter demonstrated how convoluted it can become to plot some of these diagrams, we shall make use of xyplot (lattice) to simply our results. Though, as shown below, it can be convoluted to properly specify xyplot parameters, too!

In this example, we make use of RColorBrewer to get good color combinations. The function brewer.pal takes in the number of categories and color palette you want. See the Color Brewer website for examples (generally associated with choropleth mapping).

http://colorbrewer2.org/

Note, the coloring isn't important for this analysis because we're not looking at the within-subject (store) variability, but if we were, we would want to see how they change, and maybe even plot the connecting lines as in the examples in Chapter 15. An alternative here would be to use ggplot (ggplot2). It has a lot of parameters, but a far superior semantics in controlling your plotting objects and how you specify parameters. For instance, a simple version of this plot would be the following.

ggplot(df, aes(factor(x1), y)) + geom_point()

library(lattice)
library(RColorBrewer)
pal <- brewer.pal(5, "Set1")
xyplot(y ~ factor(x1), df, groups = x2, auto.key = list(columns = 5), 
       par.settings = simpleTheme(col = pal, pch = 19), 
       xlab = "Package Design", ylab = "Cases Sold", main = "Summary Plot")

plot of chunk unnamed-chunk-5

TABLE 16.2 (p 689)

Residuals–Kenton Food Company Example

Since all that is really going on in this manual calculation is to take the difference of the value from its mean (centering) for a given group, we can use tapply or by on the response, splitting it by the factor and using scale to center the group. For convenience, we'll simply append these residuals to the data frame to make a table.

df <- transform(df, u = unlist(tapply(y, x1, scale, scale = FALSE)))
addmargins(xtabs(u ~ x1 + x2, df, sparse = TRUE), 2)  # Their sums are as 0 as it gets in R.
##      1    2    3    4    5        Sum
## 1 -3.6  2.4  1.4 -0.6  0.4  1.776e-15
## 2 -1.4 -3.4  1.6  5.6 -2.4 -1.776e-15
## 3  3.5  0.5 -1.5 -2.5  0.0  0.000e+00
## 4 -0.2  5.8 -5.2 -1.2  0.8  3.553e-15

FIGURE 16.5 (p 695)

Output for Single-Factor Analysis of Variance–Kenton Food Company Example

Note that “Root Mean Square Error” is just the “Residual Standard Error” in the aov output. Also, “C. Total” is just the aggregate.

Included here are examples of the aov object which encodes the same information. The utility of aov comes out when you need to use different error structures. In this case, just using lm and anova on such an object is congruent to using aov and summary.lm on such an object–i.e., summary on an aov is the same as anova on an lm object and summary.lm on an aov is the same as summary on an lm object.

df <- transform(df, x1 = factor(x1))
fit <- lm(y ~ x1 - 1, df)  # This is the cell means model

anova(fit)
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq F value  Pr(>F)    
## x1         4   7184    1796     170 2.6e-12 ***
## Residuals 15    158      11                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(aov(y ~ factor(x1) - 1, df))  # Same as anova(fit)
##            Df Sum Sq Mean Sq F value  Pr(>F)    
## factor(x1)  4   7184    1796     170 2.6e-12 ***
## Residuals  15    158      11                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(fit)  # Notice that the coefficients are just the group means
## 
## Call:
## lm(formula = y ~ x1 - 1, data = df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -5.20  -1.95  -0.20   1.50   5.80 
## 
## Coefficients:
##     Estimate Std. Error t value Pr(>|t|)    
## x11    14.60       1.45   10.05  4.7e-08 ***
## x12    13.40       1.45    9.23  1.4e-07 ***
## x13    19.50       1.62   12.01  4.3e-09 ***
## x14    27.20       1.45   18.73  8.2e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 3.25 on 15 degrees of freedom
## Multiple R-squared: 0.978,   Adjusted R-squared: 0.973 
## F-statistic:  170 on 4 and 15 DF,  p-value: 2.64e-12
summary.lm(aov(fit))  # Same as summary(fit)
## 
## Call:
## aov(formula = fit)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -5.20  -1.95  -0.20   1.50   5.80 
## 
## Coefficients:
##     Estimate Std. Error t value Pr(>|t|)    
## x11    14.60       1.45   10.05  4.7e-08 ***
## x12    13.40       1.45    9.23  1.4e-07 ***
## x13    19.50       1.62   12.01  4.3e-09 ***
## x14    27.20       1.45   18.73  8.2e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 3.25 on 15 degrees of freedom
## Multiple R-squared: 0.978,   Adjusted R-squared: 0.973 
## F-statistic:  170 on 4 and 15 DF,  p-value: 2.64e-12

confint(fit)
##     2.5 % 97.5 %
## x11 11.50  17.70
## x12 10.30  16.50
## x13 16.04  22.96
## x14 24.10  30.30
summary(fit)$f[1] <= qf(1-.05, 4-1, 19-4)  # F-test; Conclude H0?
## value 
## FALSE

TABLE 16.4 and Examples (p 707-12)

Regression Approach to the Analysis of Variance–Kenton Food Company Example

Factor Effects Model with Weighted Means–Kenton Food Company Example

Cell Means Model–Kenton Food Company Example

In the next chapter, this will be recognized as defining contrasts (here defined on page 708). In R, you can define a matrix for that contrast and set it up as the contrast to use when you do your linear fit. In this way, the linear model will contain the comparison information you want. Since this would otherwise be a tedious task of recoding variables to run a regression on them, I'll leave that as an exercise to the interested reader.

# ANOVA as Regression Model (16.79)
contrasts(df$x1) <- matrix(c(1, 0, 0, -1, 0, 1, 0, -1, 0, 0, 1, -1), 4, 3)
fit <- lm(y ~ x1, df)
model.matrix(fit)
##    (Intercept) x11 x12 x13
## 11           1   1   0   0
## 12           1   1   0   0
## 13           1   1   0   0
## 14           1   1   0   0
## 15           1   1   0   0
## 21           1   0   1   0
## 22           1   0   1   0
## 23           1   0   1   0
## 24           1   0   1   0
## 25           1   0   1   0
## 31           1   0   0   1
## 32           1   0   0   1
## 33           1   0   0   1
## 34           1   0   0   1
## 41           1  -1  -1  -1
## 42           1  -1  -1  -1
## 43           1  -1  -1  -1
## 44           1  -1  -1  -1
## 45           1  -1  -1  -1
## attr(,"assign")
## [1] 0 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$x1
##   [,1] [,2] [,3]
## 1    1    0    0
## 2    0    1    0
## 3    0    0    1
## 4   -1   -1   -1
summary(fit)
## 
## Call:
## lm(formula = y ~ x1, data = df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -5.20  -1.95  -0.20   1.50   5.80 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   18.675      0.749   24.95  1.3e-13 ***
## x11           -4.075      1.271   -3.21  0.00588 ** 
## x12           -5.275      1.271   -4.15  0.00085 ***
## x13            0.825      1.371    0.60  0.55622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 3.25 on 15 degrees of freedom
## Multiple R-squared: 0.788,   Adjusted R-squared: 0.746 
## F-statistic: 18.6 on 3 and 15 DF,  p-value: 2.58e-05
anova(fit)
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq F value  Pr(>F)    
## x1         3    588   196.1    18.6 2.6e-05 ***
## Residuals 15    158    10.5                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


# ANOVA as Factor Effects Model with Weighted Means (16.82)
contrasts(df$x1) <- matrix(c(1, 0, 0, -1, 0, 1, 0, -1, 0, 0, 1, -0.8), 4, 3)
fit <- lm(y ~ x1, df)
model.matrix(fit)
##    (Intercept) x11 x12  x13
## 11           1   1   0  0.0
## 12           1   1   0  0.0
## 13           1   1   0  0.0
## 14           1   1   0  0.0
## 15           1   1   0  0.0
## 21           1   0   1  0.0
## 22           1   0   1  0.0
## 23           1   0   1  0.0
## 24           1   0   1  0.0
## 25           1   0   1  0.0
## 31           1   0   0  1.0
## 32           1   0   0  1.0
## 33           1   0   0  1.0
## 34           1   0   0  1.0
## 41           1  -1  -1 -0.8
## 42           1  -1  -1 -0.8
## 43           1  -1  -1 -0.8
## 44           1  -1  -1 -0.8
## 45           1  -1  -1 -0.8
## attr(,"assign")
## [1] 0 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$x1
##   [,1] [,2] [,3]
## 1    1    0  0.0
## 2    0    1  0.0
## 3    0    0  1.0
## 4   -1   -1 -0.8
summary(fit)
## 
## Call:
## lm(formula = y ~ x1, data = df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -5.20  -1.95  -0.20   1.50   5.80 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   18.632      0.745   25.01  1.2e-13 ***
## x11           -4.032      1.247   -3.23  0.00556 ** 
## x12           -5.232      1.247   -4.20  0.00078 ***
## x13            0.868      1.443    0.60  0.55622    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 3.25 on 15 degrees of freedom
## Multiple R-squared: 0.788,   Adjusted R-squared: 0.746 
## F-statistic: 18.6 on 3 and 15 DF,  p-value: 2.58e-05
anova(fit)
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq F value  Pr(>F)    
## x1         3    588   196.1    18.6 2.6e-05 ***
## Residuals 15    158    10.5                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


# ANOVA as Cell Means Model (16.85)
contrasts(df$x1) <- matrix(c(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1), 4, 4)
fit <- lm(y ~ x1 - 1, df)  # This is the original model fitted
model.matrix(fit)
##    x11 x12 x13 x14
## 11   1   0   0   0
## 12   1   0   0   0
## 13   1   0   0   0
## 14   1   0   0   0
## 15   1   0   0   0
## 21   0   1   0   0
## 22   0   1   0   0
## 23   0   1   0   0
## 24   0   1   0   0
## 25   0   1   0   0
## 31   0   0   1   0
## 32   0   0   1   0
## 33   0   0   1   0
## 34   0   0   1   0
## 41   0   0   0   1
## 42   0   0   0   1
## 43   0   0   0   1
## 44   0   0   0   1
## 45   0   0   0   1
## attr(,"assign")
## [1] 1 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$x1
##   [,1] [,2] [,3]
## 1    1    0    0
## 2    0    1    0
## 3    0    0    1
## 4    0    0    0
summary(fit)
## 
## Call:
## lm(formula = y ~ x1 - 1, data = df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -5.20  -1.95  -0.20   1.50   5.80 
## 
## Coefficients:
##     Estimate Std. Error t value Pr(>|t|)    
## x11    14.60       1.45   10.05  4.7e-08 ***
## x12    13.40       1.45    9.23  1.4e-07 ***
## x13    19.50       1.62   12.01  4.3e-09 ***
## x14    27.20       1.45   18.73  8.2e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 3.25 on 15 degrees of freedom
## Multiple R-squared: 0.978,   Adjusted R-squared: 0.973 
## F-statistic:  170 on 4 and 15 DF,  p-value: 2.64e-12
anova(fit)
## Analysis of Variance Table
## 
## Response: y
##           Df Sum Sq Mean Sq F value  Pr(>F)    
## x1         4   7184    1796     170 2.6e-12 ***
## Residuals 15    158      11                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TABLE 16.5 and FIGURE 16.8 (p 715)

Randomization Samples and Test Statistics–Quality Control Example

Randomization Distribution of F* and Corresponding F Distribution–Quality Control Example

Since there is no algorithm to compute this example we had to devise one. It should come as rather straight-forward. The Xi's are as in the above examples. The 'y' will hold the 1,680 cases of 9-sequences consisting of the response variables. The 'ti' implies the treatment group. In this case t1 is the first group (3-sequence) and t12 is the composite of t1 and t2. The 'remainder' function is a wrapper for grabing a subset of 'set' based on those values not in 'x'. The 'seq6' is the 6-sequence remainder after t1 is defined. The whole process took less than 10 seconds on a 2.4 GHz processor. As for the output, the columns are arbitrarily labeled 1-9. Clearly they represent the three treatment groups based on groups of three. The function 'f' uses the matrix algebra discussed in Ch. 5. It is possible to get away with merely fitting an 'lm' object, and then extract the f-statistic in a single call. However, this requires a lot of additional work for each of the 1680 rows. That approach took somewhere between 30-60 seconds to produce the same result.

remainder <- function(x, set) set[!set %in% x]
f <- function(Y, X) {
  Y <- matrix(Y)                                # Turn row-vector into column
  p <- ncol(X)
  n <- nrow(X)
  J <- matrix(1, n, n)                          # (5.18)
  H <- X %*% solve(t(X) %*% X) %*% t(X)         # (5.73a)
  SSE <- t(Y) %*% (diag(n) - H) %*% Y           # (5.89b)
  SSR <-  t(Y) %*% (H - (1/n)*J) %*% Y          # (5.89c)
  fstar <- (SSR / (p - 1)) / (SSE / (n - p))    # (6.39b)
}

base <- c(1.1, 0.5, -2.1, 4.2, 3.7, 0.8, 3.2, 2.8, 6.3)
t2   <- t12 <- t123 <- list()
y    <- NULL
X    <- cbind(
  X1 = c(1, 1, 1, 0, 0, 0, 0, 0, 0),
  X2 = c(0, 0, 0, 1, 1, 1, 0, 0, 0),
  X3 = c(0, 0, 0, 0, 0, 0, 1, 1, 1))

t1   <- t(combn(base, 3))
seq6 <- t(combn(base, 3, remainder, set = base))

for (i in 1:84)  t2[[i]] <- t(combn(seq6[i, ], 3))
for (i in 1:84) t12[[i]] <- cbind(t1[i, 1], t1[i, 2], t1[i, 3], t2[[i]])
for (i in 1:84)
  t123[[i]] <- cbind(t12[[i]], t(apply(t12[[i]], 1, remainder, set = base)))
for (i in 1:84) y <- rbind(y, t123[[i]])

fstar <- apply(y, 1, function(Y) f(Y, X))

hist(fstar, freq = FALSE, ylim = c(0, 1), col = "gray90", main = "")
curve(df(x, 2, 6), add = TRUE, lwd = 2)

plot of chunk unnamed-chunk-9


# LAST EXAMPLE FOR CHAPTER, fyi
# BIG OUTPUT TO FOLLOW! 
cbind(y, data.frame(f = fstar))
##         1    2    3    4    5    6    7    8    9       f
## 1     1.1  0.5 -2.1  4.2  3.7  0.8  3.2  2.8  6.3 4.38658
## 2     1.1  0.5 -2.1  4.2  3.7  3.2  0.8  2.8  6.3 3.73562
## 3     1.1  0.5 -2.1  4.2  3.7  2.8  0.8  3.2  6.3 3.67030
## 4     1.1  0.5 -2.1  4.2  3.7  6.3  0.8  3.2  2.8 8.37571
## 5     1.1  0.5 -2.1  4.2  0.8  3.2  3.7  2.8  6.3 4.93225
## 6     1.1  0.5 -2.1  4.2  0.8  2.8  3.7  3.2  6.3 5.54835
## 7     1.1  0.5 -2.1  4.2  0.8  6.3  3.7  3.2  2.8 3.79383
## 8     1.1  0.5 -2.1  4.2  3.2  2.8  3.7  0.8  6.3 3.68042
## 9     1.1  0.5 -2.1  4.2  3.2  6.3  3.7  0.8  2.8 6.65439
## 10    1.1  0.5 -2.1  4.2  2.8  6.3  3.7  0.8  3.2 5.73492
## 11    1.1  0.5 -2.1  3.7  0.8  3.2  4.2  2.8  6.3 5.73492
## 12    1.1  0.5 -2.1  3.7  0.8  2.8  4.2  3.2  6.3 6.65439
## 13    1.1  0.5 -2.1  3.7  0.8  6.3  4.2  3.2  2.8 3.68042
## 14    1.1  0.5 -2.1  3.7  3.2  2.8  4.2  0.8  6.3 3.79383
## 15    1.1  0.5 -2.1  3.7  3.2  6.3  4.2  0.8  2.8 5.54835
## 16    1.1  0.5 -2.1  3.7  2.8  6.3  4.2  0.8  3.2 4.93225
## 17    1.1  0.5 -2.1  0.8  3.2  2.8  4.2  3.7  6.3 8.37571
## 18    1.1  0.5 -2.1  0.8  3.2  6.3  4.2  3.7  2.8 3.67030
## 19    1.1  0.5 -2.1  0.8  2.8  6.3  4.2  3.7  3.2 3.73562
## 20    1.1  0.5 -2.1  3.2  2.8  6.3  4.2  3.7  0.8 4.38658
## 21    1.1  0.5  4.2 -2.1  3.7  0.8  3.2  2.8  6.3 1.57916
## 22    1.1  0.5  4.2 -2.1  3.7  3.2  0.8  2.8  6.3 0.33162
## 23    1.1  0.5  4.2 -2.1  3.7  2.8  0.8  3.2  6.3 0.44638
## 24    1.1  0.5  4.2 -2.1  3.7  6.3  0.8  3.2  2.8 0.04580
## 25    1.1  0.5  4.2 -2.1  0.8  3.2  3.7  2.8  6.3 2.13459
## 26    1.1  0.5  4.2 -2.1  0.8  2.8  3.7  3.2  6.3 2.73977
## 27    1.1  0.5  4.2 -2.1  0.8  6.3  3.7  3.2  2.8 0.28292
## 28    1.1  0.5  4.2 -2.1  3.2  2.8  3.7  0.8  6.3 0.62815
## 29    1.1  0.5  4.2 -2.1  3.2  6.3  3.7  0.8  2.8 0.03321
## 30    1.1  0.5  4.2 -2.1  2.8  6.3  3.7  0.8  3.2 0.03823
## 31    1.1  0.5  4.2  3.7  0.8  3.2 -2.1  2.8  6.3 0.03823
## 32    1.1  0.5  4.2  3.7  0.8  2.8 -2.1  3.2  6.3 0.03321
## 33    1.1  0.5  4.2  3.7  0.8  6.3 -2.1  3.2  2.8 0.62815
## 34    1.1  0.5  4.2  3.7  3.2  2.8 -2.1  0.8  6.3 0.28292
## 35    1.1  0.5  4.2  3.7  3.2  6.3 -2.1  0.8  2.8 2.73977
## 36    1.1  0.5  4.2  3.7  2.8  6.3 -2.1  0.8  3.2 2.13459
## 37    1.1  0.5  4.2  0.8  3.2  2.8 -2.1  3.7  6.3 0.04580
## 38    1.1  0.5  4.2  0.8  3.2  6.3 -2.1  3.7  2.8 0.44638
## 39    1.1  0.5  4.2  0.8  2.8  6.3 -2.1  3.7  3.2 0.33162
## 40    1.1  0.5  4.2  3.2  2.8  6.3 -2.1  3.7  0.8 1.57916
## 41    1.1  0.5  3.7 -2.1  4.2  0.8  3.2  2.8  6.3 1.44507
## 42    1.1  0.5  3.7 -2.1  4.2  3.2  0.8  2.8  6.3 0.31906
## 43    1.1  0.5  3.7 -2.1  4.2  2.8  0.8  3.2  6.3 0.42226
## 44    1.1  0.5  3.7 -2.1  4.2  6.3  0.8  3.2  2.8 0.10159
## 45    1.1  0.5  3.7 -2.1  0.8  3.2  4.2  2.8  6.3 2.62679
## 46    1.1  0.5  3.7 -2.1  0.8  2.8  4.2  3.2  6.3 3.39884
## 47    1.1  0.5  3.7 -2.1  0.8  6.3  4.2  3.2  2.8 0.39429
## 48    1.1  0.5  3.7 -2.1  3.2  2.8  4.2  0.8  6.3 0.80041
## 49    1.1  0.5  3.7 -2.1  3.2  6.3  4.2  0.8  2.8 0.07559
## 50    1.1  0.5  3.7 -2.1  2.8  6.3  4.2  0.8  3.2 0.08940
## 51    1.1  0.5  3.7  4.2  0.8  3.2 -2.1  2.8  6.3 0.08940
## 52    1.1  0.5  3.7  4.2  0.8  2.8 -2.1  3.2  6.3 0.07559
## 53    1.1  0.5  3.7  4.2  0.8  6.3 -2.1  3.2  2.8 0.80041
## 54    1.1  0.5  3.7  4.2  3.2  2.8 -2.1  0.8  6.3 0.39429
## 55    1.1  0.5  3.7  4.2  3.2  6.3 -2.1  0.8  2.8 3.39884
## 56    1.1  0.5  3.7  4.2  2.8  6.3 -2.1  0.8  3.2 2.62679
## 57    1.1  0.5  3.7  0.8  3.2  2.8 -2.1  4.2  6.3 0.10159
## 58    1.1  0.5  3.7  0.8  3.2  6.3 -2.1  4.2  2.8 0.42226
## 59    1.1  0.5  3.7  0.8  2.8  6.3 -2.1  4.2  3.2 0.31906
## 60    1.1  0.5  3.7  3.2  2.8  6.3 -2.1  4.2  0.8 1.44507
## 61    1.1  0.5  0.8 -2.1  4.2  3.7  3.2  2.8  6.3 1.57916
## 62    1.1  0.5  0.8 -2.1  4.2  3.2  3.7  2.8  6.3 1.93875
## 63    1.1  0.5  0.8 -2.1  4.2  2.8  3.7  3.2  6.3 2.31562
## 64    1.1  0.5  0.8 -2.1  4.2  6.3  3.7  3.2  2.8 0.78148
## 65    1.1  0.5  0.8 -2.1  3.7  3.2  4.2  2.8  6.3 2.42568
## 66    1.1  0.5  0.8 -2.1  3.7  2.8  4.2  3.2  6.3 2.94758
## 67    1.1  0.5  0.8 -2.1  3.7  6.3  4.2  3.2  2.8 0.84087
## 68    1.1  0.5  0.8 -2.1  3.2  2.8  4.2  3.7  6.3 3.85519
## 69    1.1  0.5  0.8 -2.1  3.2  6.3  4.2  3.7  2.8 0.93704
## 70    1.1  0.5  0.8 -2.1  2.8  6.3  4.2  3.7  3.2 1.04409
## 71    1.1  0.5  0.8  4.2  3.7  3.2 -2.1  2.8  6.3 1.04409
## 72    1.1  0.5  0.8  4.2  3.7  2.8 -2.1  3.2  6.3 0.93704
## 73    1.1  0.5  0.8  4.2  3.7  6.3 -2.1  3.2  2.8 3.85519
## 74    1.1  0.5  0.8  4.2  3.2  2.8 -2.1  3.7  6.3 0.84087
## 75    1.1  0.5  0.8  4.2  3.2  6.3 -2.1  3.7  2.8 2.94758
## 76    1.1  0.5  0.8  4.2  2.8  6.3 -2.1  3.7  3.2 2.42568
## 77    1.1  0.5  0.8  3.7  3.2  2.8 -2.1  4.2  6.3 0.78148
## 78    1.1  0.5  0.8  3.7  3.2  6.3 -2.1  4.2  2.8 2.31562
## 79    1.1  0.5  0.8  3.7  2.8  6.3 -2.1  4.2  3.2 1.93875
## 80    1.1  0.5  0.8  3.2  2.8  6.3 -2.1  4.2  3.7 1.57916
## 81    1.1  0.5  3.2 -2.1  4.2  3.7  0.8  2.8  6.3 0.33162
## 82    1.1  0.5  3.2 -2.1  4.2  0.8  3.7  2.8  6.3 1.80926
## 83    1.1  0.5  3.2 -2.1  4.2  2.8  3.7  0.8  6.3 0.57512
## 84    1.1  0.5  3.2 -2.1  4.2  6.3  3.7  0.8  2.8 0.14592
## 85    1.1  0.5  3.2 -2.1  3.7  0.8  4.2  2.8  6.3 2.42568
## 86    1.1  0.5  3.2 -2.1  3.7  2.8  4.2  0.8  6.3 0.77112
## 87    1.1  0.5  3.2 -2.1  3.7  6.3  4.2  0.8  2.8 0.13249
## 88    1.1  0.5  3.2 -2.1  0.8  2.8  4.2  3.7  6.3 4.34958
## 89    1.1  0.5  3.2 -2.1  0.8  6.3  4.2  3.7  2.8 0.54175
## 90    1.1  0.5  3.2 -2.1  2.8  6.3  4.2  3.7  0.8 0.16492
## 91    1.1  0.5  3.2  4.2  3.7  0.8 -2.1  2.8  6.3 0.16492
## 92    1.1  0.5  3.2  4.2  3.7  2.8 -2.1  0.8  6.3 0.54175
## 93    1.1  0.5  3.2  4.2  3.7  6.3 -2.1  0.8  2.8 4.34958
## 94    1.1  0.5  3.2  4.2  0.8  2.8 -2.1  3.7  6.3 0.13249
## 95    1.1  0.5  3.2  4.2  0.8  6.3 -2.1  3.7  2.8 0.77112
## 96    1.1  0.5  3.2  4.2  2.8  6.3 -2.1  3.7  0.8 2.42568
## 97    1.1  0.5  3.2  3.7  0.8  2.8 -2.1  4.2  6.3 0.14592
## 98    1.1  0.5  3.2  3.7  0.8  6.3 -2.1  4.2  2.8 0.57512
## 99    1.1  0.5  3.2  3.7  2.8  6.3 -2.1  4.2  0.8 1.80926
## 100   1.1  0.5  3.2  0.8  2.8  6.3 -2.1  4.2  3.7 0.33162
## 101   1.1  0.5  2.8 -2.1  4.2  3.7  0.8  3.2  6.3 0.44638
## 102   1.1  0.5  2.8 -2.1  4.2  0.8  3.7  3.2  6.3 2.19029
## 103   1.1  0.5  2.8 -2.1  4.2  3.2  3.7  0.8  6.3 0.58677
## 104   1.1  0.5  2.8 -2.1  4.2  6.3  3.7  0.8  3.2 0.19895
## 105   1.1  0.5  2.8 -2.1  3.7  0.8  4.2  3.2  6.3 2.94758
## 106   1.1  0.5  2.8 -2.1  3.7  3.2  4.2  0.8  6.3 0.77112
## 107   1.1  0.5  2.8 -2.1  3.7  6.3  4.2  0.8  3.2 0.19431
## 108   1.1  0.5  2.8 -2.1  0.8  3.2  4.2  3.7  6.3 4.07554
## 109   1.1  0.5  2.8 -2.1  0.8  6.3  4.2  3.7  3.2 0.69143
## 110   1.1  0.5  2.8 -2.1  3.2  6.3  4.2  3.7  0.8 0.21296
## 111   1.1  0.5  2.8  4.2  3.7  0.8 -2.1  3.2  6.3 0.21296
## 112   1.1  0.5  2.8  4.2  3.7  3.2 -2.1  0.8  6.3 0.69143
## 113   1.1  0.5  2.8  4.2  3.7  6.3 -2.1  0.8  3.2 4.07554
## 114   1.1  0.5  2.8  4.2  0.8  3.2 -2.1  3.7  6.3 0.19431
## 115   1.1  0.5  2.8  4.2  0.8  6.3 -2.1  3.7  3.2 0.77112
## 116   1.1  0.5  2.8  4.2  3.2  6.3 -2.1  3.7  0.8 2.94758
## 117   1.1  0.5  2.8  3.7  0.8  3.2 -2.1  4.2  6.3 0.19895
## 118   1.1  0.5  2.8  3.7  0.8  6.3 -2.1  4.2  3.2 0.58677
## 119   1.1  0.5  2.8  3.7  3.2  6.3 -2.1  4.2  0.8 2.19029
## 120   1.1  0.5  2.8  0.8  3.2  6.3 -2.1  4.2  3.7 0.44638
## 121   1.1  0.5  6.3 -2.1  4.2  3.7  0.8  3.2  2.8 0.04580
## 122   1.1  0.5  6.3 -2.1  4.2  0.8  3.7  3.2  2.8 0.61089
## 123   1.1  0.5  6.3 -2.1  4.2  3.2  3.7  0.8  2.8 0.07774
## 124   1.1  0.5  6.3 -2.1  4.2  2.8  3.7  0.8  3.2 0.11961
## 125   1.1  0.5  6.3 -2.1  3.7  0.8  4.2  3.2  2.8 0.84087
## 126   1.1  0.5  6.3 -2.1  3.7  3.2  4.2  0.8  2.8 0.13249
## 127   1.1  0.5  6.3 -2.1  3.7  2.8  4.2  0.8  3.2 0.19431
## 128   1.1  0.5  6.3 -2.1  0.8  3.2  4.2  3.7  2.8 1.14071
## 129   1.1  0.5  6.3 -2.1  0.8  2.8  4.2  3.7  3.2 1.44867
## 130   1.1  0.5  6.3 -2.1  3.2  2.8  4.2  3.7  0.8 0.29718
## 131   1.1  0.5  6.3  4.2  3.7  0.8 -2.1  3.2  2.8 0.29718
## 132   1.1  0.5  6.3  4.2  3.7  3.2 -2.1  0.8  2.8 1.44867
## 133   1.1  0.5  6.3  4.2  3.7  2.8 -2.1  0.8  3.2 1.14071
## 134   1.1  0.5  6.3  4.2  0.8  3.2 -2.1  3.7  2.8 0.19431
## 135   1.1  0.5  6.3  4.2  0.8  2.8 -2.1  3.7  3.2 0.13249
## 136   1.1  0.5  6.3  4.2  3.2  2.8 -2.1  3.7  0.8 0.84087
## 137   1.1  0.5  6.3  3.7  0.8  3.2 -2.1  4.2  2.8 0.11961
## 138   1.1  0.5  6.3  3.7  0.8  2.8 -2.1  4.2  3.2 0.07774
## 139   1.1  0.5  6.3  3.7  3.2  2.8 -2.1  4.2  0.8 0.61089
## 140   1.1  0.5  6.3  0.8  3.2  2.8 -2.1  4.2  3.7 0.04580
## 141   1.1 -2.1  4.2  0.5  3.7  0.8  3.2  2.8  6.3 1.38923
## 142   1.1 -2.1  4.2  0.5  3.7  3.2  0.8  2.8  6.3 0.55548
## 143   1.1 -2.1  4.2  0.5  3.7  2.8  0.8  3.2  6.3 0.62337
## 144   1.1 -2.1  4.2  0.5  3.7  6.3  0.8  3.2  2.8 0.66561
## 145   1.1 -2.1  4.2  0.5  0.8  3.2  3.7  2.8  6.3 1.75935
## 146   1.1 -2.1  4.2  0.5  0.8  2.8  3.7  3.2  6.3 2.14660
## 147   1.1 -2.1  4.2  0.5  0.8  6.3  3.7  3.2  2.8 0.52926
## 148   1.1 -2.1  4.2  0.5  3.2  2.8  3.7  0.8  6.3 0.74036
## 149   1.1 -2.1  4.2  0.5  3.2  6.3  3.7  0.8  2.8 0.57048
## 150   1.1 -2.1  4.2  0.5  2.8  6.3  3.7  0.8  3.2 0.51798
## 151   1.1 -2.1  4.2  3.7  0.8  3.2  0.5  2.8  6.3 0.51798
## 152   1.1 -2.1  4.2  3.7  0.8  2.8  0.5  3.2  6.3 0.57048
## 153   1.1 -2.1  4.2  3.7  0.8  6.3  0.5  3.2  2.8 0.74036
## 154   1.1 -2.1  4.2  3.7  3.2  2.8  0.5  0.8  6.3 0.52926
## 155   1.1 -2.1  4.2  3.7  3.2  6.3  0.5  0.8  2.8 2.14660
## 156   1.1 -2.1  4.2  3.7  2.8  6.3  0.5  0.8  3.2 1.75935
## 157   1.1 -2.1  4.2  0.8  3.2  2.8  0.5  3.7  6.3 0.66561
## 158   1.1 -2.1  4.2  0.8  3.2  6.3  0.5  3.7  2.8 0.62337
## 159   1.1 -2.1  4.2  0.8  2.8  6.3  0.5  3.7  3.2 0.55548
## 160   1.1 -2.1  4.2  3.2  2.8  6.3  0.5  3.7  0.8 1.38923
## 161   1.1 -2.1  3.7  0.5  4.2  0.8  3.2  2.8  6.3 1.49224
## 162   1.1 -2.1  3.7  0.5  4.2  3.2  0.8  2.8  6.3 0.69577
## 163   1.1 -2.1  3.7  0.5  4.2  2.8  0.8  3.2  6.3 0.75631
## 164   1.1 -2.1  3.7  0.5  4.2  6.3  0.8  3.2  2.8 0.92021
## 165   1.1 -2.1  3.7  0.5  0.8  3.2  4.2  2.8  6.3 2.34272
## 166   1.1 -2.1  3.7  0.5  0.8  2.8  4.2  3.2  6.3 2.86674
## 167   1.1 -2.1  3.7  0.5  0.8  6.3  4.2  3.2  2.8 0.73909
## 168   1.1 -2.1  3.7  0.5  3.2  2.8  4.2  0.8  6.3 1.01679
## 169   1.1 -2.1  3.7  0.5  3.2  6.3  4.2  0.8  2.8 0.70885
## 170   1.1 -2.1  3.7  0.5  2.8  6.3  4.2  0.8  3.2 0.66439
## 171   1.1 -2.1  3.7  4.2  0.8  3.2  0.5  2.8  6.3 0.66439
## 172   1.1 -2.1  3.7  4.2  0.8  2.8  0.5  3.2  6.3 0.70885
## 173   1.1 -2.1  3.7  4.2  0.8  6.3  0.5  3.2  2.8 1.01679
## 174   1.1 -2.1  3.7  4.2  3.2  2.8  0.5  0.8  6.3 0.73909
## 175   1.1 -2.1  3.7  4.2  3.2  6.3  0.5  0.8  2.8 2.86674
## 176   1.1 -2.1  3.7  4.2  2.8  6.3  0.5  0.8  3.2 2.34272
## 177   1.1 -2.1  3.7  0.8  3.2  2.8  0.5  4.2  6.3 0.92021
## 178   1.1 -2.1  3.7  0.8  3.2  6.3  0.5  4.2  2.8 0.75631
## 179   1.1 -2.1  3.7  0.8  2.8  6.3  0.5  4.2  3.2 0.69577
## 180   1.1 -2.1  3.7  3.2  2.8  6.3  0.5  4.2  0.8 1.49224
## 181   1.1 -2.1  0.8  0.5  4.2  3.7  3.2  2.8  6.3 3.77918
## 182   1.1 -2.1  0.8  0.5  4.2  3.2  3.7  2.8  6.3 4.27189
## 183   1.1 -2.1  0.8  0.5  4.2  2.8  3.7  3.2  6.3 4.81954
## 184   1.1 -2.1  0.8  0.5  4.2  6.3  3.7  3.2  2.8 3.14003
## 185   1.1 -2.1  0.8  0.5  3.7  3.2  4.2  2.8  6.3 4.98404
## 186   1.1 -2.1  0.8  0.5  3.7  2.8  4.2  3.2  6.3 5.78723
## 187   1.1 -2.1  0.8  0.5  3.7  6.3  4.2  3.2  2.8 3.07228
## 188   1.1 -2.1  0.8  0.5  3.2  2.8  4.2  3.7  6.3 7.26200
## 189   1.1 -2.1  0.8  0.5  3.2  6.3  4.2  3.7  2.8 3.08907
## 190   1.1 -2.1  0.8  0.5  2.8  6.3  4.2  3.7  3.2 3.16410
## 191   1.1 -2.1  0.8  4.2  3.7  3.2  0.5  2.8  6.3 3.16410
## 192   1.1 -2.1  0.8  4.2  3.7  2.8  0.5  3.2  6.3 3.08907
## 193   1.1 -2.1  0.8  4.2  3.7  6.3  0.5  3.2  2.8 7.26200
## 194   1.1 -2.1  0.8  4.2  3.2  2.8  0.5  3.7  6.3 3.07228
## 195   1.1 -2.1  0.8  4.2  3.2  6.3  0.5  3.7  2.8 5.78723
## 196   1.1 -2.1  0.8  4.2  2.8  6.3  0.5  3.7  3.2 4.98404
## 197   1.1 -2.1  0.8  3.7  3.2  2.8  0.5  4.2  6.3 3.14003
## 198   1.1 -2.1  0.8  3.7  3.2  6.3  0.5  4.2  2.8 4.81954
## 199   1.1 -2.1  0.8  3.7  2.8  6.3  0.5  4.2  3.2 4.27189
## 200   1.1 -2.1  0.8  3.2  2.8  6.3  0.5  4.2  3.7 3.77918
## 201   1.1 -2.1  3.2  0.5  4.2  3.7  0.8  2.8  6.3 0.88150
## 202   1.1 -2.1  3.2  0.5  4.2  0.8  3.7  2.8  6.3 2.00842
## 203   1.1 -2.1  3.2  0.5  4.2  2.8  3.7  0.8  6.3 1.03520
## 204   1.1 -2.1  3.2  0.5  4.2  6.3  3.7  0.8  2.8 1.08765
## 205   1.1 -2.1  3.2  0.5  3.7  0.8  4.2  2.8  6.3 2.49613
## 206   1.1 -2.1  3.2  0.5  3.7  2.8  4.2  0.8  6.3 1.18082
## 207   1.1 -2.1  3.2  0.5  3.7  6.3  4.2  0.8  2.8 0.96970
## 208   1.1 -2.1  3.2  0.5  0.8  2.8  4.2  3.7  6.3 3.92855
## 209   1.1 -2.1  3.2  0.5  0.8  6.3  4.2  3.7  2.8 1.01166
## 210   1.1 -2.1  3.2  0.5  2.8  6.3  4.2  3.7  0.8 0.85702
## 211   1.1 -2.1  3.2  4.2  3.7  0.8  0.5  2.8  6.3 0.85702
## 212   1.1 -2.1  3.2  4.2  3.7  2.8  0.5  0.8  6.3 1.01166
## 213   1.1 -2.1  3.2  4.2  3.7  6.3  0.5  0.8  2.8 3.92855
## 214   1.1 -2.1  3.2  4.2  0.8  2.8  0.5  3.7  6.3 0.96970
## 215   1.1 -2.1  3.2  4.2  0.8  6.3  0.5  3.7  2.8 1.18082
## 216   1.1 -2.1  3.2  4.2  2.8  6.3  0.5  3.7  0.8 2.49613
## 217   1.1 -2.1  3.2  3.7  0.8  2.8  0.5  4.2  6.3 1.08765
## 218   1.1 -2.1  3.2  3.7  0.8  6.3  0.5  4.2  2.8 1.03520
## 219   1.1 -2.1  3.2  3.7  2.8  6.3  0.5  4.2  0.8 2.00842
## 220   1.1 -2.1  3.2  0.8  2.8  6.3  0.5  4.2  3.7 0.88150
## 221   1.1 -2.1  2.8  0.5  4.2  3.7  0.8  3.2  6.3 1.11670
## 222   1.1 -2.1  2.8  0.5  4.2  0.8  3.7  3.2  6.3 2.56561
## 223   1.1 -2.1  2.8  0.5  4.2  3.2  3.7  0.8  6.3 1.21121
## 224   1.1 -2.1  2.8  0.5  4.2  6.3  3.7  0.8  3.2 1.26176
## 225   1.1 -2.1  2.8  0.5  3.7  0.8  4.2  3.2  6.3 3.20931
## 226   1.1 -2.1  2.8  0.5  3.7  3.2  4.2  0.8  6.3 1.35278
## 227   1.1 -2.1  2.8  0.5  3.7  6.3  4.2  0.8  3.2 1.14929
## 228   1.1 -2.1  2.8  0.5  0.8  3.2  4.2  3.7  6.3 4.13517
## 229   1.1 -2.1  2.8  0.5  0.8  6.3  4.2  3.7  3.2 1.29000
## 230   1.1 -2.1  2.8  0.5  3.2  6.3  4.2  3.7  0.8 1.08007
## 231   1.1 -2.1  2.8  4.2  3.7  0.8  0.5  3.2  6.3 1.08007
## 232   1.1 -2.1  2.8  4.2  3.7  3.2  0.5  0.8  6.3 1.29000
## 233   1.1 -2.1  2.8  4.2  3.7  6.3  0.5  0.8  3.2 4.13517
## 234   1.1 -2.1  2.8  4.2  0.8  3.2  0.5  3.7  6.3 1.14929
## 235   1.1 -2.1  2.8  4.2  0.8  6.3  0.5  3.7  3.2 1.35278
## 236   1.1 -2.1  2.8  4.2  3.2  6.3  0.5  3.7  0.8 3.20931
## 237   1.1 -2.1  2.8  3.7  0.8  3.2  0.5  4.2  6.3 1.26176
## 238   1.1 -2.1  2.8  3.7  0.8  6.3  0.5  4.2  3.2 1.21121
## 239   1.1 -2.1  2.8  3.7  3.2  6.3  0.5  4.2  0.8 2.56561
## 240   1.1 -2.1  2.8  0.8  3.2  6.3  0.5  4.2  3.7 1.11670
## 241   1.1 -2.1  6.3  0.5  4.2  3.7  0.8  3.2  2.8 0.10159
## 242   1.1 -2.1  6.3  0.5  4.2  0.8  3.7  3.2  2.8 0.27560
## 243   1.1 -2.1  6.3  0.5  4.2  3.2  3.7  0.8  2.8 0.07774
## 244   1.1 -2.1  6.3  0.5  4.2  2.8  3.7  0.8  3.2 0.07430
## 245   1.1 -2.1  6.3  0.5  3.7  0.8  4.2  3.2  2.8 0.39429
## 246   1.1 -2.1  6.3  0.5  3.7  3.2  4.2  0.8  2.8 0.07559
## 247   1.1 -2.1  6.3  0.5  3.7  2.8  4.2  0.8  3.2 0.08940
## 248   1.1 -2.1  6.3  0.5  0.8  3.2  4.2  3.7  2.8 0.55032
## 249   1.1 -2.1  6.3  0.5  0.8  2.8  4.2  3.7  3.2 0.70822
## 250   1.1 -2.1  6.3  0.5  3.2  2.8  4.2  3.7  0.8 0.12670
## 251   1.1 -2.1  6.3  4.2  3.7  0.8  0.5  3.2  2.8 0.12670
## 252   1.1 -2.1  6.3  4.2  3.7  3.2  0.5  0.8  2.8 0.70822
## 253   1.1 -2.1  6.3  4.2  3.7  2.8  0.5  0.8  3.2 0.55032
## 254   1.1 -2.1  6.3  4.2  0.8  3.2  0.5  3.7  2.8 0.08940
## 255   1.1 -2.1  6.3  4.2  0.8  2.8  0.5  3.7  3.2 0.07559
## 256   1.1 -2.1  6.3  4.2  3.2  2.8  0.5  3.7  0.8 0.39429
## 257   1.1 -2.1  6.3  3.7  0.8  3.2  0.5  4.2  2.8 0.07430
## 258   1.1 -2.1  6.3  3.7  0.8  2.8  0.5  4.2  3.2 0.07774
## 259   1.1 -2.1  6.3  3.7  3.2  2.8  0.5  4.2  0.8 0.27560
## 260   1.1 -2.1  6.3  0.8  3.2  2.8  0.5  4.2  3.7 0.10159
## 261   1.1  4.2  3.7  0.5 -2.1  0.8  3.2  2.8  6.3 5.16772
## 262   1.1  4.2  3.7  0.5 -2.1  3.2  0.8  2.8  6.3 1.18241
## 263   1.1  4.2  3.7  0.5 -2.1  2.8  0.8  3.2  6.3 1.47854
## 264   1.1  4.2  3.7  0.5 -2.1  6.3  0.8  3.2  2.8 0.20175
## 265   1.1  4.2  3.7  0.5  0.8  3.2 -2.1  2.8  6.3 0.22331
## 266   1.1  4.2  3.7  0.5  0.8  2.8 -2.1  3.2  6.3 0.27901
## 267   1.1  4.2  3.7  0.5  0.8  6.3 -2.1  3.2  2.8 0.31356
## 268   1.1  4.2  3.7  0.5  3.2  2.8 -2.1  0.8  6.3 0.17679
## 269   1.1  4.2  3.7  0.5  3.2  6.3 -2.1  0.8  2.8 1.25024
## 270   1.1  4.2  3.7  0.5  2.8  6.3 -2.1  0.8  3.2 1.00000
## 271   1.1  4.2  3.7 -2.1  0.8  3.2  0.5  2.8  6.3 1.00000
## 272   1.1  4.2  3.7 -2.1  0.8  2.8  0.5  3.2  6.3 1.25024
## 273   1.1  4.2  3.7 -2.1  0.8  6.3  0.5  3.2  2.8 0.17679
## 274   1.1  4.2  3.7 -2.1  3.2  2.8  0.5  0.8  6.3 0.31356
## 275   1.1  4.2  3.7 -2.1  3.2  6.3  0.5  0.8  2.8 0.27901
## 276   1.1  4.2  3.7 -2.1  2.8  6.3  0.5  0.8  3.2 0.22331
## 277   1.1  4.2  3.7  0.8  3.2  2.8  0.5 -2.1  6.3 0.20175
## 278   1.1  4.2  3.7  0.8  3.2  6.3  0.5 -2.1  2.8 1.47854
## 279   1.1  4.2  3.7  0.8  2.8  6.3  0.5 -2.1  3.2 1.18241
## 280   1.1  4.2  3.7  3.2  2.8  6.3  0.5 -2.1  0.8 5.16772
## 281   1.1  4.2  0.8  0.5 -2.1  3.7  3.2  2.8  6.3 1.68739
## 282   1.1  4.2  0.8  0.5 -2.1  3.2  3.7  2.8  6.3 2.29007
## 283   1.1  4.2  0.8  0.5 -2.1  2.8  3.7  3.2  6.3 2.95402
## 284   1.1  4.2  0.8  0.5 -2.1  6.3  3.7  3.2  2.8 0.29916
## 285   1.1  4.2  0.8  0.5  3.7  3.2 -2.1  2.8  6.3 0.01824
## 286   1.1  4.2  0.8  0.5  3.7  2.8 -2.1  3.2  6.3 0.01824
## 287   1.1  4.2  0.8  0.5  3.7  6.3 -2.1  3.2  2.8 0.54575
## 288   1.1  4.2  0.8  0.5  3.2  2.8 -2.1  3.7  6.3 0.03698
## 289   1.1  4.2  0.8  0.5  3.2  6.3 -2.1  3.7  2.8 0.37970
## 290   1.1  4.2  0.8  0.5  2.8  6.3 -2.1  3.7  3.2 0.27511
## 291   1.1  4.2  0.8 -2.1  3.7  3.2  0.5  2.8  6.3 0.27511
## 292   1.1  4.2  0.8 -2.1  3.7  2.8  0.5  3.2  6.3 0.37970
## 293   1.1  4.2  0.8 -2.1  3.7  6.3  0.5  3.2  2.8 0.03698
## 294   1.1  4.2  0.8 -2.1  3.2  2.8  0.5  3.7  6.3 0.54575
## 295   1.1  4.2  0.8 -2.1  3.2  6.3  0.5  3.7  2.8 0.01824
## 296   1.1  4.2  0.8 -2.1  2.8  6.3  0.5  3.7  3.2 0.01824
## 297   1.1  4.2  0.8  3.7  3.2  2.8  0.5 -2.1  6.3 0.29916
## 298   1.1  4.2  0.8  3.7  3.2  6.3  0.5 -2.1  2.8 2.95402
## 299   1.1  4.2  0.8  3.7  2.8  6.3  0.5 -2.1  3.2 2.29007
## 300   1.1  4.2  0.8  3.2  2.8  6.3  0.5 -2.1  3.7 1.68739
## 301   1.1  4.2  3.2  0.5 -2.1  3.7  0.8  2.8  6.3 0.92511
## 302   1.1  4.2  3.2  0.5 -2.1  0.8  3.7  2.8  6.3 5.78723
## 303   1.1  4.2  3.2  0.5 -2.1  2.8  3.7  0.8  6.3 1.56207
## 304   1.1  4.2  3.2  0.5 -2.1  6.3  3.7  0.8  2.8 0.16264
## 305   1.1  4.2  3.2  0.5  3.7  0.8 -2.1  2.8  6.3 0.13160
## 306   1.1  4.2  3.2  0.5  3.7  2.8 -2.1  0.8  6.3 0.13160
## 307   1.1  4.2  3.2  0.5  3.7  6.3 -2.1  0.8  2.8 1.31270
## 308   1.1  4.2  3.2  0.5  0.8  2.8 -2.1  3.7  6.3 0.25236
## 309   1.1  4.2  3.2  0.5  0.8  6.3 -2.1  3.7  2.8 0.20268
## 310   1.1  4.2  3.2  0.5  2.8  6.3 -2.1  3.7  0.8 0.77370
## 311   1.1  4.2  3.2 -2.1  3.7  0.8  0.5  2.8  6.3 0.77370
## 312   1.1  4.2  3.2 -2.1  3.7  2.8  0.5  0.8  6.3 0.20268
## 313   1.1  4.2  3.2 -2.1  3.7  6.3  0.5  0.8  2.8 0.25236
## 314   1.1  4.2  3.2 -2.1  0.8  2.8  0.5  3.7  6.3 1.31270
## 315   1.1  4.2  3.2 -2.1  0.8  6.3  0.5  3.7  2.8 0.13160
## 316   1.1  4.2  3.2 -2.1  2.8  6.3  0.5  3.7  0.8 0.13160
## 317   1.1  4.2  3.2  3.7  0.8  2.8  0.5 -2.1  6.3 0.16264
## 318   1.1  4.2  3.2  3.7  0.8  6.3  0.5 -2.1  2.8 1.56207
## 319   1.1  4.2  3.2  3.7  2.8  6.3  0.5 -2.1  0.8 5.78723
## 320   1.1  4.2  3.2  0.8  2.8  6.3  0.5 -2.1  3.7 0.92511
## 321   1.1  4.2  2.8  0.5 -2.1  3.7  0.8  3.2  6.3 0.97616
## 322   1.1  4.2  2.8  0.5 -2.1  0.8  3.7  3.2  6.3 6.50022
## 323   1.1  4.2  2.8  0.5 -2.1  3.2  3.7  0.8  6.3 1.31523
## 324   1.1  4.2  2.8  0.5 -2.1  6.3  3.7  0.8  3.2 0.14817
## 325   1.1  4.2  2.8  0.5  3.7  0.8 -2.1  3.2  6.3 0.11212
## 326   1.1  4.2  2.8  0.5  3.7  3.2 -2.1  0.8  6.3 0.11212
## 327   1.1  4.2  2.8  0.5  3.7  6.3 -2.1  0.8  3.2 1.10060
## 328   1.1  4.2  2.8  0.5  0.8  3.2 -2.1  3.7  6.3 0.17725
## 329   1.1  4.2  2.8  0.5  0.8  6.3 -2.1  3.7  3.2 0.13517
## 330   1.1  4.2  2.8  0.5  3.2  6.3 -2.1  3.7  0.8 0.81292
## 331   1.1  4.2  2.8 -2.1  3.7  0.8  0.5  3.2  6.3 0.81292
## 332   1.1  4.2  2.8 -2.1  3.7  3.2  0.5  0.8  6.3 0.13517
## 333   1.1  4.2  2.8 -2.1  3.7  6.3  0.5  0.8  3.2 0.17725
## 334   1.1  4.2  2.8 -2.1  0.8  3.2  0.5  3.7  6.3 1.10060
## 335   1.1  4.2  2.8 -2.1  0.8  6.3  0.5  3.7  3.2 0.11212
## 336   1.1  4.2  2.8 -2.1  3.2  6.3  0.5  3.7  0.8 0.11212
## 337   1.1  4.2  2.8  3.7  0.8  3.2  0.5 -2.1  6.3 0.14817
## 338   1.1  4.2  2.8  3.7  0.8  6.3  0.5 -2.1  3.2 1.31523
## 339   1.1  4.2  2.8  3.7  3.2  6.3  0.5 -2.1  0.8 6.50022
## 340   1.1  4.2  2.8  0.8  3.2  6.3  0.5 -2.1  3.7 0.97616
## 341   1.1  4.2  6.3  0.5 -2.1  3.7  0.8  3.2  2.8 1.33222
## 342   1.1  4.2  6.3  0.5 -2.1  0.8  3.7  3.2  2.8 4.65103
## 343   1.1  4.2  6.3  0.5 -2.1  3.2  3.7  0.8  2.8 1.56586
## 344   1.1  4.2  6.3  0.5 -2.1  2.8  3.7  0.8  3.2 1.80926
## 345   1.1  4.2  6.3  0.5  3.7  0.8 -2.1  3.2  2.8 0.92861
## 346   1.1  4.2  6.3  0.5  3.7  3.2 -2.1  0.8  2.8 1.62146
## 347   1.1  4.2  6.3  0.5  3.7  2.8 -2.1  0.8  3.2 1.41742
## 348   1.1  4.2  6.3  0.5  0.8  3.2 -2.1  3.7  2.8 0.90769
## 349   1.1  4.2  6.3  0.5  0.8  2.8 -2.1  3.7  3.2 0.91603
## 350   1.1  4.2  6.3  0.5  3.2  2.8 -2.1  3.7  0.8 1.22252
## 351   1.1  4.2  6.3 -2.1  3.7  0.8  0.5  3.2  2.8 1.22252
## 352   1.1  4.2  6.3 -2.1  3.7  3.2  0.5  0.8  2.8 0.91603
## 353   1.1  4.2  6.3 -2.1  3.7  2.8  0.5  0.8  3.2 0.90769
## 354   1.1  4.2  6.3 -2.1  0.8  3.2  0.5  3.7  2.8 1.41742
## 355   1.1  4.2  6.3 -2.1  0.8  2.8  0.5  3.7  3.2 1.62146
## 356   1.1  4.2  6.3 -2.1  3.2  2.8  0.5  3.7  0.8 0.92861
## 357   1.1  4.2  6.3  3.7  0.8  3.2  0.5 -2.1  2.8 1.80926
## 358   1.1  4.2  6.3  3.7  0.8  2.8  0.5 -2.1  3.2 1.56586
## 359   1.1  4.2  6.3  3.7  3.2  2.8  0.5 -2.1  0.8 4.65103
## 360   1.1  4.2  6.3  0.8  3.2  2.8  0.5 -2.1  3.7 1.33222
## 361   1.1  3.7  0.8  0.5 -2.1  4.2  3.2  2.8  6.3 1.51899
## 362   1.1  3.7  0.8  0.5 -2.1  3.2  4.2  2.8  6.3 2.79111
## 363   1.1  3.7  0.8  0.5 -2.1  2.8  4.2  3.2  6.3 3.63612
## 364   1.1  3.7  0.8  0.5 -2.1  6.3  4.2  3.2  2.8 0.40374
## 365   1.1  3.7  0.8  0.5  4.2  3.2 -2.1  2.8  6.3 0.05595
## 366   1.1  3.7  0.8  0.5  4.2  2.8 -2.1  3.2  6.3 0.04749
## 367   1.1  3.7  0.8  0.5  4.2  6.3 -2.1  3.2  2.8 0.69143
## 368   1.1  3.7  0.8  0.5  3.2  2.8 -2.1  4.2  6.3 0.08594
## 369   1.1  3.7  0.8  0.5  3.2  6.3 -2.1  4.2  2.8 0.34885
## 370   1.1  3.7  0.8  0.5  2.8  6.3 -2.1  4.2  3.2 0.25573
## 371   1.1  3.7  0.8 -2.1  4.2  3.2  0.5  2.8  6.3 0.25573
## 372   1.1  3.7  0.8 -2.1  4.2  2.8  0.5  3.2  6.3 0.34885
## 373   1.1  3.7  0.8 -2.1  4.2  6.3  0.5  3.2  2.8 0.08594
## 374   1.1  3.7  0.8 -2.1  3.2  2.8  0.5  4.2  6.3 0.69143
## 375   1.1  3.7  0.8 -2.1  3.2  6.3  0.5  4.2  2.8 0.04749
## 376   1.1  3.7  0.8 -2.1  2.8  6.3  0.5  4.2  3.2 0.05595
## 377   1.1  3.7  0.8  4.2  3.2  2.8  0.5 -2.1  6.3 0.40374
## 378   1.1  3.7  0.8  4.2  3.2  6.3  0.5 -2.1  2.8 3.63612
## 379   1.1  3.7  0.8  4.2  2.8  6.3  0.5 -2.1  3.2 2.79111
## 380   1.1  3.7  0.8  3.2  2.8  6.3  0.5 -2.1  4.2 1.51899
## 381   1.1  3.7  3.2  0.5 -2.1  4.2  0.8  2.8  6.3 0.72895
## 382   1.1  3.7  3.2  0.5 -2.1  0.8  4.2  2.8  6.3 6.71832
## 383   1.1  3.7  3.2  0.5 -2.1  2.8  4.2  0.8  6.3 1.69840
## 384   1.1  3.7  3.2  0.5 -2.1  6.3  4.2  0.8  2.8 0.14682
## 385   1.1  3.7  3.2  0.5  4.2  0.8 -2.1  2.8  6.3 0.06617
## 386   1.1  3.7  3.2  0.5  4.2  2.8 -2.1  0.8  6.3 0.10948
## 387   1.1  3.7  3.2  0.5  4.2  6.3 -2.1  0.8  2.8 1.42097
## 388   1.1  3.7  3.2  0.5  0.8  2.8 -2.1  4.2  6.3 0.24996
## 389   1.1  3.7  3.2  0.5  0.8  6.3 -2.1  4.2  2.8 0.12094
## 390   1.1  3.7  3.2  0.5  2.8  6.3 -2.1  4.2  0.8 0.60085
## 391   1.1  3.7  3.2 -2.1  4.2  0.8  0.5  2.8  6.3 0.60085
## 392   1.1  3.7  3.2 -2.1  4.2  2.8  0.5  0.8  6.3 0.12094
## 393   1.1  3.7  3.2 -2.1  4.2  6.3  0.5  0.8  2.8 0.24996
## 394   1.1  3.7  3.2 -2.1  0.8  2.8  0.5  4.2  6.3 1.42097
## 395   1.1  3.7  3.2 -2.1  0.8  6.3  0.5  4.2  2.8 0.10948
## 396   1.1  3.7  3.2 -2.1  2.8  6.3  0.5  4.2  0.8 0.06617
## 397   1.1  3.7  3.2  4.2  0.8  2.8  0.5 -2.1  6.3 0.14682
## 398   1.1  3.7  3.2  4.2  0.8  6.3  0.5 -2.1  2.8 1.69840
## 399   1.1  3.7  3.2  4.2  2.8  6.3  0.5 -2.1  0.8 6.71832
## 400   1.1  3.7  3.2  0.8  2.8  6.3  0.5 -2.1  4.2 0.72895
## 401   1.1  3.7  2.8  0.5 -2.1  4.2  0.8  3.2  6.3 0.78799
## 402   1.1  3.7  2.8  0.5 -2.1  0.8  4.2  3.2  6.3 7.80609
## 403   1.1  3.7  2.8  0.5 -2.1  3.2  4.2  0.8  6.3 1.45497
## 404   1.1  3.7  2.8  0.5 -2.1  6.3  4.2  0.8  3.2 0.15042
## 405   1.1  3.7  2.8  0.5  4.2  0.8 -2.1  3.2  6.3 0.05595
## 406   1.1  3.7  2.8  0.5  4.2  3.2 -2.1  0.8  6.3 0.10772
## 407   1.1  3.7  2.8  0.5  4.2  6.3 -2.1  0.8  3.2 1.21444
## 408   1.1  3.7  2.8  0.5  0.8  3.2 -2.1  4.2  6.3 0.18415
## 409   1.1  3.7  2.8  0.5  0.8  6.3 -2.1  4.2  3.2 0.07387
## 410   1.1  3.7  2.8  0.5  3.2  6.3 -2.1  4.2  0.8 0.64860
## 411   1.1  3.7  2.8 -2.1  4.2  0.8  0.5  3.2  6.3 0.64860
## 412   1.1  3.7  2.8 -2.1  4.2  3.2  0.5  0.8  6.3 0.07387
## 413   1.1  3.7  2.8 -2.1  4.2  6.3  0.5  0.8  3.2 0.18415
## 414   1.1  3.7  2.8 -2.1  0.8  3.2  0.5  4.2  6.3 1.21444
## 415   1.1  3.7  2.8 -2.1  0.8  6.3  0.5  4.2  3.2 0.10772
## 416   1.1  3.7  2.8 -2.1  3.2  6.3  0.5  4.2  0.8 0.05595
## 417   1.1  3.7  2.8  4.2  0.8  3.2  0.5 -2.1  6.3 0.15042
## 418   1.1  3.7  2.8  4.2  0.8  6.3  0.5 -2.1  3.2 1.45497
## 419   1.1  3.7  2.8  4.2  3.2  6.3  0.5 -2.1  0.8 7.80609
## 420   1.1  3.7  2.8  0.8  3.2  6.3  0.5 -2.1  4.2 0.78799
## 421   1.1  3.7  6.3  0.5 -2.1  4.2  0.8  3.2  2.8 0.97975
## 422   1.1  3.7  6.3  0.5 -2.1  0.8  4.2  3.2  2.8 4.46929
## 423   1.1  3.7  6.3  0.5 -2.1  3.2  4.2  0.8  2.8 1.39274
## 424   1.1  3.7  6.3  0.5 -2.1  2.8  4.2  0.8  3.2 1.63703
## 425   1.1  3.7  6.3  0.5  4.2  0.8 -2.1  3.2  2.8 0.72580
## 426   1.1  3.7  6.3  0.5  4.2  3.2 -2.1  0.8  2.8 1.44867
## 427   1.1  3.7  6.3  0.5  4.2  2.8 -2.1  0.8  3.2 1.24287
## 428   1.1  3.7  6.3  0.5  0.8  3.2 -2.1  4.2  2.8 0.68834
## 429   1.1  3.7  6.3  0.5  0.8  2.8 -2.1  4.2  3.2 0.70822
## 430   1.1  3.7  6.3  0.5  3.2  2.8 -2.1  4.2  0.8 0.89731
## 431   1.1  3.7  6.3 -2.1  4.2  0.8  0.5  3.2  2.8 0.89731
## 432   1.1  3.7  6.3 -2.1  4.2  3.2  0.5  0.8  2.8 0.70822
## 433   1.1  3.7  6.3 -2.1  4.2  2.8  0.5  0.8  3.2 0.68834
## 434   1.1  3.7  6.3 -2.1  0.8  3.2  0.5  4.2  2.8 1.24287
## 435   1.1  3.7  6.3 -2.1  0.8  2.8  0.5  4.2  3.2 1.44867
## 436   1.1  3.7  6.3 -2.1  3.2  2.8  0.5  4.2  0.8 0.72580
## 437   1.1  3.7  6.3  4.2  0.8  3.2  0.5 -2.1  2.8 1.63703
## 438   1.1  3.7  6.3  4.2  0.8  2.8  0.5 -2.1  3.2 1.39274
## 439   1.1  3.7  6.3  4.2  3.2  2.8  0.5 -2.1  0.8 4.46929
## 440   1.1  3.7  6.3  0.8  3.2  2.8  0.5 -2.1  4.2 0.97975
## 441   1.1  0.8  3.2  0.5 -2.1  4.2  3.7  2.8  6.3 1.87963
## 442   1.1  0.8  3.2  0.5 -2.1  3.7  4.2  2.8  6.3 2.53622
## 443   1.1  0.8  3.2  0.5 -2.1  2.8  4.2  3.7  6.3 4.62452
## 444   1.1  0.8  3.2  0.5 -2.1  6.3  4.2  3.7  2.8 0.54346
## 445   1.1  0.8  3.2  0.5  4.2  3.7 -2.1  2.8  6.3 0.11652
## 446   1.1  0.8  3.2  0.5  4.2  2.8 -2.1  3.7  6.3 0.09679
## 447   1.1  0.8  3.2  0.5  4.2  6.3 -2.1  3.7  2.8 0.65466
## 448   1.1  0.8  3.2  0.5  3.7  2.8 -2.1  4.2  6.3 0.11652
## 449   1.1  0.8  3.2  0.5  3.7  6.3 -2.1  4.2  2.8 0.47851
## 450   1.1  0.8  3.2  0.5  2.8  6.3 -2.1  4.2  3.7 0.26055
## 451   1.1  0.8  3.2 -2.1  4.2  3.7  0.5  2.8  6.3 0.26055
## 452   1.1  0.8  3.2 -2.1  4.2  2.8  0.5  3.7  6.3 0.47851
## 453   1.1  0.8  3.2 -2.1  4.2  6.3  0.5  3.7  2.8 0.11652
## 454   1.1  0.8  3.2 -2.1  3.7  2.8  0.5  4.2  6.3 0.65466
## 455   1.1  0.8  3.2 -2.1  3.7  6.3  0.5  4.2  2.8 0.09679
## 456   1.1  0.8  3.2 -2.1  2.8  6.3  0.5  4.2  3.7 0.11652
## 457   1.1  0.8  3.2  4.2  3.7  2.8  0.5 -2.1  6.3 0.54346
## 458   1.1  0.8  3.2  4.2  3.7  6.3  0.5 -2.1  2.8 4.62452
## 459   1.1  0.8  3.2  4.2  2.8  6.3  0.5 -2.1  3.7 2.53622
## 460   1.1  0.8  3.2  3.7  2.8  6.3  0.5 -2.1  4.2 1.87963
## 461   1.1  0.8  2.8  0.5 -2.1  4.2  3.7  3.2  6.3 2.25722
## 462   1.1  0.8  2.8  0.5 -2.1  3.7  4.2  3.2  6.3 3.06057
## 463   1.1  0.8  2.8  0.5 -2.1  3.2  4.2  3.7  6.3 4.27189
## 464   1.1  0.8  2.8  0.5 -2.1  6.3  4.2  3.7  3.2 0.68587
## 465   1.1  0.8  2.8  0.5  4.2  3.7 -2.1  3.2  6.3 0.15765
## 466   1.1  0.8  2.8  0.5  4.2  3.2 -2.1  3.7  6.3 0.14637
## 467   1.1  0.8  2.8  0.5  4.2  6.3 -2.1  3.7  3.2 0.64739
## 468   1.1  0.8  2.8  0.5  3.7  3.2 -2.1  4.2  6.3 0.15765
## 469   1.1  0.8  2.8  0.5  3.7  6.3 -2.1  4.2  3.2 0.48291
## 470   1.1  0.8  2.8  0.5  3.2  6.3 -2.1  4.2  3.7 0.35805
## 471   1.1  0.8  2.8 -2.1  4.2  3.7  0.5  3.2  6.3 0.35805
## 472   1.1  0.8  2.8 -2.1  4.2  3.2  0.5  3.7  6.3 0.48291
## 473   1.1  0.8  2.8 -2.1  4.2  6.3  0.5  3.7  3.2 0.15765
## 474   1.1  0.8  2.8 -2.1  3.7  3.2  0.5  4.2  6.3 0.64739
## 475   1.1  0.8  2.8 -2.1  3.7  6.3  0.5  4.2  3.2 0.14637
## 476   1.1  0.8  2.8 -2.1  3.2  6.3  0.5  4.2  3.7 0.15765
## 477   1.1  0.8  2.8  4.2  3.7  3.2  0.5 -2.1  6.3 0.68587
## 478   1.1  0.8  2.8  4.2  3.7  6.3  0.5 -2.1  3.2 4.27189
## 479   1.1  0.8  2.8  4.2  3.2  6.3  0.5 -2.1  3.7 3.06057
## 480   1.1  0.8  2.8  3.7  3.2  6.3  0.5 -2.1  4.2 2.25722
## 481   1.1  0.8  6.3  0.5 -2.1  4.2  3.7  3.2  2.8 0.70760
## 482   1.1  0.8  6.3  0.5 -2.1  3.7  4.2  3.2  2.8 0.96113
## 483   1.1  0.8  6.3  0.5 -2.1  3.2  4.2  3.7  2.8 1.29335
## 484   1.1  0.8  6.3  0.5 -2.1  2.8  4.2  3.7  3.2 1.63703
## 485   1.1  0.8  6.3  0.5  4.2  3.7 -2.1  3.2  2.8 0.28979
## 486   1.1  0.8  6.3  0.5  4.2  3.2 -2.1  3.7  2.8 0.19431
## 487   1.1  0.8  6.3  0.5  4.2  2.8 -2.1  3.7  3.2 0.13785
## 488   1.1  0.8  6.3  0.5  3.7  3.2 -2.1  4.2  2.8 0.12626
## 489   1.1  0.8  6.3  0.5  3.7  2.8 -2.1  4.2  3.2 0.08940
## 490   1.1  0.8  6.3  0.5  3.2  2.8 -2.1  4.2  3.7 0.06360
## 491   1.1  0.8  6.3 -2.1  4.2  3.7  0.5  3.2  2.8 0.06360
## 492   1.1  0.8  6.3 -2.1  4.2  3.2  0.5  3.7  2.8 0.08940
## 493   1.1  0.8  6.3 -2.1  4.2  2.8  0.5  3.7  3.2 0.12626
## 494   1.1  0.8  6.3 -2.1  3.7  3.2  0.5  4.2  2.8 0.13785
## 495   1.1  0.8  6.3 -2.1  3.7  2.8  0.5  4.2  3.2 0.19431
## 496   1.1  0.8  6.3 -2.1  3.2  2.8  0.5  4.2  3.7 0.28979
## 497   1.1  0.8  6.3  4.2  3.7  3.2  0.5 -2.1  2.8 1.63703
## 498   1.1  0.8  6.3  4.2  3.7  2.8  0.5 -2.1  3.2 1.29335
## 499   1.1  0.8  6.3  4.2  3.2  2.8  0.5 -2.1  3.7 0.96113
## 500   1.1  0.8  6.3  3.7  3.2  2.8  0.5 -2.1  4.2 0.70760
## 501   1.1  3.2  2.8  0.5 -2.1  4.2  3.7  0.8  6.3 0.89524
## 502   1.1  3.2  2.8  0.5 -2.1  3.7  4.2  0.8  6.3 1.22009
## 503   1.1  3.2  2.8  0.5 -2.1  0.8  4.2  3.7  6.3 9.89514
## 504   1.1  3.2  2.8  0.5 -2.1  6.3  4.2  3.7  0.8 0.17542
## 505   1.1  3.2  2.8  0.5  4.2  3.7 -2.1  0.8  6.3 0.12537
## 506   1.1  3.2  2.8  0.5  4.2  0.8 -2.1  3.7  6.3 0.06233
## 507   1.1  3.2  2.8  0.5  4.2  6.3 -2.1  3.7  0.8 1.01459
## 508   1.1  3.2  2.8  0.5  3.7  0.8 -2.1  4.2  6.3 0.12537
## 509   1.1  3.2  2.8  0.5  3.7  6.3 -2.1  4.2  0.8 0.73845
## 510   1.1  3.2  2.8  0.5  0.8  6.3 -2.1  4.2  3.7 0.03572
## 511   1.1  3.2  2.8 -2.1  4.2  3.7  0.5  0.8  6.3 0.03572
## 512   1.1  3.2  2.8 -2.1  4.2  0.8  0.5  3.7  6.3 0.73845
## 513   1.1  3.2  2.8 -2.1  4.2  6.3  0.5  3.7  0.8 0.12537
## 514   1.1  3.2  2.8 -2.1  3.7  0.8  0.5  4.2  6.3 1.01459
## 515   1.1  3.2  2.8 -2.1  3.7  6.3  0.5  4.2  0.8 0.06233
## 516   1.1  3.2  2.8 -2.1  0.8  6.3  0.5  4.2  3.7 0.12537
## 517   1.1  3.2  2.8  4.2  3.7  0.8  0.5 -2.1  6.3 0.17542
## 518   1.1  3.2  2.8  4.2  3.7  6.3  0.5 -2.1  0.8 9.89514
## 519   1.1  3.2  2.8  4.2  0.8  6.3  0.5 -2.1  3.7 1.22009
## 520   1.1  3.2  2.8  3.7  0.8  6.3  0.5 -2.1  4.2 0.89524
## 521   1.1  3.2  6.3  0.5 -2.1  4.2  3.7  0.8  2.8 0.84758
## 522   1.1  3.2  6.3  0.5 -2.1  3.7  4.2  0.8  2.8 1.03076
## 523   1.1  3.2  6.3  0.5 -2.1  0.8  4.2  3.7  2.8 4.41894
## 524   1.1  3.2  6.3  0.5 -2.1  2.8  4.2  3.7  0.8 1.52270
## 525   1.1  3.2  6.3  0.5  4.2  3.7 -2.1  0.8  2.8 1.33051
## 526   1.1  3.2  6.3  0.5  4.2  0.8 -2.1  3.7  2.8 0.52587
## 527   1.1  3.2  6.3  0.5  4.2  2.8 -2.1  3.7  0.8 0.91464
## 528   1.1  3.2  6.3  0.5  3.7  0.8 -2.1  4.2  2.8 0.50901
## 529   1.1  3.2  6.3  0.5  3.7  2.8 -2.1  4.2  0.8 0.76081
## 530   1.1  3.2  6.3  0.5  0.8  2.8 -2.1  4.2  3.7 0.54975
## 531   1.1  3.2  6.3 -2.1  4.2  3.7  0.5  0.8  2.8 0.54975
## 532   1.1  3.2  6.3 -2.1  4.2  0.8  0.5  3.7  2.8 0.76081
## 533   1.1  3.2  6.3 -2.1  4.2  2.8  0.5  3.7  0.8 0.50901
## 534   1.1  3.2  6.3 -2.1  3.7  0.8  0.5  4.2  2.8 0.91464
## 535   1.1  3.2  6.3 -2.1  3.7  2.8  0.5  4.2  0.8 0.52587
## 536   1.1  3.2  6.3 -2.1  0.8  2.8  0.5  4.2  3.7 1.33051
## 537   1.1  3.2  6.3  4.2  3.7  0.8  0.5 -2.1  2.8 1.52270
## 538   1.1  3.2  6.3  4.2  3.7  2.8  0.5 -2.1  0.8 4.41894
## 539   1.1  3.2  6.3  4.2  0.8  2.8  0.5 -2.1  3.7 1.03076
## 540   1.1  3.2  6.3  3.7  0.8  2.8  0.5 -2.1  4.2 0.84758
## 541   1.1  2.8  6.3  0.5 -2.1  4.2  3.7  0.8  3.2 0.77112
## 542   1.1  2.8  6.3  0.5 -2.1  3.7  4.2  0.8  3.2 0.96113
## 543   1.1  2.8  6.3  0.5 -2.1  0.8  4.2  3.7  3.2 4.46929
## 544   1.1  2.8  6.3  0.5 -2.1  3.2  4.2  3.7  0.8 1.21121
## 545   1.1  2.8  6.3  0.5  4.2  3.7 -2.1  0.8  3.2 1.05303
## 546   1.1  2.8  6.3  0.5  4.2  0.8 -2.1  3.7  3.2 0.39954
## 547   1.1  2.8  6.3  0.5  4.2  3.2 -2.1  3.7  0.8 0.84087
## 548   1.1  2.8  6.3  0.5  3.7  0.8 -2.1  4.2  3.2 0.39429
## 549   1.1  2.8  6.3  0.5  3.7  3.2 -2.1  4.2  0.8 0.68032
## 550   1.1  2.8  6.3  0.5  0.8  3.2 -2.1  4.2  3.7 0.41536
## 551   1.1  2.8  6.3 -2.1  4.2  3.7  0.5  0.8  3.2 0.41536
## 552   1.1  2.8  6.3 -2.1  4.2  0.8  0.5  3.7  3.2 0.68032
## 553   1.1  2.8  6.3 -2.1  4.2  3.2  0.5  3.7  0.8 0.39429
## 554   1.1  2.8  6.3 -2.1  3.7  0.8  0.5  4.2  3.2 0.84087
## 555   1.1  2.8  6.3 -2.1  3.7  3.2  0.5  4.2  0.8 0.39954
## 556   1.1  2.8  6.3 -2.1  0.8  3.2  0.5  4.2  3.7 1.05303
## 557   1.1  2.8  6.3  4.2  3.7  0.8  0.5 -2.1  3.2 1.21121
## 558   1.1  2.8  6.3  4.2  3.7  3.2  0.5 -2.1  0.8 4.46929
## 559   1.1  2.8  6.3  4.2  0.8  3.2  0.5 -2.1  3.7 0.96113
## 560   1.1  2.8  6.3  3.7  0.8  3.2  0.5 -2.1  4.2 0.77112
## 561   0.5 -2.1  4.2  1.1  3.7  0.8  3.2  2.8  6.3 1.51899
## 562   0.5 -2.1  4.2  1.1  3.7  3.2  0.8  2.8  6.3 0.72895
## 563   0.5 -2.1  4.2  1.1  3.7  2.8  0.8  3.2  6.3 0.78799
## 564   0.5 -2.1  4.2  1.1  3.7  6.3  0.8  3.2  2.8 0.97975
## 565   0.5 -2.1  4.2  1.1  0.8  3.2  3.7  2.8  6.3 1.87963
## 566   0.5 -2.1  4.2  1.1  0.8  2.8  3.7  3.2  6.3 2.25722
## 567   0.5 -2.1  4.2  1.1  0.8  6.3  3.7  3.2  2.8 0.70760
## 568   0.5 -2.1  4.2  1.1  3.2  2.8  3.7  0.8  6.3 0.89524
## 569   0.5 -2.1  4.2  1.1  3.2  6.3  3.7  0.8  2.8 0.84758
## 570   0.5 -2.1  4.2  1.1  2.8  6.3  3.7  0.8  3.2 0.77112
## 571   0.5 -2.1  4.2  3.7  0.8  3.2  1.1  2.8  6.3 0.77112
## 572   0.5 -2.1  4.2  3.7  0.8  2.8  1.1  3.2  6.3 0.84758
## 573   0.5 -2.1  4.2  3.7  0.8  6.3  1.1  3.2  2.8 0.89524
## 574   0.5 -2.1  4.2  3.7  3.2  2.8  1.1  0.8  6.3 0.70760
## 575   0.5 -2.1  4.2  3.7  3.2  6.3  1.1  0.8  2.8 2.25722
## 576   0.5 -2.1  4.2  3.7  2.8  6.3  1.1  0.8  3.2 1.87963
## 577   0.5 -2.1  4.2  0.8  3.2  2.8  1.1  3.7  6.3 0.97975
## 578   0.5 -2.1  4.2  0.8  3.2  6.3  1.1  3.7  2.8 0.78799
## 579   0.5 -2.1  4.2  0.8  2.8  6.3  1.1  3.7  3.2 0.72895
## 580   0.5 -2.1  4.2  3.2  2.8  6.3  1.1  3.7  0.8 1.51899
## 581   0.5 -2.1  3.7  1.1  4.2  0.8  3.2  2.8  6.3 1.68739
## 582   0.5 -2.1  3.7  1.1  4.2  3.2  0.8  2.8  6.3 0.92511
## 583   0.5 -2.1  3.7  1.1  4.2  2.8  0.8  3.2  6.3 0.97616
## 584   0.5 -2.1  3.7  1.1  4.2  6.3  0.8  3.2  2.8 1.33222
## 585   0.5 -2.1  3.7  1.1  0.8  3.2  4.2  2.8  6.3 2.53622
## 586   0.5 -2.1  3.7  1.1  0.8  2.8  4.2  3.2  6.3 3.06057
## 587   0.5 -2.1  3.7  1.1  0.8  6.3  4.2  3.2  2.8 0.96113
## 588   0.5 -2.1  3.7  1.1  3.2  2.8  4.2  0.8  6.3 1.22009
## 589   0.5 -2.1  3.7  1.1  3.2  6.3  4.2  0.8  2.8 1.03076
## 590   0.5 -2.1  3.7  1.1  2.8  6.3  4.2  0.8  3.2 0.96113
## 591   0.5 -2.1  3.7  4.2  0.8  3.2  1.1  2.8  6.3 0.96113
## 592   0.5 -2.1  3.7  4.2  0.8  2.8  1.1  3.2  6.3 1.03076
## 593   0.5 -2.1  3.7  4.2  0.8  6.3  1.1  3.2  2.8 1.22009
## 594   0.5 -2.1  3.7  4.2  3.2  2.8  1.1  0.8  6.3 0.96113
## 595   0.5 -2.1  3.7  4.2  3.2  6.3  1.1  0.8  2.8 3.06057
## 596   0.5 -2.1  3.7  4.2  2.8  6.3  1.1  0.8  3.2 2.53622
## 597   0.5 -2.1  3.7  0.8  3.2  2.8  1.1  4.2  6.3 1.33222
## 598   0.5 -2.1  3.7  0.8  3.2  6.3  1.1  4.2  2.8 0.97616
## 599   0.5 -2.1  3.7  0.8  2.8  6.3  1.1  4.2  3.2 0.92511
## 600   0.5 -2.1  3.7  3.2  2.8  6.3  1.1  4.2  0.8 1.68739
## 601   0.5 -2.1  0.8  1.1  4.2  3.7  3.2  2.8  6.3 5.16772
## 602   0.5 -2.1  0.8  1.1  4.2  3.2  3.7  2.8  6.3 5.78723
## 603   0.5 -2.1  0.8  1.1  4.2  2.8  3.7  3.2  6.3 6.50022
## 604   0.5 -2.1  0.8  1.1  4.2  6.3  3.7  3.2  2.8 4.65103
## 605   0.5 -2.1  0.8  1.1  3.7  3.2  4.2  2.8  6.3 6.71832
## 606   0.5 -2.1  0.8  1.1  3.7  2.8  4.2  3.2  6.3 7.80609
## 607   0.5 -2.1  0.8  1.1  3.7  6.3  4.2  3.2  2.8 4.46929
## 608   0.5 -2.1  0.8  1.1  3.2  2.8  4.2  3.7  6.3 9.89514
## 609   0.5 -2.1  0.8  1.1  3.2  6.3  4.2  3.7  2.8 4.41894
## 610   0.5 -2.1  0.8  1.1  2.8  6.3  4.2  3.7  3.2 4.46929
## 611   0.5 -2.1  0.8  4.2  3.7  3.2  1.1  2.8  6.3 4.46929
## 612   0.5 -2.1  0.8  4.2  3.7  2.8  1.1  3.2  6.3 4.41894
## 613   0.5 -2.1  0.8  4.2  3.7  6.3  1.1  3.2  2.8 9.89514
## 614   0.5 -2.1  0.8  4.2  3.2  2.8  1.1  3.7  6.3 4.46929
## 615   0.5 -2.1  0.8  4.2  3.2  6.3  1.1  3.7  2.8 7.80609
## 616   0.5 -2.1  0.8  4.2  2.8  6.3  1.1  3.7  3.2 6.71832
## 617   0.5 -2.1  0.8  3.7  3.2  2.8  1.1  4.2  6.3 4.65103
## 618   0.5 -2.1  0.8  3.7  3.2  6.3  1.1  4.2  2.8 6.50022
## 619   0.5 -2.1  0.8  3.7  2.8  6.3  1.1  4.2  3.2 5.78723
## 620   0.5 -2.1  0.8  3.2  2.8  6.3  1.1  4.2  3.7 5.16772
## 621   0.5 -2.1  3.2  1.1  4.2  3.7  0.8  2.8  6.3 1.18241
## 622   0.5 -2.1  3.2  1.1  4.2  0.8  3.7  2.8  6.3 2.29007
## 623   0.5 -2.1  3.2  1.1  4.2  2.8  3.7  0.8  6.3 1.31523
## 624   0.5 -2.1  3.2  1.1  4.2  6.3  3.7  0.8  2.8 1.56586
## 625   0.5 -2.1  3.2  1.1  3.7  0.8  4.2  2.8  6.3 2.79111
## 626   0.5 -2.1  3.2  1.1  3.7  2.8  4.2  0.8  6.3 1.45497
## 627   0.5 -2.1  3.2  1.1  3.7  6.3  4.2  0.8  2.8 1.39274
## 628   0.5 -2.1  3.2  1.1  0.8  2.8  4.2  3.7  6.3 4.27189
## 629   0.5 -2.1  3.2  1.1  0.8  6.3  4.2  3.7  2.8 1.29335
## 630   0.5 -2.1  3.2  1.1  2.8  6.3  4.2  3.7  0.8 1.21121
## 631   0.5 -2.1  3.2  4.2  3.7  0.8  1.1  2.8  6.3 1.21121
## 632   0.5 -2.1  3.2  4.2  3.7  2.8  1.1  0.8  6.3 1.29335
## 633   0.5 -2.1  3.2  4.2  3.7  6.3  1.1  0.8  2.8 4.27189
## 634   0.5 -2.1  3.2  4.2  0.8  2.8  1.1  3.7  6.3 1.39274
## 635   0.5 -2.1  3.2  4.2  0.8  6.3  1.1  3.7  2.8 1.45497
## 636   0.5 -2.1  3.2  4.2  2.8  6.3  1.1  3.7  0.8 2.79111
## 637   0.5 -2.1  3.2  3.7  0.8  2.8  1.1  4.2  6.3 1.56586
## 638   0.5 -2.1  3.2  3.7  0.8  6.3  1.1  4.2  2.8 1.31523
## 639   0.5 -2.1  3.2  3.7  2.8  6.3  1.1  4.2  0.8 2.29007
## 640   0.5 -2.1  3.2  0.8  2.8  6.3  1.1  4.2  3.7 1.18241
## 641   0.5 -2.1  2.8  1.1  4.2  3.7  0.8  3.2  6.3 1.47854
## 642   0.5 -2.1  2.8  1.1  4.2  0.8  3.7  3.2  6.3 2.95402
## 643   0.5 -2.1  2.8  1.1  4.2  3.2  3.7  0.8  6.3 1.56207
## 644   0.5 -2.1  2.8  1.1  4.2  6.3  3.7  0.8  3.2 1.80926
## 645   0.5 -2.1  2.8  1.1  3.7  0.8  4.2  3.2  6.3 3.63612
## 646   0.5 -2.1  2.8  1.1  3.7  3.2  4.2  0.8  6.3 1.69840
## 647   0.5 -2.1  2.8  1.1  3.7  6.3  4.2  0.8  3.2 1.63703
## 648   0.5 -2.1  2.8  1.1  0.8  3.2  4.2  3.7  6.3 4.62452
## 649   0.5 -2.1  2.8  1.1  0.8  6.3  4.2  3.7  3.2 1.63703
## 650   0.5 -2.1  2.8  1.1  3.2  6.3  4.2  3.7  0.8 1.52270
## 651   0.5 -2.1  2.8  4.2  3.7  0.8  1.1  3.2  6.3 1.52270
## 652   0.5 -2.1  2.8  4.2  3.7  3.2  1.1  0.8  6.3 1.63703
## 653   0.5 -2.1  2.8  4.2  3.7  6.3  1.1  0.8  3.2 4.62452
## 654   0.5 -2.1  2.8  4.2  0.8  3.2  1.1  3.7  6.3 1.63703
## 655   0.5 -2.1  2.8  4.2  0.8  6.3  1.1  3.7  3.2 1.69840
## 656   0.5 -2.1  2.8  4.2  3.2  6.3  1.1  3.7  0.8 3.63612
## 657   0.5 -2.1  2.8  3.7  0.8  3.2  1.1  4.2  6.3 1.80926
## 658   0.5 -2.1  2.8  3.7  0.8  6.3  1.1  4.2  3.2 1.56207
## 659   0.5 -2.1  2.8  3.7  3.2  6.3  1.1  4.2  0.8 2.95402
## 660   0.5 -2.1  2.8  0.8  3.2  6.3  1.1  4.2  3.7 1.47854
## 661   0.5 -2.1  6.3  1.1  4.2  3.7  0.8  3.2  2.8 0.20175
## 662   0.5 -2.1  6.3  1.1  4.2  0.8  3.7  3.2  2.8 0.29916
## 663   0.5 -2.1  6.3  1.1  4.2  3.2  3.7  0.8  2.8 0.16264
## 664   0.5 -2.1  6.3  1.1  4.2  2.8  3.7  0.8  3.2 0.14817
## 665   0.5 -2.1  6.3  1.1  3.7  0.8  4.2  3.2  2.8 0.40374
## 666   0.5 -2.1  6.3  1.1  3.7  3.2  4.2  0.8  2.8 0.14682
## 667   0.5 -2.1  6.3  1.1  3.7  2.8  4.2  0.8  3.2 0.15042
## 668   0.5 -2.1  6.3  1.1  0.8  3.2  4.2  3.7  2.8 0.54346
## 669   0.5 -2.1  6.3  1.1  0.8  2.8  4.2  3.7  3.2 0.68587
## 670   0.5 -2.1  6.3  1.1  3.2  2.8  4.2  3.7  0.8 0.17542
## 671   0.5 -2.1  6.3  4.2  3.7  0.8  1.1  3.2  2.8 0.17542
## 672   0.5 -2.1  6.3  4.2  3.7  3.2  1.1  0.8  2.8 0.68587
## 673   0.5 -2.1  6.3  4.2  3.7  2.8  1.1  0.8  3.2 0.54346
## 674   0.5 -2.1  6.3  4.2  0.8  3.2  1.1  3.7  2.8 0.15042
## 675   0.5 -2.1  6.3  4.2  0.8  2.8  1.1  3.7  3.2 0.14682
## 676   0.5 -2.1  6.3  4.2  3.2  2.8  1.1  3.7  0.8 0.40374
## 677   0.5 -2.1  6.3  3.7  0.8  3.2  1.1  4.2  2.8 0.14817
## 678   0.5 -2.1  6.3  3.7  0.8  2.8  1.1  4.2  3.2 0.16264
## 679   0.5 -2.1  6.3  3.7  3.2  2.8  1.1  4.2  0.8 0.29916
## 680   0.5 -2.1  6.3  0.8  3.2  2.8  1.1  4.2  3.7 0.20175
## 681   0.5  4.2  3.7  1.1 -2.1  0.8  3.2  2.8  6.3 3.77918
## 682   0.5  4.2  3.7  1.1 -2.1  3.2  0.8  2.8  6.3 0.88150
## 683   0.5  4.2  3.7  1.1 -2.1  2.8  0.8  3.2  6.3 1.11670
## 684   0.5  4.2  3.7  1.1 -2.1  6.3  0.8  3.2  2.8 0.10159
## 685   0.5  4.2  3.7  1.1  0.8  3.2 -2.1  2.8  6.3 0.11652
## 686   0.5  4.2  3.7  1.1  0.8  2.8 -2.1  3.2  6.3 0.15765
## 687   0.5  4.2  3.7  1.1  0.8  6.3 -2.1  3.2  2.8 0.28979
## 688   0.5  4.2  3.7  1.1  3.2  2.8 -2.1  0.8  6.3 0.12537
## 689   0.5  4.2  3.7  1.1  3.2  6.3 -2.1  0.8  2.8 1.33051
## 690   0.5  4.2  3.7  1.1  2.8  6.3 -2.1  0.8  3.2 1.05303
## 691   0.5  4.2  3.7 -2.1  0.8  3.2  1.1  2.8  6.3 1.05303
## 692   0.5  4.2  3.7 -2.1  0.8  2.8  1.1  3.2  6.3 1.33051
## 693   0.5  4.2  3.7 -2.1  0.8  6.3  1.1  3.2  2.8 0.12537
## 694   0.5  4.2  3.7 -2.1  3.2  2.8  1.1  0.8  6.3 0.28979
## 695   0.5  4.2  3.7 -2.1  3.2  6.3  1.1  0.8  2.8 0.15765
## 696   0.5  4.2  3.7 -2.1  2.8  6.3  1.1  0.8  3.2 0.11652
## 697   0.5  4.2  3.7  0.8  3.2  2.8  1.1 -2.1  6.3 0.10159
## 698   0.5  4.2  3.7  0.8  3.2  6.3  1.1 -2.1  2.8 1.11670
## 699   0.5  4.2  3.7  0.8  2.8  6.3  1.1 -2.1  3.2 0.88150
## 700   0.5  4.2  3.7  3.2  2.8  6.3  1.1 -2.1  0.8 3.77918
## 701   0.5  4.2  0.8  1.1 -2.1  3.7  3.2  2.8  6.3 1.49224
## 702   0.5  4.2  0.8  1.1 -2.1  3.2  3.7  2.8  6.3 2.00842
## 703   0.5  4.2  0.8  1.1 -2.1  2.8  3.7  3.2  6.3 2.56561
## 704   0.5  4.2  0.8  1.1 -2.1  6.3  3.7  3.2  2.8 0.27560
## 705   0.5  4.2  0.8  1.1  3.7  3.2 -2.1  2.8  6.3 0.06617
## 706   0.5  4.2  0.8  1.1  3.7  2.8 -2.1  3.2  6.3 0.05595
## 707   0.5  4.2  0.8  1.1  3.7  6.3 -2.1  3.2  2.8 0.72580
## 708   0.5  4.2  0.8  1.1  3.2  2.8 -2.1  3.7  6.3 0.06233
## 709   0.5  4.2  0.8  1.1  3.2  6.3 -2.1  3.7  2.8 0.52587
## 710   0.5  4.2  0.8  1.1  2.8  6.3 -2.1  3.7  3.2 0.39954
## 711   0.5  4.2  0.8 -2.1  3.7  3.2  1.1  2.8  6.3 0.39954
## 712   0.5  4.2  0.8 -2.1  3.7  2.8  1.1  3.2  6.3 0.52587
## 713   0.5  4.2  0.8 -2.1  3.7  6.3  1.1  3.2  2.8 0.06233
## 714   0.5  4.2  0.8 -2.1  3.2  2.8  1.1  3.7  6.3 0.72580
## 715   0.5  4.2  0.8 -2.1  3.2  6.3  1.1  3.7  2.8 0.05595
## 716   0.5  4.2  0.8 -2.1  2.8  6.3  1.1  3.7  3.2 0.06617
## 717   0.5  4.2  0.8  3.7  3.2  2.8  1.1 -2.1  6.3 0.27560
## 718   0.5  4.2  0.8  3.7  3.2  6.3  1.1 -2.1  2.8 2.56561
## 719   0.5  4.2  0.8  3.7  2.8  6.3  1.1 -2.1  3.2 2.00842
## 720   0.5  4.2  0.8  3.2  2.8  6.3  1.1 -2.1  3.7 1.49224
## 721   0.5  4.2  3.2  1.1 -2.1  3.7  0.8  2.8  6.3 0.69577
## 722   0.5  4.2  3.2  1.1 -2.1  0.8  3.7  2.8  6.3 4.27189
## 723   0.5  4.2  3.2  1.1 -2.1  2.8  3.7  0.8  6.3 1.21121
## 724   0.5  4.2  3.2  1.1 -2.1  6.3  3.7  0.8  2.8 0.07774
## 725   0.5  4.2  3.2  1.1  3.7  0.8 -2.1  2.8  6.3 0.05595
## 726   0.5  4.2  3.2  1.1  3.7  2.8 -2.1  0.8  6.3 0.10772
## 727   0.5  4.2  3.2  1.1  3.7  6.3 -2.1  0.8  2.8 1.44867
## 728   0.5  4.2  3.2  1.1  0.8  2.8 -2.1  3.7  6.3 0.14637
## 729   0.5  4.2  3.2  1.1  0.8  6.3 -2.1  3.7  2.8 0.19431
## 730   0.5  4.2  3.2  1.1  2.8  6.3 -2.1  3.7  0.8 0.84087
## 731   0.5  4.2  3.2 -2.1  3.7  0.8  1.1  2.8  6.3 0.84087
## 732   0.5  4.2  3.2 -2.1  3.7  2.8  1.1  0.8  6.3 0.19431
## 733   0.5  4.2  3.2 -2.1  3.7  6.3  1.1  0.8  2.8 0.14637
## 734   0.5  4.2  3.2 -2.1  0.8  2.8  1.1  3.7  6.3 1.44867
## 735   0.5  4.2  3.2 -2.1  0.8  6.3  1.1  3.7  2.8 0.10772
## 736   0.5  4.2  3.2 -2.1  2.8  6.3  1.1  3.7  0.8 0.05595
## 737   0.5  4.2  3.2  3.7  0.8  2.8  1.1 -2.1  6.3 0.07774
## 738   0.5  4.2  3.2  3.7  0.8  6.3  1.1 -2.1  2.8 1.21121
## 739   0.5  4.2  3.2  3.7  2.8  6.3  1.1 -2.1  0.8 4.27189
## 740   0.5  4.2  3.2  0.8  2.8  6.3  1.1 -2.1  3.7 0.69577
## 741   0.5  4.2  2.8  1.1 -2.1  3.7  0.8  3.2  6.3 0.75631
## 742   0.5  4.2  2.8  1.1 -2.1  0.8  3.7  3.2  6.3 4.81954
## 743   0.5  4.2  2.8  1.1 -2.1  3.2  3.7  0.8  6.3 1.03520
## 744   0.5  4.2  2.8  1.1 -2.1  6.3  3.7  0.8  3.2 0.07430
## 745   0.5  4.2  2.8  1.1  3.7  0.8 -2.1  3.2  6.3 0.04749
## 746   0.5  4.2  2.8  1.1  3.7  3.2 -2.1  0.8  6.3 0.10948
## 747   0.5  4.2  2.8  1.1  3.7  6.3 -2.1  0.8  3.2 1.24287
## 748   0.5  4.2  2.8  1.1  0.8  3.2 -2.1  3.7  6.3 0.09679
## 749   0.5  4.2  2.8  1.1  0.8  6.3 -2.1  3.7  3.2 0.13785
## 750   0.5  4.2  2.8  1.1  3.2  6.3 -2.1  3.7  0.8 0.91464
## 751   0.5  4.2  2.8 -2.1  3.7  0.8  1.1  3.2  6.3 0.91464
## 752   0.5  4.2  2.8 -2.1  3.7  3.2  1.1  0.8  6.3 0.13785
## 753   0.5  4.2  2.8 -2.1  3.7  6.3  1.1  0.8  3.2 0.09679
## 754   0.5  4.2  2.8 -2.1  0.8  3.2  1.1  3.7  6.3 1.24287
## 755   0.5  4.2  2.8 -2.1  0.8  6.3  1.1  3.7  3.2 0.10948
## 756   0.5  4.2  2.8 -2.1  3.2  6.3  1.1  3.7  0.8 0.04749
## 757   0.5  4.2  2.8  3.7  0.8  3.2  1.1 -2.1  6.3 0.07430
## 758   0.5  4.2  2.8  3.7  0.8  6.3  1.1 -2.1  3.2 1.03520
## 759   0.5  4.2  2.8  3.7  3.2  6.3  1.1 -2.1  0.8 4.81954
## 760   0.5  4.2  2.8  0.8  3.2  6.3  1.1 -2.1  3.7 0.75631
## 761   0.5  4.2  6.3  1.1 -2.1  3.7  0.8  3.2  2.8 0.92021
## 762   0.5  4.2  6.3  1.1 -2.1  0.8  3.7  3.2  2.8 3.14003
## 763   0.5  4.2  6.3  1.1 -2.1  3.2  3.7  0.8  2.8 1.08765
## 764   0.5  4.2  6.3  1.1 -2.1  2.8  3.7  0.8  3.2 1.26176
## 765   0.5  4.2  6.3  1.1  3.7  0.8 -2.1  3.2  2.8 0.69143
## 766   0.5  4.2  6.3  1.1  3.7  3.2 -2.1  0.8  2.8 1.42097
## 767   0.5  4.2  6.3  1.1  3.7  2.8 -2.1  0.8  3.2 1.21444
## 768   0.5  4.2  6.3  1.1  0.8  3.2 -2.1  3.7  2.8 0.65466
## 769   0.5  4.2  6.3  1.1  0.8  2.8 -2.1  3.7  3.2 0.64739
## 770   0.5  4.2  6.3  1.1  3.2  2.8 -2.1  3.7  0.8 1.01459
## 771   0.5  4.2  6.3 -2.1  3.7  0.8  1.1  3.2  2.8 1.01459
## 772   0.5  4.2  6.3 -2.1  3.7  3.2  1.1  0.8  2.8 0.64739
## 773   0.5  4.2  6.3 -2.1  3.7  2.8  1.1  0.8  3.2 0.65466
## 774   0.5  4.2  6.3 -2.1  0.8  3.2  1.1  3.7  2.8 1.21444
## 775   0.5  4.2  6.3 -2.1  0.8  2.8  1.1  3.7  3.2 1.42097
## 776   0.5  4.2  6.3 -2.1  3.2  2.8  1.1  3.7  0.8 0.69143
## 777   0.5  4.2  6.3  3.7  0.8  3.2  1.1 -2.1  2.8 1.26176
## 778   0.5  4.2  6.3  3.7  0.8  2.8  1.1 -2.1  3.2 1.08765
## 779   0.5  4.2  6.3  3.7  3.2  2.8  1.1 -2.1  0.8 3.14003
## 780   0.5  4.2  6.3  0.8  3.2  2.8  1.1 -2.1  3.7 0.92021
## 781   0.5  3.7  0.8  1.1 -2.1  4.2  3.2  2.8  6.3 1.38923
## 782   0.5  3.7  0.8  1.1 -2.1  3.2  4.2  2.8  6.3 2.49613
## 783   0.5  3.7  0.8  1.1 -2.1  2.8  4.2  3.2  6.3 3.20931
## 784   0.5  3.7  0.8  1.1 -2.1  6.3  4.2  3.2  2.8 0.39429
## 785   0.5  3.7  0.8  1.1  4.2  3.2 -2.1  2.8  6.3 0.13160
## 786   0.5  3.7  0.8  1.1  4.2  2.8 -2.1  3.2  6.3 0.11212
## 787   0.5  3.7  0.8  1.1  4.2  6.3 -2.1  3.2  2.8 0.92861
## 788   0.5  3.7  0.8  1.1  3.2  2.8 -2.1  4.2  6.3 0.12537
## 789   0.5  3.7  0.8  1.1  3.2  6.3 -2.1  4.2  2.8 0.50901
## 790   0.5  3.7  0.8  1.1  2.8  6.3 -2.1  4.2  3.2 0.39429
## 791   0.5  3.7  0.8 -2.1  4.2  3.2  1.1  2.8  6.3 0.39429
## 792   0.5  3.7  0.8 -2.1  4.2  2.8  1.1  3.2  6.3 0.50901
## 793   0.5  3.7  0.8 -2.1  4.2  6.3  1.1  3.2  2.8 0.12537
## 794   0.5  3.7  0.8 -2.1  3.2  2.8  1.1  4.2  6.3 0.92861
## 795   0.5  3.7  0.8 -2.1  3.2  6.3  1.1  4.2  2.8 0.11212
## 796   0.5  3.7  0.8 -2.1  2.8  6.3  1.1  4.2  3.2 0.13160
## 797   0.5  3.7  0.8  4.2  3.2  2.8  1.1 -2.1  6.3 0.39429
## 798   0.5  3.7  0.8  4.2  3.2  6.3  1.1 -2.1  2.8 3.20931
## 799   0.5  3.7  0.8  4.2  2.8  6.3  1.1 -2.1  3.2 2.49613
## 800   0.5  3.7  0.8  3.2  2.8  6.3  1.1 -2.1  4.2 1.38923
## 801   0.5  3.7  3.2  1.1 -2.1  4.2  0.8  2.8  6.3 0.55548
## 802   0.5  3.7  3.2  1.1 -2.1  0.8  4.2  2.8  6.3 4.98404
## 803   0.5  3.7  3.2  1.1 -2.1  2.8  4.2  0.8  6.3 1.35278
## 804   0.5  3.7  3.2  1.1 -2.1  6.3  4.2  0.8  2.8 0.07559
## 805   0.5  3.7  3.2  1.1  4.2  0.8 -2.1  2.8  6.3 0.01824
## 806   0.5  3.7  3.2  1.1  4.2  2.8 -2.1  0.8  6.3 0.11212
## 807   0.5  3.7  3.2  1.1  4.2  6.3 -2.1  0.8  2.8 1.62146
## 808   0.5  3.7  3.2  1.1  0.8  2.8 -2.1  4.2  6.3 0.15765
## 809   0.5  3.7  3.2  1.1  0.8  6.3 -2.1  4.2  2.8 0.12626
## 810   0.5  3.7  3.2  1.1  2.8  6.3 -2.1  4.2  0.8 0.68032
## 811   0.5  3.7  3.2 -2.1  4.2  0.8  1.1  2.8  6.3 0.68032
## 812   0.5  3.7  3.2 -2.1  4.2  2.8  1.1  0.8  6.3 0.12626
## 813   0.5  3.7  3.2 -2.1  4.2  6.3  1.1  0.8  2.8 0.15765
## 814   0.5  3.7  3.2 -2.1  0.8  2.8  1.1  4.2  6.3 1.62146
## 815   0.5  3.7  3.2 -2.1  0.8  6.3  1.1  4.2  2.8 0.11212
## 816   0.5  3.7  3.2 -2.1  2.8  6.3  1.1  4.2  0.8 0.01824
## 817   0.5  3.7  3.2  4.2  0.8  2.8  1.1 -2.1  6.3 0.07559
## 818   0.5  3.7  3.2  4.2  0.8  6.3  1.1 -2.1  2.8 1.35278
## 819   0.5  3.7  3.2  4.2  2.8  6.3  1.1 -2.1  0.8 4.98404
## 820   0.5  3.7  3.2  0.8  2.8  6.3  1.1 -2.1  4.2 0.55548
## 821   0.5  3.7  2.8  1.1 -2.1  4.2  0.8  3.2  6.3 0.62337
## 822   0.5  3.7  2.8  1.1 -2.1  0.8  4.2  3.2  6.3 5.78723
## 823   0.5  3.7  2.8  1.1 -2.1  3.2  4.2  0.8  6.3 1.18082
## 824   0.5  3.7  2.8  1.1 -2.1  6.3  4.2  0.8  3.2 0.08940
## 825   0.5  3.7  2.8  1.1  4.2  0.8 -2.1  3.2  6.3 0.01824
## 826   0.5  3.7  2.8  1.1  4.2  3.2 -2.1  0.8  6.3 0.13160
## 827   0.5  3.7  2.8  1.1  4.2  6.3 -2.1  0.8  3.2 1.41742
## 828   0.5  3.7  2.8  1.1  0.8  3.2 -2.1  4.2  6.3 0.11652
## 829   0.5  3.7  2.8  1.1  0.8  6.3 -2.1  4.2  3.2 0.08940
## 830   0.5  3.7  2.8  1.1  3.2  6.3 -2.1  4.2  0.8 0.76081
## 831   0.5  3.7  2.8 -2.1  4.2  0.8  1.1  3.2  6.3 0.76081
## 832   0.5  3.7  2.8 -2.1  4.2  3.2  1.1  0.8  6.3 0.08940
## 833   0.5  3.7  2.8 -2.1  4.2  6.3  1.1  0.8  3.2 0.11652
## 834   0.5  3.7  2.8 -2.1  0.8  3.2  1.1  4.2  6.3 1.41742
## 835   0.5  3.7  2.8 -2.1  0.8  6.3  1.1  4.2  3.2 0.13160
## 836   0.5  3.7  2.8 -2.1  3.2  6.3  1.1  4.2  0.8 0.01824
## 837   0.5  3.7  2.8  4.2  0.8  3.2  1.1 -2.1  6.3 0.08940
## 838   0.5  3.7  2.8  4.2  0.8  6.3  1.1 -2.1  3.2 1.18082
## 839   0.5  3.7  2.8  4.2  3.2  6.3  1.1 -2.1  0.8 5.78723
## 840   0.5  3.7  2.8  0.8  3.2  6.3  1.1 -2.1  4.2 0.62337
## 841   0.5  3.7  6.3  1.1 -2.1  4.2  0.8  3.2  2.8 0.66561
## 842   0.5  3.7  6.3  1.1 -2.1  0.8  4.2  3.2  2.8 3.07228
## 843   0.5  3.7  6.3  1.1 -2.1  3.2  4.2  0.8  2.8 0.96970
## 844   0.5  3.7  6.3  1.1 -2.1  2.8  4.2  0.8  3.2 1.14929
## 845   0.5  3.7  6.3  1.1  4.2  0.8 -2.1  3.2  2.8 0.54575
## 846   0.5  3.7  6.3  1.1  4.2  3.2 -2.1  0.8  2.8 1.31270
## 847   0.5  3.7  6.3  1.1  4.2  2.8 -2.1  0.8  3.2 1.10060
## 848   0.5  3.7  6.3  1.1  0.8  3.2 -2.1  4.2  2.8 0.47851
## 849   0.5  3.7  6.3  1.1  0.8  2.8 -2.1  4.2  3.2 0.48291
## 850   0.5  3.7  6.3  1.1  3.2  2.8 -2.1  4.2  0.8 0.73845
## 851   0.5  3.7  6.3 -2.1  4.2  0.8  1.1  3.2  2.8 0.73845
## 852   0.5  3.7  6.3 -2.1  4.2  3.2  1.1  0.8  2.8 0.48291
## 853   0.5  3.7  6.3 -2.1  4.2  2.8  1.1  0.8  3.2 0.47851
## 854   0.5  3.7  6.3 -2.1  0.8  3.2  1.1  4.2  2.8 1.10060
## 855   0.5  3.7  6.3 -2.1  0.8  2.8  1.1  4.2  3.2 1.31270
## 856   0.5  3.7  6.3 -2.1  3.2  2.8  1.1  4.2  0.8 0.54575
## 857   0.5  3.7  6.3  4.2  0.8  3.2  1.1 -2.1  2.8 1.14929
## 858   0.5  3.7  6.3  4.2  0.8  2.8  1.1 -2.1  3.2 0.96970
## 859   0.5  3.7  6.3  4.2  3.2  2.8  1.1 -2.1  0.8 3.07228
## 860   0.5  3.7  6.3  0.8  3.2  2.8  1.1 -2.1  4.2 0.66561
## 861   0.5  0.8  3.2  1.1 -2.1  4.2  3.7  2.8  6.3 1.75935
## 862   0.5  0.8  3.2  1.1 -2.1  3.7  4.2  2.8  6.3 2.34272
## 863   0.5  0.8  3.2  1.1 -2.1  2.8  4.2  3.7  6.3 4.13517
## 864   0.5  0.8  3.2  1.1 -2.1  6.3  4.2  3.7  2.8 0.55032
## 865   0.5  0.8  3.2  1.1  4.2  3.7 -2.1  2.8  6.3 0.22331
## 866   0.5  0.8  3.2  1.1  4.2  2.8 -2.1  3.7  6.3 0.17725
## 867   0.5  0.8  3.2  1.1  4.2  6.3 -2.1  3.7  2.8 0.90769
## 868   0.5  0.8  3.2  1.1  3.7  2.8 -2.1  4.2  6.3 0.18415
## 869   0.5  0.8  3.2  1.1  3.7  6.3 -2.1  4.2  2.8 0.68834
## 870   0.5  0.8  3.2  1.1  2.8  6.3 -2.1  4.2  3.7 0.41536
## 871   0.5  0.8  3.2 -2.1  4.2  3.7  1.1  2.8  6.3 0.41536
## 872   0.5  0.8  3.2 -2.1  4.2  2.8  1.1  3.7  6.3 0.68834
## 873   0.5  0.8  3.2 -2.1  4.2  6.3  1.1  3.7  2.8 0.18415
## 874   0.5  0.8  3.2 -2.1  3.7  2.8  1.1  4.2  6.3 0.90769
## 875   0.5  0.8  3.2 -2.1  3.7  6.3  1.1  4.2  2.8 0.17725
## 876   0.5  0.8  3.2 -2.1  2.8  6.3  1.1  4.2  3.7 0.22331
## 877   0.5  0.8  3.2  4.2  3.7  2.8  1.1 -2.1  6.3 0.55032
## 878   0.5  0.8  3.2  4.2  3.7  6.3  1.1 -2.1  2.8 4.13517
## 879   0.5  0.8  3.2  4.2  2.8  6.3  1.1 -2.1  3.7 2.34272
## 880   0.5  0.8  3.2  3.7  2.8  6.3  1.1 -2.1  4.2 1.75935
## 881   0.5  0.8  2.8  1.1 -2.1  4.2  3.7  3.2  6.3 2.14660
## 882   0.5  0.8  2.8  1.1 -2.1  3.7  4.2  3.2  6.3 2.86674
## 883   0.5  0.8  2.8  1.1 -2.1  3.2  4.2  3.7  6.3 3.92855
## 884   0.5  0.8  2.8  1.1 -2.1  6.3  4.2  3.7  3.2 0.70822
## 885   0.5  0.8  2.8  1.1  4.2  3.7 -2.1  3.2  6.3 0.27901
## 886   0.5  0.8  2.8  1.1  4.2  3.2 -2.1  3.7  6.3 0.25236
## 887   0.5  0.8  2.8  1.1  4.2  6.3 -2.1  3.7  3.2 0.91603
## 888   0.5  0.8  2.8  1.1  3.7  3.2 -2.1  4.2  6.3 0.24996
## 889   0.5  0.8  2.8  1.1  3.7  6.3 -2.1  4.2  3.2 0.70822
## 890   0.5  0.8  2.8  1.1  3.2  6.3 -2.1  4.2  3.7 0.54975
## 891   0.5  0.8  2.8 -2.1  4.2  3.7  1.1  3.2  6.3 0.54975
## 892   0.5  0.8  2.8 -2.1  4.2  3.2  1.1  3.7  6.3 0.70822
## 893   0.5  0.8  2.8 -2.1  4.2  6.3  1.1  3.7  3.2 0.24996
## 894   0.5  0.8  2.8 -2.1  3.7  3.2  1.1  4.2  6.3 0.91603
## 895   0.5  0.8  2.8 -2.1  3.7  6.3  1.1  4.2  3.2 0.25236
## 896   0.5  0.8  2.8 -2.1  3.2  6.3  1.1  4.2  3.7 0.27901
## 897   0.5  0.8  2.8  4.2  3.7  3.2  1.1 -2.1  6.3 0.70822
## 898   0.5  0.8  2.8  4.2  3.7  6.3  1.1 -2.1  3.2 3.92855
## 899   0.5  0.8  2.8  4.2  3.2  6.3  1.1 -2.1  3.7 2.86674
## 900   0.5  0.8  2.8  3.7  3.2  6.3  1.1 -2.1  4.2 2.14660
## 901   0.5  0.8  6.3  1.1 -2.1  4.2  3.7  3.2  2.8 0.52926
## 902   0.5  0.8  6.3  1.1 -2.1  3.7  4.2  3.2  2.8 0.73909
## 903   0.5  0.8  6.3  1.1 -2.1  3.2  4.2  3.7  2.8 1.01166
## 904   0.5  0.8  6.3  1.1 -2.1  2.8  4.2  3.7  3.2 1.29000
## 905   0.5  0.8  6.3  1.1  4.2  3.7 -2.1  3.2  2.8 0.31356
## 906   0.5  0.8  6.3  1.1  4.2  3.2 -2.1  3.7  2.8 0.20268
## 907   0.5  0.8  6.3  1.1  4.2  2.8 -2.1  3.7  3.2 0.13517
## 908   0.5  0.8  6.3  1.1  3.7  3.2 -2.1  4.2  2.8 0.12094
## 909   0.5  0.8  6.3  1.1  3.7  2.8 -2.1  4.2  3.2 0.07387
## 910   0.5  0.8  6.3  1.1  3.2  2.8 -2.1  4.2  3.7 0.03572
## 911   0.5  0.8  6.3 -2.1  4.2  3.7  1.1  3.2  2.8 0.03572
## 912   0.5  0.8  6.3 -2.1  4.2  3.2  1.1  3.7  2.8 0.07387
## 913   0.5  0.8  6.3 -2.1  4.2  2.8  1.1  3.7  3.2 0.12094
## 914   0.5  0.8  6.3 -2.1  3.7  3.2  1.1  4.2  2.8 0.13517
## 915   0.5  0.8  6.3 -2.1  3.7  2.8  1.1  4.2  3.2 0.20268
## 916   0.5  0.8  6.3 -2.1  3.2  2.8  1.1  4.2  3.7 0.31356
## 917   0.5  0.8  6.3  4.2  3.7  3.2  1.1 -2.1  2.8 1.29000
## 918   0.5  0.8  6.3  4.2  3.7  2.8  1.1 -2.1  3.2 1.01166
## 919   0.5  0.8  6.3  4.2  3.2  2.8  1.1 -2.1  3.7 0.73909
## 920   0.5  0.8  6.3  3.7  3.2  2.8  1.1 -2.1  4.2 0.52926
## 921   0.5  3.2  2.8  1.1 -2.1  4.2  3.7  0.8  6.3 0.74036
## 922   0.5  3.2  2.8  1.1 -2.1  3.7  4.2  0.8  6.3 1.01679
## 923   0.5  3.2  2.8  1.1 -2.1  0.8  4.2  3.7  6.3 7.26200
## 924   0.5  3.2  2.8  1.1 -2.1  6.3  4.2  3.7  0.8 0.12670
## 925   0.5  3.2  2.8  1.1  4.2  3.7 -2.1  0.8  6.3 0.17679
## 926   0.5  3.2  2.8  1.1  4.2  0.8 -2.1  3.7  6.3 0.03698
## 927   0.5  3.2  2.8  1.1  4.2  6.3 -2.1  3.7  0.8 1.22252
## 928   0.5  3.2  2.8  1.1  3.7  0.8 -2.1  4.2  6.3 0.08594
## 929   0.5  3.2  2.8  1.1  3.7  6.3 -2.1  4.2  0.8 0.89731
## 930   0.5  3.2  2.8  1.1  0.8  6.3 -2.1  4.2  3.7 0.06360
## 931   0.5  3.2  2.8 -2.1  4.2  3.7  1.1  0.8  6.3 0.06360
## 932   0.5  3.2  2.8 -2.1  4.2  0.8  1.1  3.7  6.3 0.89731
## 933   0.5  3.2  2.8 -2.1  4.2  6.3  1.1  3.7  0.8 0.08594
## 934   0.5  3.2  2.8 -2.1  3.7  0.8  1.1  4.2  6.3 1.22252
## 935   0.5  3.2  2.8 -2.1  3.7  6.3  1.1  4.2  0.8 0.03698
## 936   0.5  3.2  2.8 -2.1  0.8  6.3  1.1  4.2  3.7 0.17679
## 937   0.5  3.2  2.8  4.2  3.7  0.8  1.1 -2.1  6.3 0.12670
## 938   0.5  3.2  2.8  4.2  3.7  6.3  1.1 -2.1  0.8 7.26200
## 939   0.5  3.2  2.8  4.2  0.8  6.3  1.1 -2.1  3.7 1.01679
## 940   0.5  3.2  2.8  3.7  0.8  6.3  1.1 -2.1  4.2 0.74036
## 941   0.5  3.2  6.3  1.1 -2.1  4.2  3.7  0.8  2.8 0.57048
## 942   0.5  3.2  6.3  1.1 -2.1  3.7  4.2  0.8  2.8 0.70885
## 943   0.5  3.2  6.3  1.1 -2.1  0.8  4.2  3.7  2.8 3.08907
## 944   0.5  3.2  6.3  1.1 -2.1  2.8  4.2  3.7  0.8 1.08007
## 945   0.5  3.2  6.3  1.1  4.2  3.7 -2.1  0.8  2.8 1.25024
## 946   0.5  3.2  6.3  1.1  4.2  0.8 -2.1  3.7  2.8 0.37970
## 947   0.5  3.2  6.3  1.1  4.2  2.8 -2.1  3.7  0.8 0.81292
## 948   0.5  3.2  6.3  1.1  3.7  0.8 -2.1  4.2  2.8 0.34885
## 949   0.5  3.2  6.3  1.1  3.7  2.8 -2.1  4.2  0.8 0.64860
## 950   0.5  3.2  6.3  1.1  0.8  2.8 -2.1  4.2  3.7 0.35805
## 951   0.5  3.2  6.3 -2.1  4.2  3.7  1.1  0.8  2.8 0.35805
## 952   0.5  3.2  6.3 -2.1  4.2  0.8  1.1  3.7  2.8 0.64860
## 953   0.5  3.2  6.3 -2.1  4.2  2.8  1.1  3.7  0.8 0.34885
## 954   0.5  3.2  6.3 -2.1  3.7  0.8  1.1  4.2  2.8 0.81292
## 955   0.5  3.2  6.3 -2.1  3.7  2.8  1.1  4.2  0.8 0.37970
## 956   0.5  3.2  6.3 -2.1  0.8  2.8  1.1  4.2  3.7 1.25024
## 957   0.5  3.2  6.3  4.2  3.7  0.8  1.1 -2.1  2.8 1.08007
## 958   0.5  3.2  6.3  4.2  3.7  2.8  1.1 -2.1  0.8 3.08907
## 959   0.5  3.2  6.3  4.2  0.8  2.8  1.1 -2.1  3.7 0.70885
## 960   0.5  3.2  6.3  3.7  0.8  2.8  1.1 -2.1  4.2 0.57048
## 961   0.5  2.8  6.3  1.1 -2.1  4.2  3.7  0.8  3.2 0.51798
## 962   0.5  2.8  6.3  1.1 -2.1  3.7  4.2  0.8  3.2 0.66439
## 963   0.5  2.8  6.3  1.1 -2.1  0.8  4.2  3.7  3.2 3.16410
## 964   0.5  2.8  6.3  1.1 -2.1  3.2  4.2  3.7  0.8 0.85702
## 965   0.5  2.8  6.3  1.1  4.2  3.7 -2.1  0.8  3.2 1.00000
## 966   0.5  2.8  6.3  1.1  4.2  0.8 -2.1  3.7  3.2 0.27511
## 967   0.5  2.8  6.3  1.1  4.2  3.2 -2.1  3.7  0.8 0.77370
## 968   0.5  2.8  6.3  1.1  3.7  0.8 -2.1  4.2  3.2 0.25573
## 969   0.5  2.8  6.3  1.1  3.7  3.2 -2.1  4.2  0.8 0.60085
## 970   0.5  2.8  6.3  1.1  0.8  3.2 -2.1  4.2  3.7 0.26055
## 971   0.5  2.8  6.3 -2.1  4.2  3.7  1.1  0.8  3.2 0.26055
## 972   0.5  2.8  6.3 -2.1  4.2  0.8  1.1  3.7  3.2 0.60085
## 973   0.5  2.8  6.3 -2.1  4.2  3.2  1.1  3.7  0.8 0.25573
## 974   0.5  2.8  6.3 -2.1  3.7  0.8  1.1  4.2  3.2 0.77370
## 975   0.5  2.8  6.3 -2.1  3.7  3.2  1.1  4.2  0.8 0.27511
## 976   0.5  2.8  6.3 -2.1  0.8  3.2  1.1  4.2  3.7 1.00000
## 977   0.5  2.8  6.3  4.2  3.7  0.8  1.1 -2.1  3.2 0.85702
## 978   0.5  2.8  6.3  4.2  3.7  3.2  1.1 -2.1  0.8 3.16410
## 979   0.5  2.8  6.3  4.2  0.8  3.2  1.1 -2.1  3.7 0.66439
## 980   0.5  2.8  6.3  3.7  0.8  3.2  1.1 -2.1  4.2 0.51798
## 981  -2.1  4.2  3.7  1.1  0.5  0.8  3.2  2.8  6.3 1.57916
## 982  -2.1  4.2  3.7  1.1  0.5  3.2  0.8  2.8  6.3 0.33162
## 983  -2.1  4.2  3.7  1.1  0.5  2.8  0.8  3.2  6.3 0.44638
## 984  -2.1  4.2  3.7  1.1  0.5  6.3  0.8  3.2  2.8 0.04580
## 985  -2.1  4.2  3.7  1.1  0.8  3.2  0.5  2.8  6.3 0.26055
## 986  -2.1  4.2  3.7  1.1  0.8  2.8  0.5  3.2  6.3 0.35805
## 987  -2.1  4.2  3.7  1.1  0.8  6.3  0.5  3.2  2.8 0.06360
## 988  -2.1  4.2  3.7  1.1  3.2  2.8  0.5  0.8  6.3 0.03572
## 989  -2.1  4.2  3.7  1.1  3.2  6.3  0.5  0.8  2.8 0.54975
## 990  -2.1  4.2  3.7  1.1  2.8  6.3  0.5  0.8  3.2 0.41536
## 991  -2.1  4.2  3.7  0.5  0.8  3.2  1.1  2.8  6.3 0.41536
## 992  -2.1  4.2  3.7  0.5  0.8  2.8  1.1  3.2  6.3 0.54975
## 993  -2.1  4.2  3.7  0.5  0.8  6.3  1.1  3.2  2.8 0.03572
## 994  -2.1  4.2  3.7  0.5  3.2  2.8  1.1  0.8  6.3 0.06360
## 995  -2.1  4.2  3.7  0.5  3.2  6.3  1.1  0.8  2.8 0.35805
## 996  -2.1  4.2  3.7  0.5  2.8  6.3  1.1  0.8  3.2 0.26055
## 997  -2.1  4.2  3.7  0.8  3.2  2.8  1.1  0.5  6.3 0.04580
## 998  -2.1  4.2  3.7  0.8  3.2  6.3  1.1  0.5  2.8 0.44638
## 999  -2.1  4.2  3.7  0.8  2.8  6.3  1.1  0.5  3.2 0.33162
## 1000 -2.1  4.2  3.7  3.2  2.8  6.3  1.1  0.5  0.8 1.57916
## 1001 -2.1  4.2  0.8  1.1  0.5  3.7  3.2  2.8  6.3 1.44507
## 1002 -2.1  4.2  0.8  1.1  0.5  3.2  3.7  2.8  6.3 1.80926
## 1003 -2.1  4.2  0.8  1.1  0.5  2.8  3.7  3.2  6.3 2.19029
## 1004 -2.1  4.2  0.8  1.1  0.5  6.3  3.7  3.2  2.8 0.61089
## 1005 -2.1  4.2  0.8  1.1  3.7  3.2  0.5  2.8  6.3 0.60085
## 1006 -2.1  4.2  0.8  1.1  3.7  2.8  0.5  3.2  6.3 0.64860
## 1007 -2.1  4.2  0.8  1.1  3.7  6.3  0.5  3.2  2.8 0.89731
## 1008 -2.1  4.2  0.8  1.1  3.2  2.8  0.5  3.7  6.3 0.73845
## 1009 -2.1  4.2  0.8  1.1  3.2  6.3  0.5  3.7  2.8 0.76081
## 1010 -2.1  4.2  0.8  1.1  2.8  6.3  0.5  3.7  3.2 0.68032
## 1011 -2.1  4.2  0.8  0.5  3.7  3.2  1.1  2.8  6.3 0.68032
## 1012 -2.1  4.2  0.8  0.5  3.7  2.8  1.1  3.2  6.3 0.76081
## 1013 -2.1  4.2  0.8  0.5  3.7  6.3  1.1  3.2  2.8 0.73845
## 1014 -2.1  4.2  0.8  0.5  3.2  2.8  1.1  3.7  6.3 0.89731
## 1015 -2.1  4.2  0.8  0.5  3.2  6.3  1.1  3.7  2.8 0.64860
## 1016 -2.1  4.2  0.8  0.5  2.8  6.3  1.1  3.7  3.2 0.60085
## 1017 -2.1  4.2  0.8  3.7  3.2  2.8  1.1  0.5  6.3 0.61089
## 1018 -2.1  4.2  0.8  3.7  3.2  6.3  1.1  0.5  2.8 2.19029
## 1019 -2.1  4.2  0.8  3.7  2.8  6.3  1.1  0.5  3.2 1.80926
## 1020 -2.1  4.2  0.8  3.2  2.8  6.3  1.1  0.5  3.7 1.44507
## 1021 -2.1  4.2  3.2  1.1  0.5  3.7  0.8  2.8  6.3 0.31906
## 1022 -2.1  4.2  3.2  1.1  0.5  0.8  3.7  2.8  6.3 1.93875
## 1023 -2.1  4.2  3.2  1.1  0.5  2.8  3.7  0.8  6.3 0.58677
## 1024 -2.1  4.2  3.2  1.1  0.5  6.3  3.7  0.8  2.8 0.07774
## 1025 -2.1  4.2  3.2  1.1  3.7  0.8  0.5  2.8  6.3 0.25573
## 1026 -2.1  4.2  3.2  1.1  3.7  2.8  0.5  0.8  6.3 0.07387
## 1027 -2.1  4.2  3.2  1.1  3.7  6.3  0.5  0.8  2.8 0.70822
## 1028 -2.1  4.2  3.2  1.1  0.8  2.8  0.5  3.7  6.3 0.48291
## 1029 -2.1  4.2  3.2  1.1  0.8  6.3  0.5  3.7  2.8 0.08940
## 1030 -2.1  4.2  3.2  1.1  2.8  6.3  0.5  3.7  0.8 0.39429
## 1031 -2.1  4.2  3.2  0.5  3.7  0.8  1.1  2.8  6.3 0.39429
## 1032 -2.1  4.2  3.2  0.5  3.7  2.8  1.1  0.8  6.3 0.08940
## 1033 -2.1  4.2  3.2  0.5  3.7  6.3  1.1  0.8  2.8 0.48291
## 1034 -2.1  4.2  3.2  0.5  0.8  2.8  1.1  3.7  6.3 0.70822
## 1035 -2.1  4.2  3.2  0.5  0.8  6.3  1.1  3.7  2.8 0.07387
## 1036 -2.1  4.2  3.2  0.5  2.8  6.3  1.1  3.7  0.8 0.25573
## 1037 -2.1  4.2  3.2  3.7  0.8  2.8  1.1  0.5  6.3 0.07774
## 1038 -2.1  4.2  3.2  3.7  0.8  6.3  1.1  0.5  2.8 0.58677
## 1039 -2.1  4.2  3.2  3.7  2.8  6.3  1.1  0.5  0.8 1.93875
## 1040 -2.1  4.2  3.2  0.8  2.8  6.3  1.1  0.5  3.7 0.31906
## 1041 -2.1  4.2  2.8  1.1  0.5  3.7  0.8  3.2  6.3 0.42226
## 1042 -2.1  4.2  2.8  1.1  0.5  0.8  3.7  3.2  6.3 2.31562
## 1043 -2.1  4.2  2.8  1.1  0.5  3.2  3.7  0.8  6.3 0.57512
## 1044 -2.1  4.2  2.8  1.1  0.5  6.3  3.7  0.8  3.2 0.11961
## 1045 -2.1  4.2  2.8  1.1  3.7  0.8  0.5  3.2  6.3 0.34885
## 1046 -2.1  4.2  2.8  1.1  3.7  3.2  0.5  0.8  6.3 0.12094
## 1047 -2.1  4.2  2.8  1.1  3.7  6.3  0.5  0.8  3.2 0.68834
## 1048 -2.1  4.2  2.8  1.1  0.8  3.2  0.5  3.7  6.3 0.47851
## 1049 -2.1  4.2  2.8  1.1  0.8  6.3  0.5  3.7  3.2 0.12626
## 1050 -2.1  4.2  2.8  1.1  3.2  6.3  0.5  3.7  0.8 0.50901
## 1051 -2.1  4.2  2.8  0.5  3.7  0.8  1.1  3.2  6.3 0.50901
## 1052 -2.1  4.2  2.8  0.5  3.7  3.2  1.1  0.8  6.3 0.12626
## 1053 -2.1  4.2  2.8  0.5  3.7  6.3  1.1  0.8  3.2 0.47851
## 1054 -2.1  4.2  2.8  0.5  0.8  3.2  1.1  3.7  6.3 0.68834
## 1055 -2.1  4.2  2.8  0.5  0.8  6.3  1.1  3.7  3.2 0.12094
## 1056 -2.1  4.2  2.8  0.5  3.2  6.3  1.1  3.7  0.8 0.34885
## 1057 -2.1  4.2  2.8  3.7  0.8  3.2  1.1  0.5  6.3 0.11961
## 1058 -2.1  4.2  2.8  3.7  0.8  6.3  1.1  0.5  3.2 0.57512
## 1059 -2.1  4.2  2.8  3.7  3.2  6.3  1.1  0.5  0.8 2.31562
## 1060 -2.1  4.2  2.8  0.8  3.2  6.3  1.1  0.5  3.7 0.42226
## 1061 -2.1  4.2  6.3  1.1  0.5  3.7  0.8  3.2  2.8 0.10159
## 1062 -2.1  4.2  6.3  1.1  0.5  0.8  3.7  3.2  2.8 0.78148
## 1063 -2.1  4.2  6.3  1.1  0.5  3.2  3.7  0.8  2.8 0.14592
## 1064 -2.1  4.2  6.3  1.1  0.5  2.8  3.7  0.8  3.2 0.19895
## 1065 -2.1  4.2  6.3  1.1  3.7  0.8  0.5  3.2  2.8 0.08594
## 1066 -2.1  4.2  6.3  1.1  3.7  3.2  0.5  0.8  2.8 0.24996
## 1067 -2.1  4.2  6.3  1.1  3.7  2.8  0.5  0.8  3.2 0.18415
## 1068 -2.1  4.2  6.3  1.1  0.8  3.2  0.5  3.7  2.8 0.11652
## 1069 -2.1  4.2  6.3  1.1  0.8  2.8  0.5  3.7  3.2 0.15765
## 1070 -2.1  4.2  6.3  1.1  3.2  2.8  0.5  3.7  0.8 0.12537
## 1071 -2.1  4.2  6.3  0.5  3.7  0.8  1.1  3.2  2.8 0.12537
## 1072 -2.1  4.2  6.3  0.5  3.7  3.2  1.1  0.8  2.8 0.15765
## 1073 -2.1  4.2  6.3  0.5  3.7  2.8  1.1  0.8  3.2 0.11652
## 1074 -2.1  4.2  6.3  0.5  0.8  3.2  1.1  3.7  2.8 0.18415
## 1075 -2.1  4.2  6.3  0.5  0.8  2.8  1.1  3.7  3.2 0.24996
## 1076 -2.1  4.2  6.3  0.5  3.2  2.8  1.1  3.7  0.8 0.08594
## 1077 -2.1  4.2  6.3  3.7  0.8  3.2  1.1  0.5  2.8 0.19895
## 1078 -2.1  4.2  6.3  3.7  0.8  2.8  1.1  0.5  3.2 0.14592
## 1079 -2.1  4.2  6.3  3.7  3.2  2.8  1.1  0.5  0.8 0.78148
## 1080 -2.1  4.2  6.3  0.8  3.2  2.8  1.1  0.5  3.7 0.10159
## 1081 -2.1  3.7  0.8  1.1  0.5  4.2  3.2  2.8  6.3 1.57916
## 1082 -2.1  3.7  0.8  1.1  0.5  3.2  4.2  2.8  6.3 2.42568
## 1083 -2.1  3.7  0.8  1.1  0.5  2.8  4.2  3.2  6.3 2.94758
## 1084 -2.1  3.7  0.8  1.1  0.5  6.3  4.2  3.2  2.8 0.84087
## 1085 -2.1  3.7  0.8  1.1  4.2  3.2  0.5  2.8  6.3 0.77370
## 1086 -2.1  3.7  0.8  1.1  4.2  2.8  0.5  3.2  6.3 0.81292
## 1087 -2.1  3.7  0.8  1.1  4.2  6.3  0.5  3.2  2.8 1.22252
## 1088 -2.1  3.7  0.8  1.1  3.2  2.8  0.5  4.2  6.3 1.01459
## 1089 -2.1  3.7  0.8  1.1  3.2  6.3  0.5  4.2  2.8 0.91464
## 1090 -2.1  3.7  0.8  1.1  2.8  6.3  0.5  4.2  3.2 0.84087
## 1091 -2.1  3.7  0.8  0.5  4.2  3.2  1.1  2.8  6.3 0.84087
## 1092 -2.1  3.7  0.8  0.5  4.2  2.8  1.1  3.2  6.3 0.91464
## 1093 -2.1  3.7  0.8  0.5  4.2  6.3  1.1  3.2  2.8 1.01459
## 1094 -2.1  3.7  0.8  0.5  3.2  2.8  1.1  4.2  6.3 1.22252
## 1095 -2.1  3.7  0.8  0.5  3.2  6.3  1.1  4.2  2.8 0.81292
## 1096 -2.1  3.7  0.8  0.5  2.8  6.3  1.1  4.2  3.2 0.77370
## 1097 -2.1  3.7  0.8  4.2  3.2  2.8  1.1  0.5  6.3 0.84087
## 1098 -2.1  3.7  0.8  4.2  3.2  6.3  1.1  0.5  2.8 2.94758
## 1099 -2.1  3.7  0.8  4.2  2.8  6.3  1.1  0.5  3.2 2.42568
## 1100 -2.1  3.7  0.8  3.2  2.8  6.3  1.1  0.5  4.2 1.57916
## 1101 -2.1  3.7  3.2  1.1  0.5  4.2  0.8  2.8  6.3 0.33162
## 1102 -2.1  3.7  3.2  1.1  0.5  0.8  4.2  2.8  6.3 2.42568
## 1103 -2.1  3.7  3.2  1.1  0.5  2.8  4.2  0.8  6.3 0.77112
## 1104 -2.1  3.7  3.2  1.1  0.5  6.3  4.2  0.8  2.8 0.13249
## 1105 -2.1  3.7  3.2  1.1  4.2  0.8  0.5  2.8  6.3 0.27511
## 1106 -2.1  3.7  3.2  1.1  4.2  2.8  0.5  0.8  6.3 0.13517
## 1107 -2.1  3.7  3.2  1.1  4.2  6.3  0.5  0.8  2.8 0.91603
## 1108 -2.1  3.7  3.2  1.1  0.8  2.8  0.5  4.2  6.3 0.64739
## 1109 -2.1  3.7  3.2  1.1  0.8  6.3  0.5  4.2  2.8 0.13785
## 1110 -2.1  3.7  3.2  1.1  2.8  6.3  0.5  4.2  0.8 0.39954
## 1111 -2.1  3.7  3.2  0.5  4.2  0.8  1.1  2.8  6.3 0.39954
## 1112 -2.1  3.7  3.2  0.5  4.2  2.8  1.1  0.8  6.3 0.13785
## 1113 -2.1  3.7  3.2  0.5  4.2  6.3  1.1  0.8  2.8 0.64739
## 1114 -2.1  3.7  3.2  0.5  0.8  2.8  1.1  4.2  6.3 0.91603
## 1115 -2.1  3.7  3.2  0.5  0.8  6.3  1.1  4.2  2.8 0.13517
## 1116 -2.1  3.7  3.2  0.5  2.8  6.3  1.1  4.2  0.8 0.27511
## 1117 -2.1  3.7  3.2  4.2  0.8  2.8  1.1  0.5  6.3 0.13249
## 1118 -2.1  3.7  3.2  4.2  0.8  6.3  1.1  0.5  2.8 0.77112
## 1119 -2.1  3.7  3.2  4.2  2.8  6.3  1.1  0.5  0.8 2.42568
## 1120 -2.1  3.7  3.2  0.8  2.8  6.3  1.1  0.5  4.2 0.33162
## 1121 -2.1  3.7  2.8  1.1  0.5  4.2  0.8  3.2  6.3 0.44638
## 1122 -2.1  3.7  2.8  1.1  0.5  0.8  4.2  3.2  6.3 2.94758
## 1123 -2.1  3.7  2.8  1.1  0.5  3.2  4.2  0.8  6.3 0.77112
## 1124 -2.1  3.7  2.8  1.1  0.5  6.3  4.2  0.8  3.2 0.19431
## 1125 -2.1  3.7  2.8  1.1  4.2  0.8  0.5  3.2  6.3 0.37970
## 1126 -2.1  3.7  2.8  1.1  4.2  3.2  0.5  0.8  6.3 0.20268
## 1127 -2.1  3.7  2.8  1.1  4.2  6.3  0.5  0.8  3.2 0.90769
## 1128 -2.1  3.7  2.8  1.1  0.8  3.2  0.5  4.2  6.3 0.65466
## 1129 -2.1  3.7  2.8  1.1  0.8  6.3  0.5  4.2  3.2 0.19431
## 1130 -2.1  3.7  2.8  1.1  3.2  6.3  0.5  4.2  0.8 0.52587
## 1131 -2.1  3.7  2.8  0.5  4.2  0.8  1.1  3.2  6.3 0.52587
## 1132 -2.1  3.7  2.8  0.5  4.2  3.2  1.1  0.8  6.3 0.19431
## 1133 -2.1  3.7  2.8  0.5  4.2  6.3  1.1  0.8  3.2 0.65466
## 1134 -2.1  3.7  2.8  0.5  0.8  3.2  1.1  4.2  6.3 0.90769
## 1135 -2.1  3.7  2.8  0.5  0.8  6.3  1.1  4.2  3.2 0.20268
## 1136 -2.1  3.7  2.8  0.5  3.2  6.3  1.1  4.2  0.8 0.37970
## 1137 -2.1  3.7  2.8  4.2  0.8  3.2  1.1  0.5  6.3 0.19431
## 1138 -2.1  3.7  2.8  4.2  0.8  6.3  1.1  0.5  3.2 0.77112
## 1139 -2.1  3.7  2.8  4.2  3.2  6.3  1.1  0.5  0.8 2.94758
## 1140 -2.1  3.7  2.8  0.8  3.2  6.3  1.1  0.5  4.2 0.44638
## 1141 -2.1  3.7  6.3  1.1  0.5  4.2  0.8  3.2  2.8 0.04580
## 1142 -2.1  3.7  6.3  1.1  0.5  0.8  4.2  3.2  2.8 0.84087
## 1143 -2.1  3.7  6.3  1.1  0.5  3.2  4.2  0.8  2.8 0.13249
## 1144 -2.1  3.7  6.3  1.1  0.5  2.8  4.2  0.8  3.2 0.19431
## 1145 -2.1  3.7  6.3  1.1  4.2  0.8  0.5  3.2  2.8 0.03698
## 1146 -2.1  3.7  6.3  1.1  4.2  3.2  0.5  0.8  2.8 0.25236
## 1147 -2.1  3.7  6.3  1.1  4.2  2.8  0.5  0.8  3.2 0.17725
## 1148 -2.1  3.7  6.3  1.1  0.8  3.2  0.5  4.2  2.8 0.09679
## 1149 -2.1  3.7  6.3  1.1  0.8  2.8  0.5  4.2  3.2 0.14637
## 1150 -2.1  3.7  6.3  1.1  3.2  2.8  0.5  4.2  0.8 0.06233
## 1151 -2.1  3.7  6.3  0.5  4.2  0.8  1.1  3.2  2.8 0.06233
## 1152 -2.1  3.7  6.3  0.5  4.2  3.2  1.1  0.8  2.8 0.14637
## 1153 -2.1  3.7  6.3  0.5  4.2  2.8  1.1  0.8  3.2 0.09679
## 1154 -2.1  3.7  6.3  0.5  0.8  3.2  1.1  4.2  2.8 0.17725
## 1155 -2.1  3.7  6.3  0.5  0.8  2.8  1.1  4.2  3.2 0.25236
## 1156 -2.1  3.7  6.3  0.5  3.2  2.8  1.1  4.2  0.8 0.03698
## 1157 -2.1  3.7  6.3  4.2  0.8  3.2  1.1  0.5  2.8 0.19431
## 1158 -2.1  3.7  6.3  4.2  0.8  2.8  1.1  0.5  3.2 0.13249
## 1159 -2.1  3.7  6.3  4.2  3.2  2.8  1.1  0.5  0.8 0.84087
## 1160 -2.1  3.7  6.3  0.8  3.2  2.8  1.1  0.5  4.2 0.04580
## 1161 -2.1  0.8  3.2  1.1  0.5  4.2  3.7  2.8  6.3 2.13459
## 1162 -2.1  0.8  3.2  1.1  0.5  3.7  4.2  2.8  6.3 2.62679
## 1163 -2.1  0.8  3.2  1.1  0.5  2.8  4.2  3.7  6.3 4.07554
## 1164 -2.1  0.8  3.2  1.1  0.5  6.3  4.2  3.7  2.8 1.14071
## 1165 -2.1  0.8  3.2  1.1  4.2  3.7  0.5  2.8  6.3 1.00000
## 1166 -2.1  0.8  3.2  1.1  4.2  2.8  0.5  3.7  6.3 1.10060
## 1167 -2.1  0.8  3.2  1.1  4.2  6.3  0.5  3.7  2.8 1.41742
## 1168 -2.1  0.8  3.2  1.1  3.7  2.8  0.5  4.2  6.3 1.21444
## 1169 -2.1  0.8  3.2  1.1  3.7  6.3  0.5  4.2  2.8 1.24287
## 1170 -2.1  0.8  3.2  1.1  2.8  6.3  0.5  4.2  3.7 1.05303
## 1171 -2.1  0.8  3.2  0.5  4.2  3.7  1.1  2.8  6.3 1.05303
## 1172 -2.1  0.8  3.2  0.5  4.2  2.8  1.1  3.7  6.3 1.24287
## 1173 -2.1  0.8  3.2  0.5  4.2  6.3  1.1  3.7  2.8 1.21444
## 1174 -2.1  0.8  3.2  0.5  3.7  2.8  1.1  4.2  6.3 1.41742
## 1175 -2.1  0.8  3.2  0.5  3.7  6.3  1.1  4.2  2.8 1.10060
## 1176 -2.1  0.8  3.2  0.5  2.8  6.3  1.1  4.2  3.7 1.00000
## 1177 -2.1  0.8  3.2  4.2  3.7  2.8  1.1  0.5  6.3 1.14071
## 1178 -2.1  0.8  3.2  4.2  3.7  6.3  1.1  0.5  2.8 4.07554
## 1179 -2.1  0.8  3.2  4.2  2.8  6.3  1.1  0.5  3.7 2.62679
## 1180 -2.1  0.8  3.2  3.7  2.8  6.3  1.1  0.5  4.2 2.13459
## 1181 -2.1  0.8  2.8  1.1  0.5  4.2  3.7  3.2  6.3 2.73977
## 1182 -2.1  0.8  2.8  1.1  0.5  3.7  4.2  3.2  6.3 3.39884
## 1183 -2.1  0.8  2.8  1.1  0.5  3.2  4.2  3.7  6.3 4.34958
## 1184 -2.1  0.8  2.8  1.1  0.5  6.3  4.2  3.7  3.2 1.44867
## 1185 -2.1  0.8  2.8  1.1  4.2  3.7  0.5  3.2  6.3 1.25024
## 1186 -2.1  0.8  2.8  1.1  4.2  3.2  0.5  3.7  6.3 1.31270
## 1187 -2.1  0.8  2.8  1.1  4.2  6.3  0.5  3.7  3.2 1.62146
## 1188 -2.1  0.8  2.8  1.1  3.7  3.2  0.5  4.2  6.3 1.42097
## 1189 -2.1  0.8  2.8  1.1  3.7  6.3  0.5  4.2  3.2 1.44867
## 1190 -2.1  0.8  2.8  1.1  3.2  6.3  0.5  4.2  3.7 1.33051
## 1191 -2.1  0.8  2.8  0.5  4.2  3.7  1.1  3.2  6.3 1.33051
## 1192 -2.1  0.8  2.8  0.5  4.2  3.2  1.1  3.7  6.3 1.44867
## 1193 -2.1  0.8  2.8  0.5  4.2  6.3  1.1  3.7  3.2 1.42097
## 1194 -2.1  0.8  2.8  0.5  3.7  3.2  1.1  4.2  6.3 1.62146
## 1195 -2.1  0.8  2.8  0.5  3.7  6.3  1.1  4.2  3.2 1.31270
## 1196 -2.1  0.8  2.8  0.5  3.2  6.3  1.1  4.2  3.7 1.25024
## 1197 -2.1  0.8  2.8  4.2  3.7  3.2  1.1  0.5  6.3 1.44867
## 1198 -2.1  0.8  2.8  4.2  3.7  6.3  1.1  0.5  3.2 4.34958
## 1199 -2.1  0.8  2.8  4.2  3.2  6.3  1.1  0.5  3.7 3.39884
## 1200 -2.1  0.8  2.8  3.7  3.2  6.3  1.1  0.5  4.2 2.73977
## 1201 -2.1  0.8  6.3  1.1  0.5  4.2  3.7  3.2  2.8 0.28292
## 1202 -2.1  0.8  6.3  1.1  0.5  3.7  4.2  3.2  2.8 0.39429
## 1203 -2.1  0.8  6.3  1.1  0.5  3.2  4.2  3.7  2.8 0.54175
## 1204 -2.1  0.8  6.3  1.1  0.5  2.8  4.2  3.7  3.2 0.69143
## 1205 -2.1  0.8  6.3  1.1  4.2  3.7  0.5  3.2  2.8 0.17679
## 1206 -2.1  0.8  6.3  1.1  4.2  3.2  0.5  3.7  2.8 0.13160
## 1207 -2.1  0.8  6.3  1.1  4.2  2.8  0.5  3.7  3.2 0.11212
## 1208 -2.1  0.8  6.3  1.1  3.7  3.2  0.5  4.2  2.8 0.10948
## 1209 -2.1  0.8  6.3  1.1  3.7  2.8  0.5  4.2  3.2 0.10772
## 1210 -2.1  0.8  6.3  1.1  3.2  2.8  0.5  4.2  3.7 0.12537
## 1211 -2.1  0.8  6.3  0.5  4.2  3.7  1.1  3.2  2.8 0.12537
## 1212 -2.1  0.8  6.3  0.5  4.2  3.2  1.1  3.7  2.8 0.10772
## 1213 -2.1  0.8  6.3  0.5  4.2  2.8  1.1  3.7  3.2 0.10948
## 1214 -2.1  0.8  6.3  0.5  3.7  3.2  1.1  4.2  2.8 0.11212
## 1215 -2.1  0.8  6.3  0.5  3.7  2.8  1.1  4.2  3.2 0.13160
## 1216 -2.1  0.8  6.3  0.5  3.2  2.8  1.1  4.2  3.7 0.17679
## 1217 -2.1  0.8  6.3  4.2  3.7  3.2  1.1  0.5  2.8 0.69143
## 1218 -2.1  0.8  6.3  4.2  3.7  2.8  1.1  0.5  3.2 0.54175
## 1219 -2.1  0.8  6.3  4.2  3.2  2.8  1.1  0.5  3.7 0.39429
## 1220 -2.1  0.8  6.3  3.7  3.2  2.8  1.1  0.5  4.2 0.28292
## 1221 -2.1  3.2  2.8  1.1  0.5  4.2  3.7  0.8  6.3 0.62815
## 1222 -2.1  3.2  2.8  1.1  0.5  3.7  4.2  0.8  6.3 0.80041
## 1223 -2.1  3.2  2.8  1.1  0.5  0.8  4.2  3.7  6.3 3.85519
## 1224 -2.1  3.2  2.8  1.1  0.5  6.3  4.2  3.7  0.8 0.29718
## 1225 -2.1  3.2  2.8  1.1  4.2  3.7  0.5  0.8  6.3 0.31356
## 1226 -2.1  3.2  2.8  1.1  4.2  0.8  0.5  3.7  6.3 0.54575
## 1227 -2.1  3.2  2.8  1.1  4.2  6.3  0.5  3.7  0.8 0.92861
## 1228 -2.1  3.2  2.8  1.1  3.7  0.8  0.5  4.2  6.3 0.69143
## 1229 -2.1  3.2  2.8  1.1  3.7  6.3  0.5  4.2  0.8 0.72580
## 1230 -2.1  3.2  2.8  1.1  0.8  6.3  0.5  4.2  3.7 0.28979
## 1231 -2.1  3.2  2.8  0.5  4.2  3.7  1.1  0.8  6.3 0.28979
## 1232 -2.1  3.2  2.8  0.5  4.2  0.8  1.1  3.7  6.3 0.72580
## 1233 -2.1  3.2  2.8  0.5  4.2  6.3  1.1  3.7  0.8 0.69143
## 1234 -2.1  3.2  2.8  0.5  3.7  0.8  1.1  4.2  6.3 0.92861
## 1235 -2.1  3.2  2.8  0.5  3.7  6.3  1.1  4.2  0.8 0.54575
## 1236 -2.1  3.2  2.8  0.5  0.8  6.3  1.1  4.2  3.7 0.31356
## 1237 -2.1  3.2  2.8  4.2  3.7  0.8  1.1  0.5  6.3 0.29718
## 1238 -2.1  3.2  2.8  4.2  3.7  6.3  1.1  0.5  0.8 3.85519
## 1239 -2.1  3.2  2.8  4.2  0.8  6.3  1.1  0.5  3.7 0.80041
## 1240 -2.1  3.2  2.8  3.7  0.8  6.3  1.1  0.5  4.2 0.62815
## 1241 -2.1  3.2  6.3  1.1  0.5  4.2  3.7  0.8  2.8 0.03321
## 1242 -2.1  3.2  6.3  1.1  0.5  3.7  4.2  0.8  2.8 0.07559
## 1243 -2.1  3.2  6.3  1.1  0.5  0.8  4.2  3.7  2.8 0.93704
## 1244 -2.1  3.2  6.3  1.1  0.5  2.8  4.2  3.7  0.8 0.21296
## 1245 -2.1  3.2  6.3  1.1  4.2  3.7  0.5  0.8  2.8 0.27901
## 1246 -2.1  3.2  6.3  1.1  4.2  0.8  0.5  3.7  2.8 0.01824
## 1247 -2.1  3.2  6.3  1.1  4.2  2.8  0.5  3.7  0.8 0.11212
## 1248 -2.1  3.2  6.3  1.1  3.7  0.8  0.5  4.2  2.8 0.04749
## 1249 -2.1  3.2  6.3  1.1  3.7  2.8  0.5  4.2  0.8 0.05595
## 1250 -2.1  3.2  6.3  1.1  0.8  2.8  0.5  4.2  3.7 0.15765
## 1251 -2.1  3.2  6.3  0.5  4.2  3.7  1.1  0.8  2.8 0.15765
## 1252 -2.1  3.2  6.3  0.5  4.2  0.8  1.1  3.7  2.8 0.05595
## 1253 -2.1  3.2  6.3  0.5  4.2  2.8  1.1  3.7  0.8 0.04749
## 1254 -2.1  3.2  6.3  0.5  3.7  0.8  1.1  4.2  2.8 0.11212
## 1255 -2.1  3.2  6.3  0.5  3.7  2.8  1.1  4.2  0.8 0.01824
## 1256 -2.1  3.2  6.3  0.5  0.8  2.8  1.1  4.2  3.7 0.27901
## 1257 -2.1  3.2  6.3  4.2  3.7  0.8  1.1  0.5  2.8 0.21296
## 1258 -2.1  3.2  6.3  4.2  3.7  2.8  1.1  0.5  0.8 0.93704
## 1259 -2.1  3.2  6.3  4.2  0.8  2.8  1.1  0.5  3.7 0.07559
## 1260 -2.1  3.2  6.3  3.7  0.8  2.8  1.1  0.5  4.2 0.03321
## 1261 -2.1  2.8  6.3  1.1  0.5  4.2  3.7  0.8  3.2 0.03823
## 1262 -2.1  2.8  6.3  1.1  0.5  3.7  4.2  0.8  3.2 0.08940
## 1263 -2.1  2.8  6.3  1.1  0.5  0.8  4.2  3.7  3.2 1.04409
## 1264 -2.1  2.8  6.3  1.1  0.5  3.2  4.2  3.7  0.8 0.16492
## 1265 -2.1  2.8  6.3  1.1  4.2  3.7  0.5  0.8  3.2 0.22331
## 1266 -2.1  2.8  6.3  1.1  4.2  0.8  0.5  3.7  3.2 0.01824
## 1267 -2.1  2.8  6.3  1.1  4.2  3.2  0.5  3.7  0.8 0.13160
## 1268 -2.1  2.8  6.3  1.1  3.7  0.8  0.5  4.2  3.2 0.05595
## 1269 -2.1  2.8  6.3  1.1  3.7  3.2  0.5  4.2  0.8 0.06617
## 1270 -2.1  2.8  6.3  1.1  0.8  3.2  0.5  4.2  3.7 0.11652
## 1271 -2.1  2.8  6.3  0.5  4.2  3.7  1.1  0.8  3.2 0.11652
## 1272 -2.1  2.8  6.3  0.5  4.2  0.8  1.1  3.7  3.2 0.06617
## 1273 -2.1  2.8  6.3  0.5  4.2  3.2  1.1  3.7  0.8 0.05595
## 1274 -2.1  2.8  6.3  0.5  3.7  0.8  1.1  4.2  3.2 0.13160
## 1275 -2.1  2.8  6.3  0.5  3.7  3.2  1.1  4.2  0.8 0.01824
## 1276 -2.1  2.8  6.3  0.5  0.8  3.2  1.1  4.2  3.7 0.22331
## 1277 -2.1  2.8  6.3  4.2  3.7  0.8  1.1  0.5  3.2 0.16492
## 1278 -2.1  2.8  6.3  4.2  3.7  3.2  1.1  0.5  0.8 1.04409
## 1279 -2.1  2.8  6.3  4.2  0.8  3.2  1.1  0.5  3.7 0.08940
## 1280 -2.1  2.8  6.3  3.7  0.8  3.2  1.1  0.5  4.2 0.03823
## 1281  4.2  3.7  0.8  1.1  0.5 -2.1  3.2  2.8  6.3 4.38658
## 1282  4.2  3.7  0.8  1.1  0.5  3.2 -2.1  2.8  6.3 0.16492
## 1283  4.2  3.7  0.8  1.1  0.5  2.8 -2.1  3.2  6.3 0.21296
## 1284  4.2  3.7  0.8  1.1  0.5  6.3 -2.1  3.2  2.8 0.29718
## 1285  4.2  3.7  0.8  1.1 -2.1  3.2  0.5  2.8  6.3 0.85702
## 1286  4.2  3.7  0.8  1.1 -2.1  2.8  0.5  3.2  6.3 1.08007
## 1287  4.2  3.7  0.8  1.1 -2.1  6.3  0.5  3.2  2.8 0.12670
## 1288  4.2  3.7  0.8  1.1  3.2  2.8  0.5 -2.1  6.3 0.17542
## 1289  4.2  3.7  0.8  1.1  3.2  6.3  0.5 -2.1  2.8 1.52270
## 1290  4.2  3.7  0.8  1.1  2.8  6.3  0.5 -2.1  3.2 1.21121
## 1291  4.2  3.7  0.8  0.5 -2.1  3.2  1.1  2.8  6.3 1.21121
## 1292  4.2  3.7  0.8  0.5 -2.1  2.8  1.1  3.2  6.3 1.52270
## 1293  4.2  3.7  0.8  0.5 -2.1  6.3  1.1  3.2  2.8 0.17542
## 1294  4.2  3.7  0.8  0.5  3.2  2.8  1.1 -2.1  6.3 0.12670
## 1295  4.2  3.7  0.8  0.5  3.2  6.3  1.1 -2.1  2.8 1.08007
## 1296  4.2  3.7  0.8  0.5  2.8  6.3  1.1 -2.1  3.2 0.85702
## 1297  4.2  3.7  0.8 -2.1  3.2  2.8  1.1  0.5  6.3 0.29718
## 1298  4.2  3.7  0.8 -2.1  3.2  6.3  1.1  0.5  2.8 0.21296
## 1299  4.2  3.7  0.8 -2.1  2.8  6.3  1.1  0.5  3.2 0.16492
## 1300  4.2  3.7  0.8  3.2  2.8  6.3  1.1  0.5 -2.1 4.38658
## 1301  4.2  3.7  3.2  1.1  0.5 -2.1  0.8  2.8  6.3 3.73562
## 1302  4.2  3.7  3.2  1.1  0.5  0.8 -2.1  2.8  6.3 1.04409
## 1303  4.2  3.7  3.2  1.1  0.5  2.8 -2.1  0.8  6.3 0.69143
## 1304  4.2  3.7  3.2  1.1  0.5  6.3 -2.1  0.8  2.8 1.44867
## 1305  4.2  3.7  3.2  1.1 -2.1  0.8  0.5  2.8  6.3 3.16410
## 1306  4.2  3.7  3.2  1.1 -2.1  2.8  0.5  0.8  6.3 1.29000
## 1307  4.2  3.7  3.2  1.1 -2.1  6.3  0.5  0.8  2.8 0.70822
## 1308  4.2  3.7  3.2  1.1  0.8  2.8  0.5 -2.1  6.3 0.68587
## 1309  4.2  3.7  3.2  1.1  0.8  6.3  0.5 -2.1  2.8 1.63703
## 1310  4.2  3.7  3.2  1.1  2.8  6.3  0.5 -2.1  0.8 4.46929
## 1311  4.2  3.7  3.2  0.5 -2.1  0.8  1.1  2.8  6.3 4.46929
## 1312  4.2  3.7  3.2  0.5 -2.1  2.8  1.1  0.8  6.3 1.63703
## 1313  4.2  3.7  3.2  0.5 -2.1  6.3  1.1  0.8  2.8 0.68587
## 1314  4.2  3.7  3.2  0.5  0.8  2.8  1.1 -2.1  6.3 0.70822
## 1315  4.2  3.7  3.2  0.5  0.8  6.3  1.1 -2.1  2.8 1.29000
## 1316  4.2  3.7  3.2  0.5  2.8  6.3  1.1 -2.1  0.8 3.16410
## 1317  4.2  3.7  3.2 -2.1  0.8  2.8  1.1  0.5  6.3 1.44867
## 1318  4.2  3.7  3.2 -2.1  0.8  6.3  1.1  0.5  2.8 0.69143
## 1319  4.2  3.7  3.2 -2.1  2.8  6.3  1.1  0.5  0.8 1.04409
## 1320  4.2  3.7  3.2  0.8  2.8  6.3  1.1  0.5 -2.1 3.73562
## 1321  4.2  3.7  2.8  1.1  0.5 -2.1  0.8  3.2  6.3 3.67030
## 1322  4.2  3.7  2.8  1.1  0.5  0.8 -2.1  3.2  6.3 0.93704
## 1323  4.2  3.7  2.8  1.1  0.5  3.2 -2.1  0.8  6.3 0.54175
## 1324  4.2  3.7  2.8  1.1  0.5  6.3 -2.1  0.8  3.2 1.14071
## 1325  4.2  3.7  2.8  1.1 -2.1  0.8  0.5  3.2  6.3 3.08907
## 1326  4.2  3.7  2.8  1.1 -2.1  3.2  0.5  0.8  6.3 1.01166
## 1327  4.2  3.7  2.8  1.1 -2.1  6.3  0.5  0.8  3.2 0.55032
## 1328  4.2  3.7  2.8  1.1  0.8  3.2  0.5 -2.1  6.3 0.54346
## 1329  4.2  3.7  2.8  1.1  0.8  6.3  0.5 -2.1  3.2 1.29335
## 1330  4.2  3.7  2.8  1.1  3.2  6.3  0.5 -2.1  0.8 4.41894
## 1331  4.2  3.7  2.8  0.5 -2.1  0.8  1.1  3.2  6.3 4.41894
## 1332  4.2  3.7  2.8  0.5 -2.1  3.2  1.1  0.8  6.3 1.29335
## 1333  4.2  3.7  2.8  0.5 -2.1  6.3  1.1  0.8  3.2 0.54346
## 1334  4.2  3.7  2.8  0.5  0.8  3.2  1.1 -2.1  6.3 0.55032
## 1335  4.2  3.7  2.8  0.5  0.8  6.3  1.1 -2.1  3.2 1.01166
## 1336  4.2  3.7  2.8  0.5  3.2  6.3  1.1 -2.1  0.8 3.08907
## 1337  4.2  3.7  2.8 -2.1  0.8  3.2  1.1  0.5  6.3 1.14071
## 1338  4.2  3.7  2.8 -2.1  0.8  6.3  1.1  0.5  3.2 0.54175
## 1339  4.2  3.7  2.8 -2.1  3.2  6.3  1.1  0.5  0.8 0.93704
## 1340  4.2  3.7  2.8  0.8  3.2  6.3  1.1  0.5 -2.1 3.67030
## 1341  4.2  3.7  6.3  1.1  0.5 -2.1  0.8  3.2  2.8 8.37571
## 1342  4.2  3.7  6.3  1.1  0.5  0.8 -2.1  3.2  2.8 3.85519
## 1343  4.2  3.7  6.3  1.1  0.5  3.2 -2.1  0.8  2.8 4.34958
## 1344  4.2  3.7  6.3  1.1  0.5  2.8 -2.1  0.8  3.2 4.07554
## 1345  4.2  3.7  6.3  1.1 -2.1  0.8  0.5  3.2  2.8 7.26200
## 1346  4.2  3.7  6.3  1.1 -2.1  3.2  0.5  0.8  2.8 3.92855
## 1347  4.2  3.7  6.3  1.1 -2.1  2.8  0.5  0.8  3.2 4.13517
## 1348  4.2  3.7  6.3  1.1  0.8  3.2  0.5 -2.1  2.8 4.62452
## 1349  4.2  3.7  6.3  1.1  0.8  2.8  0.5 -2.1  3.2 4.27189
## 1350  4.2  3.7  6.3  1.1  3.2  2.8  0.5 -2.1  0.8 9.89514
## 1351  4.2  3.7  6.3  0.5 -2.1  0.8  1.1  3.2  2.8 9.89514
## 1352  4.2  3.7  6.3  0.5 -2.1  3.2  1.1  0.8  2.8 4.27189
## 1353  4.2  3.7  6.3  0.5 -2.1  2.8  1.1  0.8  3.2 4.62452
## 1354  4.2  3.7  6.3  0.5  0.8  3.2  1.1 -2.1  2.8 4.13517
## 1355  4.2  3.7  6.3  0.5  0.8  2.8  1.1 -2.1  3.2 3.92855
## 1356  4.2  3.7  6.3  0.5  3.2  2.8  1.1 -2.1  0.8 7.26200
## 1357  4.2  3.7  6.3 -2.1  0.8  3.2  1.1  0.5  2.8 4.07554
## 1358  4.2  3.7  6.3 -2.1  0.8  2.8  1.1  0.5  3.2 4.34958
## 1359  4.2  3.7  6.3 -2.1  3.2  2.8  1.1  0.5  0.8 3.85519
## 1360  4.2  3.7  6.3  0.8  3.2  2.8  1.1  0.5 -2.1 8.37571
## 1361  4.2  0.8  3.2  1.1  0.5 -2.1  3.7  2.8  6.3 4.93225
## 1362  4.2  0.8  3.2  1.1  0.5  3.7 -2.1  2.8  6.3 0.08940
## 1363  4.2  0.8  3.2  1.1  0.5  2.8 -2.1  3.7  6.3 0.19431
## 1364  4.2  0.8  3.2  1.1  0.5  6.3 -2.1  3.7  2.8 0.19431
## 1365  4.2  0.8  3.2  1.1 -2.1  3.7  0.5  2.8  6.3 0.66439
## 1366  4.2  0.8  3.2  1.1 -2.1  2.8  0.5  3.7  6.3 1.14929
## 1367  4.2  0.8  3.2  1.1 -2.1  6.3  0.5  3.7  2.8 0.08940
## 1368  4.2  0.8  3.2  1.1  3.7  2.8  0.5 -2.1  6.3 0.15042
## 1369  4.2  0.8  3.2  1.1  3.7  6.3  0.5 -2.1  2.8 1.63703
## 1370  4.2  0.8  3.2  1.1  2.8  6.3  0.5 -2.1  3.7 0.96113
## 1371  4.2  0.8  3.2  0.5 -2.1  3.7  1.1  2.8  6.3 0.96113
## 1372  4.2  0.8  3.2  0.5 -2.1  2.8  1.1  3.7  6.3 1.63703
## 1373  4.2  0.8  3.2  0.5 -2.1  6.3  1.1  3.7  2.8 0.15042
## 1374  4.2  0.8  3.2  0.5  3.7  2.8  1.1 -2.1  6.3 0.08940
## 1375  4.2  0.8  3.2  0.5  3.7  6.3  1.1 -2.1  2.8 1.14929
## 1376  4.2  0.8  3.2  0.5  2.8  6.3  1.1 -2.1  3.7 0.66439
## 1377  4.2  0.8  3.2 -2.1  3.7  2.8  1.1  0.5  6.3 0.19431
## 1378  4.2  0.8  3.2 -2.1  3.7  6.3  1.1  0.5  2.8 0.19431
## 1379  4.2  0.8  3.2 -2.1  2.8  6.3  1.1  0.5  3.7 0.08940
## 1380  4.2  0.8  3.2  3.7  2.8  6.3  1.1  0.5 -2.1 4.93225
## 1381  4.2  0.8  2.8  1.1  0.5 -2.1  3.7  3.2  6.3 5.54835
## 1382  4.2  0.8  2.8  1.1  0.5  3.7 -2.1  3.2  6.3 0.07559
## 1383  4.2  0.8  2.8  1.1  0.5  3.2 -2.1  3.7  6.3 0.13249
## 1384  4.2  0.8  2.8  1.1  0.5  6.3 -2.1  3.7  3.2 0.13249
## 1385  4.2  0.8  2.8  1.1 -2.1  3.7  0.5  3.2  6.3 0.70885
## 1386  4.2  0.8  2.8  1.1 -2.1  3.2  0.5  3.7  6.3 0.96970
## 1387  4.2  0.8  2.8  1.1 -2.1  6.3  0.5  3.7  3.2 0.07559
## 1388  4.2  0.8  2.8  1.1  3.7  3.2  0.5 -2.1  6.3 0.14682
## 1389  4.2  0.8  2.8  1.1  3.7  6.3  0.5 -2.1  3.2 1.39274
## 1390  4.2  0.8  2.8  1.1  3.2  6.3  0.5 -2.1  3.7 1.03076
## 1391  4.2  0.8  2.8  0.5 -2.1  3.7  1.1  3.2  6.3 1.03076
## 1392  4.2  0.8  2.8  0.5 -2.1  3.2  1.1  3.7  6.3 1.39274
## 1393  4.2  0.8  2.8  0.5 -2.1  6.3  1.1  3.7  3.2 0.14682
## 1394  4.2  0.8  2.8  0.5  3.7  3.2  1.1 -2.1  6.3 0.07559
## 1395  4.2  0.8  2.8  0.5  3.7  6.3  1.1 -2.1  3.2 0.96970
## 1396  4.2  0.8  2.8  0.5  3.2  6.3  1.1 -2.1  3.7 0.70885
## 1397  4.2  0.8  2.8 -2.1  3.7  3.2  1.1  0.5  6.3 0.13249
## 1398  4.2  0.8  2.8 -2.1  3.7  6.3  1.1  0.5  3.2 0.13249
## 1399  4.2  0.8  2.8 -2.1  3.2  6.3  1.1  0.5  3.7 0.07559
## 1400  4.2  0.8  2.8  3.7  3.2  6.3  1.1  0.5 -2.1 5.54835
## 1401  4.2  0.8  6.3  1.1  0.5 -2.1  3.7  3.2  2.8 3.79383
## 1402  4.2  0.8  6.3  1.1  0.5  3.7 -2.1  3.2  2.8 0.80041
## 1403  4.2  0.8  6.3  1.1  0.5  3.2 -2.1  3.7  2.8 0.77112
## 1404  4.2  0.8  6.3  1.1  0.5  2.8 -2.1  3.7  3.2 0.77112
## 1405  4.2  0.8  6.3  1.1 -2.1  3.7  0.5  3.2  2.8 1.01679
## 1406  4.2  0.8  6.3  1.1 -2.1  3.2  0.5  3.7  2.8 1.18082
## 1407  4.2  0.8  6.3  1.1 -2.1  2.8  0.5  3.7  3.2 1.35278
## 1408  4.2  0.8  6.3  1.1  3.7  3.2  0.5 -2.1  2.8 1.69840
## 1409  4.2  0.8  6.3  1.1  3.7  2.8  0.5 -2.1  3.2 1.45497
## 1410  4.2  0.8  6.3  1.1  3.2  2.8  0.5 -2.1  3.7 1.22009
## 1411  4.2  0.8  6.3  0.5 -2.1  3.7  1.1  3.2  2.8 1.22009
## 1412  4.2  0.8  6.3  0.5 -2.1  3.2  1.1  3.7  2.8 1.45497
## 1413  4.2  0.8  6.3  0.5 -2.1  2.8  1.1  3.7  3.2 1.69840
## 1414  4.2  0.8  6.3  0.5  3.7  3.2  1.1 -2.1  2.8 1.35278
## 1415  4.2  0.8  6.3  0.5  3.7  2.8  1.1 -2.1  3.2 1.18082
## 1416  4.2  0.8  6.3  0.5  3.2  2.8  1.1 -2.1  3.7 1.01679
## 1417  4.2  0.8  6.3 -2.1  3.7  3.2  1.1  0.5  2.8 0.77112
## 1418  4.2  0.8  6.3 -2.1  3.7  2.8  1.1  0.5  3.2 0.77112
## 1419  4.2  0.8  6.3 -2.1  3.2  2.8  1.1  0.5  3.7 0.80041
## 1420  4.2  0.8  6.3  3.7  3.2  2.8  1.1  0.5 -2.1 3.79383
## 1421  4.2  3.2  2.8  1.1  0.5 -2.1  3.7  0.8  6.3 3.68042
## 1422  4.2  3.2  2.8  1.1  0.5  3.7 -2.1  0.8  6.3 0.39429
## 1423  4.2  3.2  2.8  1.1  0.5  0.8 -2.1  3.7  6.3 0.84087
## 1424  4.2  3.2  2.8  1.1  0.5  6.3 -2.1  3.7  0.8 0.84087
## 1425  4.2  3.2  2.8  1.1 -2.1  3.7  0.5  0.8  6.3 0.73909
## 1426  4.2  3.2  2.8  1.1 -2.1  0.8  0.5  3.7  6.3 3.07228
## 1427  4.2  3.2  2.8  1.1 -2.1  6.3  0.5  3.7  0.8 0.39429
## 1428  4.2  3.2  2.8  1.1  3.7  0.8  0.5 -2.1  6.3 0.40374
## 1429  4.2  3.2  2.8  1.1  3.7  6.3  0.5 -2.1  0.8 4.46929
## 1430  4.2  3.2  2.8  1.1  0.8  6.3  0.5 -2.1  3.7 0.96113
## 1431  4.2  3.2  2.8  0.5 -2.1  3.7  1.1  0.8  6.3 0.96113
## 1432  4.2  3.2  2.8  0.5 -2.1  0.8  1.1  3.7  6.3 4.46929
## 1433  4.2  3.2  2.8  0.5 -2.1  6.3  1.1  3.7  0.8 0.40374
## 1434  4.2  3.2  2.8  0.5  3.7  0.8  1.1 -2.1  6.3 0.39429
## 1435  4.2  3.2  2.8  0.5  3.7  6.3  1.1 -2.1  0.8 3.07228
## 1436  4.2  3.2  2.8  0.5  0.8  6.3  1.1 -2.1  3.7 0.73909
## 1437  4.2  3.2  2.8 -2.1  3.7  0.8  1.1  0.5  6.3 0.84087
## 1438  4.2  3.2  2.8 -2.1  3.7  6.3  1.1  0.5  0.8 0.84087
## 1439  4.2  3.2  2.8 -2.1  0.8  6.3  1.1  0.5  3.7 0.39429
## 1440  4.2  3.2  2.8  3.7  0.8  6.3  1.1  0.5 -2.1 3.68042
## 1441  4.2  3.2  6.3  1.1  0.5 -2.1  3.7  0.8  2.8 6.65439
## 1442  4.2  3.2  6.3  1.1  0.5  3.7 -2.1  0.8  2.8 3.39884
## 1443  4.2  3.2  6.3  1.1  0.5  0.8 -2.1  3.7  2.8 2.94758
## 1444  4.2  3.2  6.3  1.1  0.5  2.8 -2.1  3.7  0.8 2.94758
## 1445  4.2  3.2  6.3  1.1 -2.1  3.7  0.5  0.8  2.8 2.86674
## 1446  4.2  3.2  6.3  1.1 -2.1  0.8  0.5  3.7  2.8 5.78723
## 1447  4.2  3.2  6.3  1.1 -2.1  2.8  0.5  3.7  0.8 3.20931
## 1448  4.2  3.2  6.3  1.1  3.7  0.8  0.5 -2.1  2.8 3.63612
## 1449  4.2  3.2  6.3  1.1  3.7  2.8  0.5 -2.1  0.8 7.80609
## 1450  4.2  3.2  6.3  1.1  0.8  2.8  0.5 -2.1  3.7 3.06057
## 1451  4.2  3.2  6.3  0.5 -2.1  3.7  1.1  0.8  2.8 3.06057
## 1452  4.2  3.2  6.3  0.5 -2.1  0.8  1.1  3.7  2.8 7.80609
## 1453  4.2  3.2  6.3  0.5 -2.1  2.8  1.1  3.7  0.8 3.63612
## 1454  4.2  3.2  6.3  0.5  3.7  0.8  1.1 -2.1  2.8 3.20931
## 1455  4.2  3.2  6.3  0.5  3.7  2.8  1.1 -2.1  0.8 5.78723
## 1456  4.2  3.2  6.3  0.5  0.8  2.8  1.1 -2.1  3.7 2.86674
## 1457  4.2  3.2  6.3 -2.1  3.7  0.8  1.1  0.5  2.8 2.94758
## 1458  4.2  3.2  6.3 -2.1  3.7  2.8  1.1  0.5  0.8 2.94758
## 1459  4.2  3.2  6.3 -2.1  0.8  2.8  1.1  0.5  3.7 3.39884
## 1460  4.2  3.2  6.3  3.7  0.8  2.8  1.1  0.5 -2.1 6.65439
## 1461  4.2  2.8  6.3  1.1  0.5 -2.1  3.7  0.8  3.2 5.73492
## 1462  4.2  2.8  6.3  1.1  0.5  3.7 -2.1  0.8  3.2 2.62679
## 1463  4.2  2.8  6.3  1.1  0.5  0.8 -2.1  3.7  3.2 2.42568
## 1464  4.2  2.8  6.3  1.1  0.5  3.2 -2.1  3.7  0.8 2.42568
## 1465  4.2  2.8  6.3  1.1 -2.1  3.7  0.5  0.8  3.2 2.34272
## 1466  4.2  2.8  6.3  1.1 -2.1  0.8  0.5  3.7  3.2 4.98404
## 1467  4.2  2.8  6.3  1.1 -2.1  3.2  0.5  3.7  0.8 2.49613
## 1468  4.2  2.8  6.3  1.1  3.7  0.8  0.5 -2.1  3.2 2.79111
## 1469  4.2  2.8  6.3  1.1  3.7  3.2  0.5 -2.1  0.8 6.71832
## 1470  4.2  2.8  6.3  1.1  0.8  3.2  0.5 -2.1  3.7 2.53622
## 1471  4.2  2.8  6.3  0.5 -2.1  3.7  1.1  0.8  3.2 2.53622
## 1472  4.2  2.8  6.3  0.5 -2.1  0.8  1.1  3.7  3.2 6.71832
## 1473  4.2  2.8  6.3  0.5 -2.1  3.2  1.1  3.7  0.8 2.79111
## 1474  4.2  2.8  6.3  0.5  3.7  0.8  1.1 -2.1  3.2 2.49613
## 1475  4.2  2.8  6.3  0.5  3.7  3.2  1.1 -2.1  0.8 4.98404
## 1476  4.2  2.8  6.3  0.5  0.8  3.2  1.1 -2.1  3.7 2.34272
## 1477  4.2  2.8  6.3 -2.1  3.7  0.8  1.1  0.5  3.2 2.42568
## 1478  4.2  2.8  6.3 -2.1  3.7  3.2  1.1  0.5  0.8 2.42568
## 1479  4.2  2.8  6.3 -2.1  0.8  3.2  1.1  0.5  3.7 2.62679
## 1480  4.2  2.8  6.3  3.7  0.8  3.2  1.1  0.5 -2.1 5.73492
## 1481  3.7  0.8  3.2  1.1  0.5 -2.1  4.2  2.8  6.3 5.73492
## 1482  3.7  0.8  3.2  1.1  0.5  4.2 -2.1  2.8  6.3 0.03823
## 1483  3.7  0.8  3.2  1.1  0.5  2.8 -2.1  4.2  6.3 0.19895
## 1484  3.7  0.8  3.2  1.1  0.5  6.3 -2.1  4.2  2.8 0.11961
## 1485  3.7  0.8  3.2  1.1 -2.1  4.2  0.5  2.8  6.3 0.51798
## 1486  3.7  0.8  3.2  1.1 -2.1  2.8  0.5  4.2  6.3 1.26176
## 1487  3.7  0.8  3.2  1.1 -2.1  6.3  0.5  4.2  2.8 0.07430
## 1488  3.7  0.8  3.2  1.1  4.2  2.8  0.5 -2.1  6.3 0.14817
## 1489  3.7  0.8  3.2  1.1  4.2  6.3  0.5 -2.1  2.8 1.80926
## 1490  3.7  0.8  3.2  1.1  2.8  6.3  0.5 -2.1  4.2 0.77112
## 1491  3.7  0.8  3.2  0.5 -2.1  4.2  1.1  2.8  6.3 0.77112
## 1492  3.7  0.8  3.2  0.5 -2.1  2.8  1.1  4.2  6.3 1.80926
## 1493  3.7  0.8  3.2  0.5 -2.1  6.3  1.1  4.2  2.8 0.14817
## 1494  3.7  0.8  3.2  0.5  4.2  2.8  1.1 -2.1  6.3 0.07430
## 1495  3.7  0.8  3.2  0.5  4.2  6.3  1.1 -2.1  2.8 1.26176
## 1496  3.7  0.8  3.2  0.5  2.8  6.3  1.1 -2.1  4.2 0.51798
## 1497  3.7  0.8  3.2 -2.1  4.2  2.8  1.1  0.5  6.3 0.11961
## 1498  3.7  0.8  3.2 -2.1  4.2  6.3  1.1  0.5  2.8 0.19895
## 1499  3.7  0.8  3.2 -2.1  2.8  6.3  1.1  0.5  4.2 0.03823
## 1500  3.7  0.8  3.2  4.2  2.8  6.3  1.1  0.5 -2.1 5.73492
## 1501  3.7  0.8  2.8  1.1  0.5 -2.1  4.2  3.2  6.3 6.65439
## 1502  3.7  0.8  2.8  1.1  0.5  4.2 -2.1  3.2  6.3 0.03321
## 1503  3.7  0.8  2.8  1.1  0.5  3.2 -2.1  4.2  6.3 0.14592
## 1504  3.7  0.8  2.8  1.1  0.5  6.3 -2.1  4.2  3.2 0.07774
## 1505  3.7  0.8  2.8  1.1 -2.1  4.2  0.5  3.2  6.3 0.57048
## 1506  3.7  0.8  2.8  1.1 -2.1  3.2  0.5  4.2  6.3 1.08765
## 1507  3.7  0.8  2.8  1.1 -2.1  6.3  0.5  4.2  3.2 0.07774
## 1508  3.7  0.8  2.8  1.1  4.2  3.2  0.5 -2.1  6.3 0.16264
## 1509  3.7  0.8  2.8  1.1  4.2  6.3  0.5 -2.1  3.2 1.56586
## 1510  3.7  0.8  2.8  1.1  3.2  6.3  0.5 -2.1  4.2 0.84758
## 1511  3.7  0.8  2.8  0.5 -2.1  4.2  1.1  3.2  6.3 0.84758
## 1512  3.7  0.8  2.8  0.5 -2.1  3.2  1.1  4.2  6.3 1.56586
## 1513  3.7  0.8  2.8  0.5 -2.1  6.3  1.1  4.2  3.2 0.16264
## 1514  3.7  0.8  2.8  0.5  4.2  3.2  1.1 -2.1  6.3 0.07774
## 1515  3.7  0.8  2.8  0.5  4.2  6.3  1.1 -2.1  3.2 1.08765
## 1516  3.7  0.8  2.8  0.5  3.2  6.3  1.1 -2.1  4.2 0.57048
## 1517  3.7  0.8  2.8 -2.1  4.2  3.2  1.1  0.5  6.3 0.07774
## 1518  3.7  0.8  2.8 -2.1  4.2  6.3  1.1  0.5  3.2 0.14592
## 1519  3.7  0.8  2.8 -2.1  3.2  6.3  1.1  0.5  4.2 0.03321
## 1520  3.7  0.8  2.8  4.2  3.2  6.3  1.1  0.5 -2.1 6.65439
## 1521  3.7  0.8  6.3  1.1  0.5 -2.1  4.2  3.2  2.8 3.68042
## 1522  3.7  0.8  6.3  1.1  0.5  4.2 -2.1  3.2  2.8 0.62815
## 1523  3.7  0.8  6.3  1.1  0.5  3.2 -2.1  4.2  2.8 0.57512
## 1524  3.7  0.8  6.3  1.1  0.5  2.8 -2.1  4.2  3.2 0.58677
## 1525  3.7  0.8  6.3  1.1 -2.1  4.2  0.5  3.2  2.8 0.74036
## 1526  3.7  0.8  6.3  1.1 -2.1  3.2  0.5  4.2  2.8 1.03520
## 1527  3.7  0.8  6.3  1.1 -2.1  2.8  0.5  4.2  3.2 1.21121
## 1528  3.7  0.8  6.3  1.1  4.2  3.2  0.5 -2.1  2.8 1.56207
## 1529  3.7  0.8  6.3  1.1  4.2  2.8  0.5 -2.1  3.2 1.31523
## 1530  3.7  0.8  6.3  1.1  3.2  2.8  0.5 -2.1  4.2 0.89524
## 1531  3.7  0.8  6.3  0.5 -2.1  4.2  1.1  3.2  2.8 0.89524
## 1532  3.7  0.8  6.3  0.5 -2.1  3.2  1.1  4.2  2.8 1.31523
## 1533  3.7  0.8  6.3  0.5 -2.1  2.8  1.1  4.2  3.2 1.56207
## 1534  3.7  0.8  6.3  0.5  4.2  3.2  1.1 -2.1  2.8 1.21121
## 1535  3.7  0.8  6.3  0.5  4.2  2.8  1.1 -2.1  3.2 1.03520
## 1536  3.7  0.8  6.3  0.5  3.2  2.8  1.1 -2.1  4.2 0.74036
## 1537  3.7  0.8  6.3 -2.1  4.2  3.2  1.1  0.5  2.8 0.58677
## 1538  3.7  0.8  6.3 -2.1  4.2  2.8  1.1  0.5  3.2 0.57512
## 1539  3.7  0.8  6.3 -2.1  3.2  2.8  1.1  0.5  4.2 0.62815
## 1540  3.7  0.8  6.3  4.2  3.2  2.8  1.1  0.5 -2.1 3.68042
## 1541  3.7  3.2  2.8  1.1  0.5 -2.1  4.2  0.8  6.3 3.79383
## 1542  3.7  3.2  2.8  1.1  0.5  4.2 -2.1  0.8  6.3 0.28292
## 1543  3.7  3.2  2.8  1.1  0.5  0.8 -2.1  4.2  6.3 0.78148
## 1544  3.7  3.2  2.8  1.1  0.5  6.3 -2.1  4.2  0.8 0.61089
## 1545  3.7  3.2  2.8  1.1 -2.1  4.2  0.5  0.8  6.3 0.52926
## 1546  3.7  3.2  2.8  1.1 -2.1  0.8  0.5  4.2  6.3 3.14003
## 1547  3.7  3.2  2.8  1.1 -2.1  6.3  0.5  4.2  0.8 0.27560
## 1548  3.7  3.2  2.8  1.1  4.2  0.8  0.5 -2.1  6.3 0.29916
## 1549  3.7  3.2  2.8  1.1  4.2  6.3  0.5 -2.1  0.8 4.65103
## 1550  3.7  3.2  2.8  1.1  0.8  6.3  0.5 -2.1  4.2 0.70760
## 1551  3.7  3.2  2.8  0.5 -2.1  4.2  1.1  0.8  6.3 0.70760
## 1552  3.7  3.2  2.8  0.5 -2.1  0.8  1.1  4.2  6.3 4.65103
## 1553  3.7  3.2  2.8  0.5 -2.1  6.3  1.1  4.2  0.8 0.29916
## 1554  3.7  3.2  2.8  0.5  4.2  0.8  1.1 -2.1  6.3 0.27560
## 1555  3.7  3.2  2.8  0.5  4.2  6.3  1.1 -2.1  0.8 3.14003
## 1556  3.7  3.2  2.8  0.5  0.8  6.3  1.1 -2.1  4.2 0.52926
## 1557  3.7  3.2  2.8 -2.1  4.2  0.8  1.1  0.5  6.3 0.61089
## 1558  3.7  3.2  2.8 -2.1  4.2  6.3  1.1  0.5  0.8 0.78148
## 1559  3.7  3.2  2.8 -2.1  0.8  6.3  1.1  0.5  4.2 0.28292
## 1560  3.7  3.2  2.8  4.2  0.8  6.3  1.1  0.5 -2.1 3.79383
## 1561  3.7  3.2  6.3  1.1  0.5 -2.1  4.2  0.8  2.8 5.54835
## 1562  3.7  3.2  6.3  1.1  0.5  4.2 -2.1  0.8  2.8 2.73977
## 1563  3.7  3.2  6.3  1.1  0.5  0.8 -2.1  4.2  2.8 2.31562
## 1564  3.7  3.2  6.3  1.1  0.5  2.8 -2.1  4.2  0.8 2.19029
## 1565  3.7  3.2  6.3  1.1 -2.1  4.2  0.5  0.8  2.8 2.14660
## 1566  3.7  3.2  6.3  1.1 -2.1  0.8  0.5  4.2  2.8 4.81954
## 1567  3.7  3.2  6.3  1.1 -2.1  2.8  0.5  4.2  0.8 2.56561
## 1568  3.7  3.2  6.3  1.1  4.2  0.8  0.5 -2.1  2.8 2.95402
## 1569  3.7  3.2  6.3  1.1  4.2  2.8  0.5 -2.1  0.8 6.50022
## 1570  3.7  3.2  6.3  1.1  0.8  2.8  0.5 -2.1  4.2 2.25722
## 1571  3.7  3.2  6.3  0.5 -2.1  4.2  1.1  0.8  2.8 2.25722
## 1572  3.7  3.2  6.3  0.5 -2.1  0.8  1.1  4.2  2.8 6.50022
## 1573  3.7  3.2  6.3  0.5 -2.1  2.8  1.1  4.2  0.8 2.95402
## 1574  3.7  3.2  6.3  0.5  4.2  0.8  1.1 -2.1  2.8 2.56561
## 1575  3.7  3.2  6.3  0.5  4.2  2.8  1.1 -2.1  0.8 4.81954
## 1576  3.7  3.2  6.3  0.5  0.8  2.8  1.1 -2.1  4.2 2.14660
## 1577  3.7  3.2  6.3 -2.1  4.2  0.8  1.1  0.5  2.8 2.19029
## 1578  3.7  3.2  6.3 -2.1  4.2  2.8  1.1  0.5  0.8 2.31562
## 1579  3.7  3.2  6.3 -2.1  0.8  2.8  1.1  0.5  4.2 2.73977
## 1580  3.7  3.2  6.3  4.2  0.8  2.8  1.1  0.5 -2.1 5.54835
## 1581  3.7  2.8  6.3  1.1  0.5 -2.1  4.2  0.8  3.2 4.93225
## 1582  3.7  2.8  6.3  1.1  0.5  4.2 -2.1  0.8  3.2 2.13459
## 1583  3.7  2.8  6.3  1.1  0.5  0.8 -2.1  4.2  3.2 1.93875
## 1584  3.7  2.8  6.3  1.1  0.5  3.2 -2.1  4.2  0.8 1.80926
## 1585  3.7  2.8  6.3  1.1 -2.1  4.2  0.5  0.8  3.2 1.75935
## 1586  3.7  2.8  6.3  1.1 -2.1  0.8  0.5  4.2  3.2 4.27189
## 1587  3.7  2.8  6.3  1.1 -2.1  3.2  0.5  4.2  0.8 2.00842
## 1588  3.7  2.8  6.3  1.1  4.2  0.8  0.5 -2.1  3.2 2.29007
## 1589  3.7  2.8  6.3  1.1  4.2  3.2  0.5 -2.1  0.8 5.78723
## 1590  3.7  2.8  6.3  1.1  0.8  3.2  0.5 -2.1  4.2 1.87963
## 1591  3.7  2.8  6.3  0.5 -2.1  4.2  1.1  0.8  3.2 1.87963
## 1592  3.7  2.8  6.3  0.5 -2.1  0.8  1.1  4.2  3.2 5.78723
## 1593  3.7  2.8  6.3  0.5 -2.1  3.2  1.1  4.2  0.8 2.29007
## 1594  3.7  2.8  6.3  0.5  4.2  0.8  1.1 -2.1  3.2 2.00842
## 1595  3.7  2.8  6.3  0.5  4.2  3.2  1.1 -2.1  0.8 4.27189
## 1596  3.7  2.8  6.3  0.5  0.8  3.2  1.1 -2.1  4.2 1.75935
## 1597  3.7  2.8  6.3 -2.1  4.2  0.8  1.1  0.5  3.2 1.80926
## 1598  3.7  2.8  6.3 -2.1  4.2  3.2  1.1  0.5  0.8 1.93875
## 1599  3.7  2.8  6.3 -2.1  0.8  3.2  1.1  0.5  4.2 2.13459
## 1600  3.7  2.8  6.3  4.2  0.8  3.2  1.1  0.5 -2.1 4.93225
## 1601  0.8  3.2  2.8  1.1  0.5 -2.1  4.2  3.7  6.3 8.37571
## 1602  0.8  3.2  2.8  1.1  0.5  4.2 -2.1  3.7  6.3 0.04580
## 1603  0.8  3.2  2.8  1.1  0.5  3.7 -2.1  4.2  6.3 0.10159
## 1604  0.8  3.2  2.8  1.1  0.5  6.3 -2.1  4.2  3.7 0.04580
## 1605  0.8  3.2  2.8  1.1 -2.1  4.2  0.5  3.7  6.3 0.66561
## 1606  0.8  3.2  2.8  1.1 -2.1  3.7  0.5  4.2  6.3 0.92021
## 1607  0.8  3.2  2.8  1.1 -2.1  6.3  0.5  4.2  3.7 0.10159
## 1608  0.8  3.2  2.8  1.1  4.2  3.7  0.5 -2.1  6.3 0.20175
## 1609  0.8  3.2  2.8  1.1  4.2  6.3  0.5 -2.1  3.7 1.33222
## 1610  0.8  3.2  2.8  1.1  3.7  6.3  0.5 -2.1  4.2 0.97975
## 1611  0.8  3.2  2.8  0.5 -2.1  4.2  1.1  3.7  6.3 0.97975
## 1612  0.8  3.2  2.8  0.5 -2.1  3.7  1.1  4.2  6.3 1.33222
## 1613  0.8  3.2  2.8  0.5 -2.1  6.3  1.1  4.2  3.7 0.20175
## 1614  0.8  3.2  2.8  0.5  4.2  3.7  1.1 -2.1  6.3 0.10159
## 1615  0.8  3.2  2.8  0.5  4.2  6.3  1.1 -2.1  3.7 0.92021
## 1616  0.8  3.2  2.8  0.5  3.7  6.3  1.1 -2.1  4.2 0.66561
## 1617  0.8  3.2  2.8 -2.1  4.2  3.7  1.1  0.5  6.3 0.04580
## 1618  0.8  3.2  2.8 -2.1  4.2  6.3  1.1  0.5  3.7 0.10159
## 1619  0.8  3.2  2.8 -2.1  3.7  6.3  1.1  0.5  4.2 0.04580
## 1620  0.8  3.2  2.8  4.2  3.7  6.3  1.1  0.5 -2.1 8.37571
## 1621  0.8  3.2  6.3  1.1  0.5 -2.1  4.2  3.7  2.8 3.67030
## 1622  0.8  3.2  6.3  1.1  0.5  4.2 -2.1  3.7  2.8 0.44638
## 1623  0.8  3.2  6.3  1.1  0.5  3.7 -2.1  4.2  2.8 0.42226
## 1624  0.8  3.2  6.3  1.1  0.5  2.8 -2.1  4.2  3.7 0.44638
## 1625  0.8  3.2  6.3  1.1 -2.1  4.2  0.5  3.7  2.8 0.62337
## 1626  0.8  3.2  6.3  1.1 -2.1  3.7  0.5  4.2  2.8 0.75631
## 1627  0.8  3.2  6.3  1.1 -2.1  2.8  0.5  4.2  3.7 1.11670
## 1628  0.8  3.2  6.3  1.1  4.2  3.7  0.5 -2.1  2.8 1.47854
## 1629  0.8  3.2  6.3  1.1  4.2  2.8  0.5 -2.1  3.7 0.97616
## 1630  0.8  3.2  6.3  1.1  3.7  2.8  0.5 -2.1  4.2 0.78799
## 1631  0.8  3.2  6.3  0.5 -2.1  4.2  1.1  3.7  2.8 0.78799
## 1632  0.8  3.2  6.3  0.5 -2.1  3.7  1.1  4.2  2.8 0.97616
## 1633  0.8  3.2  6.3  0.5 -2.1  2.8  1.1  4.2  3.7 1.47854
## 1634  0.8  3.2  6.3  0.5  4.2  3.7  1.1 -2.1  2.8 1.11670
## 1635  0.8  3.2  6.3  0.5  4.2  2.8  1.1 -2.1  3.7 0.75631
## 1636  0.8  3.2  6.3  0.5  3.7  2.8  1.1 -2.1  4.2 0.62337
## 1637  0.8  3.2  6.3 -2.1  4.2  3.7  1.1  0.5  2.8 0.44638
## 1638  0.8  3.2  6.3 -2.1  4.2  2.8  1.1  0.5  3.7 0.42226
## 1639  0.8  3.2  6.3 -2.1  3.7  2.8  1.1  0.5  4.2 0.44638
## 1640  0.8  3.2  6.3  4.2  3.7  2.8  1.1  0.5 -2.1 3.67030
## 1641  0.8  2.8  6.3  1.1  0.5 -2.1  4.2  3.7  3.2 3.73562
## 1642  0.8  2.8  6.3  1.1  0.5  4.2 -2.1  3.7  3.2 0.33162
## 1643  0.8  2.8  6.3  1.1  0.5  3.7 -2.1  4.2  3.2 0.31906
## 1644  0.8  2.8  6.3  1.1  0.5  3.2 -2.1  4.2  3.7 0.33162
## 1645  0.8  2.8  6.3  1.1 -2.1  4.2  0.5  3.7  3.2 0.55548
## 1646  0.8  2.8  6.3  1.1 -2.1  3.7  0.5  4.2  3.2 0.69577
## 1647  0.8  2.8  6.3  1.1 -2.1  3.2  0.5  4.2  3.7 0.88150
## 1648  0.8  2.8  6.3  1.1  4.2  3.7  0.5 -2.1  3.2 1.18241
## 1649  0.8  2.8  6.3  1.1  4.2  3.2  0.5 -2.1  3.7 0.92511
## 1650  0.8  2.8  6.3  1.1  3.7  3.2  0.5 -2.1  4.2 0.72895
## 1651  0.8  2.8  6.3  0.5 -2.1  4.2  1.1  3.7  3.2 0.72895
## 1652  0.8  2.8  6.3  0.5 -2.1  3.7  1.1  4.2  3.2 0.92511
## 1653  0.8  2.8  6.3  0.5 -2.1  3.2  1.1  4.2  3.7 1.18241
## 1654  0.8  2.8  6.3  0.5  4.2  3.7  1.1 -2.1  3.2 0.88150
## 1655  0.8  2.8  6.3  0.5  4.2  3.2  1.1 -2.1  3.7 0.69577
## 1656  0.8  2.8  6.3  0.5  3.7  3.2  1.1 -2.1  4.2 0.55548
## 1657  0.8  2.8  6.3 -2.1  4.2  3.7  1.1  0.5  3.2 0.33162
## 1658  0.8  2.8  6.3 -2.1  4.2  3.2  1.1  0.5  3.7 0.31906
## 1659  0.8  2.8  6.3 -2.1  3.7  3.2  1.1  0.5  4.2 0.33162
## 1660  0.8  2.8  6.3  4.2  3.7  3.2  1.1  0.5 -2.1 3.73562
## 1661  3.2  2.8  6.3  1.1  0.5 -2.1  4.2  3.7  0.8 4.38658
## 1662  3.2  2.8  6.3  1.1  0.5  4.2 -2.1  3.7  0.8 1.57916
## 1663  3.2  2.8  6.3  1.1  0.5  3.7 -2.1  4.2  0.8 1.44507
## 1664  3.2  2.8  6.3  1.1  0.5  0.8 -2.1  4.2  3.7 1.57916
## 1665  3.2  2.8  6.3  1.1 -2.1  4.2  0.5  3.7  0.8 1.38923
## 1666  3.2  2.8  6.3  1.1 -2.1  3.7  0.5  4.2  0.8 1.49224
## 1667  3.2  2.8  6.3  1.1 -2.1  0.8  0.5  4.2  3.7 3.77918
## 1668  3.2  2.8  6.3  1.1  4.2  3.7  0.5 -2.1  0.8 5.16772
## 1669  3.2  2.8  6.3  1.1  4.2  0.8  0.5 -2.1  3.7 1.68739
## 1670  3.2  2.8  6.3  1.1  3.7  0.8  0.5 -2.1  4.2 1.51899
## 1671  3.2  2.8  6.3  0.5 -2.1  4.2  1.1  3.7  0.8 1.51899
## 1672  3.2  2.8  6.3  0.5 -2.1  3.7  1.1  4.2  0.8 1.68739
## 1673  3.2  2.8  6.3  0.5 -2.1  0.8  1.1  4.2  3.7 5.16772
## 1674  3.2  2.8  6.3  0.5  4.2  3.7  1.1 -2.1  0.8 3.77918
## 1675  3.2  2.8  6.3  0.5  4.2  0.8  1.1 -2.1  3.7 1.49224
## 1676  3.2  2.8  6.3  0.5  3.7  0.8  1.1 -2.1  4.2 1.38923
## 1677  3.2  2.8  6.3 -2.1  4.2  3.7  1.1  0.5  0.8 1.57916
## 1678  3.2  2.8  6.3 -2.1  4.2  0.8  1.1  0.5  3.7 1.44507
## 1679  3.2  2.8  6.3 -2.1  3.7  0.8  1.1  0.5  4.2 1.57916
## 1680  3.2  2.8  6.3  4.2  3.7  0.8  1.1  0.5 -2.1 4.38658