import and scale numerical data

library(dplyr)
data=left_join(clean_stratified,emission[c(3,4,5)],by="state")
data$test <- factor(data$test)
data$cat_rucc<-factor(data$cat_rucc)
data$act<-factor(data$act)
data[c(6:44)]<-scale(data[c(6:44)])
gini<- read.csv("~/Desktop/Columbia research/Social Capital and EQI/data/2010 gini.csv",stringsAsFactors=F)[c(2,5)]
names(gini)[1]="state"
names(gini)[2]="gini"
data=left_join(data,gini,by="state")
Column `state` joining factor and character vector, coercing into character vector

Superfund and EQI

names(fund)[5]="state"
The `names` must have length 4, not 5.
This warning is displayed once per session.Error in attr(x, "names") <- as.character(value) : 
  'names' attribute [5] must be the same length as the vector [4]
subdata=data[data$gini!=0,]
summary(lm(site~gini+black,data=subdata))

Call:
lm(formula = site ~ gini + black, data = subdata)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.6958 -0.3810 -0.3453 -0.2992 18.7170 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.844452   0.028100   30.05   <2e-16 ***
gini        -1.078506   0.062758  -17.18   <2e-16 ***
black        0.047912   0.002269   21.12   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.214 on 302829 degrees of freedom
  (355 observations deleted due to missingness)
Multiple R-squared:  0.002053,  Adjusted R-squared:  0.002046 
F-statistic: 311.4 on 2 and 302829 DF,  p-value: < 2.2e-16
summary(lm(score~gini+black,data=subdata))

Call:
lm(formula = score ~ gini + black, data = subdata)

Residuals:
   Min     1Q Median     3Q    Max 
-9.273 -7.660 -7.323 -6.606 65.893 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  14.53881    0.38326  37.935   <2e-16 ***
gini        -15.98180    0.85597 -18.671   <2e-16 ***
black         0.03925    0.03094   1.268    0.205    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.56 on 302829 degrees of freedom
  (355 observations deleted due to missingness)
Multiple R-squared:  0.001169,  Adjusted R-squared:  0.001163 
F-statistic: 177.3 on 2 and 302829 DF,  p-value: < 2.2e-16

EQI and GINI

Only air EQI is positive.

data$gini=as.numeric(data$gini)
summary(lm(EQI_22July2013~gini,data=data))

Call:
lm(formula = EQI_22July2013 ~ gini, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.0202 -0.5890  0.0468  0.6704  3.3350 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.54023    0.02183   70.55   <2e-16 ***
gini        -3.68386    0.04872  -75.61   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.962 on 303050 degrees of freedom
  (135 observations deleted due to missingness)
Multiple R-squared:  0.01852,   Adjusted R-squared:  0.01851 
F-statistic:  5717 on 1 and 303050 DF,  p-value: < 2.2e-16
summary(lm(air_EQI_22July2013~gini,data=data))

Call:
lm(formula = air_EQI_22July2013 ~ gini, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.3193 -0.4919  0.1087  0.6532  2.8501 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.40456    0.02161  -18.73   <2e-16 ***
gini         0.86078    0.04822   17.85   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.952 on 303050 degrees of freedom
  (135 observations deleted due to missingness)
Multiple R-squared:  0.001051,  Adjusted R-squared:  0.001047 
F-statistic: 318.7 on 1 and 303050 DF,  p-value: < 2.2e-16
summary(lm(land_EQI_22July2013~gini,data=data))

Call:
lm(formula = land_EQI_22July2013 ~ gini, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.6419 -0.3778  0.1495  0.6039  2.6008 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.98617    0.02177   91.23   <2e-16 ***
gini        -4.70281    0.04858  -96.80   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9592 on 303050 degrees of freedom
  (135 observations deleted due to missingness)
Multiple R-squared:  0.02999,   Adjusted R-squared:  0.02999 
F-statistic:  9370 on 1 and 303050 DF,  p-value: < 2.2e-16
summary(lm(built_EQI_22July2013~gini,data=data))

Call:
lm(formula = built_EQI_22July2013 ~ gini, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.1911 -0.4996  0.1625  0.6795  4.1154 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.61020    0.02323   26.27   <2e-16 ***
gini        -1.53062    0.05183  -29.53   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.023 on 303050 degrees of freedom
  (135 observations deleted due to missingness)
Multiple R-squared:  0.002869,  Adjusted R-squared:  0.002866 
F-statistic:   872 on 1 and 303050 DF,  p-value: < 2.2e-16
summary(lm(sociod_EQI_22July2013~gini,data=data))

Call:
lm(formula = sociod_EQI_22July2013 ~ gini, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-5.2436 -0.6185 -0.0045  0.6083  4.7852 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.18946    0.02273   96.31   <2e-16 ***
gini        -5.16419    0.05073 -101.79   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.002 on 303050 degrees of freedom
  (135 observations deleted due to missingness)
Multiple R-squared:  0.03306,   Adjusted R-squared:  0.03306 
F-statistic: 1.036e+04 on 1 and 303050 DF,  p-value: < 2.2e-16
summary(lm(water_EQI_22July2013~gini,data=data))

Call:
lm(formula = water_EQI_22July2013 ~ gini, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.7262 -0.4440  0.2416  0.7880  1.5042 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.35847    0.02139   16.75   <2e-16 ***
gini        -0.73938    0.04775  -15.49   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9427 on 303050 degrees of freedom
  (135 observations deleted due to missingness)
Multiple R-squared:  0.0007907, Adjusted R-squared:  0.0007874 
F-statistic: 239.8 on 1 and 303050 DF,  p-value: < 2.2e-16

Emission

emission test and sk

summary(lm(air_EQI_22July2013 ~ cat_rucc+test+sk09+education+income+black , data = data))

Call:
lm(formula = air_EQI_22July2013 ~ cat_rucc + test + sk09 + education + 
    income + black, data = data)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.48896 -0.38217  0.06161  0.44088  2.83824 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.47218    0.02735  17.263  < 2e-16 ***
cat_rucc2   -0.12609    0.04163  -3.028 0.002479 ** 
cat_rucc3   -0.67993    0.03221 -21.109  < 2e-16 ***
cat_rucc4   -1.40022    0.03968 -35.288  < 2e-16 ***
test1        0.14187    0.02449   5.793 7.62e-09 ***
sk09        -0.24317    0.01515 -16.049  < 2e-16 ***
education    0.12957    0.01674   7.739 1.35e-14 ***
income       0.05406    0.01567   3.450 0.000568 ***
black        0.19146    0.01250  15.314  < 2e-16 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.629 on 3099 degrees of freedom
  (33 observations deleted due to missingness)
Multiple R-squared:  0.5908,    Adjusted R-squared:  0.5897 
F-statistic: 559.2 on 8 and 3099 DF,  p-value: < 2.2e-16

air EQI against emission test

summary(lm(air_EQI_22July2013 ~ cat_rucc+test+sk09+education+income+black , data = data))

State Environmental Policy Act and SK

Act and SK

summary(lm(air_EQI_22July2013 ~cat_rucc+ act+sk09+education+income+black , data = data))

Call:
lm(formula = air_EQI_22July2013 ~ cat_rucc + act + sk09 + education + 
    income + black, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.4258 -0.3941  0.0540  0.4535  2.9424 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.53957    0.02397  22.509  < 2e-16 ***
cat_rucc2   -0.12205    0.04181  -2.919  0.00354 ** 
cat_rucc3   -0.68644    0.03232 -21.241  < 2e-16 ***
cat_rucc4   -1.41761    0.03975 -35.666  < 2e-16 ***
act1         0.07139    0.02513   2.840  0.00453 ** 
sk09        -0.25560    0.01507 -16.964  < 2e-16 ***
education    0.11753    0.01669   7.043 2.31e-12 ***
income       0.06291    0.01570   4.007 6.29e-05 ***
black        0.18435    0.01269  14.525  < 2e-16 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6316 on 3099 degrees of freedom
  (33 observations deleted due to missingness)
Multiple R-squared:  0.5874,    Adjusted R-squared:  0.5864 
F-statistic: 551.5 on 8 and 3099 DF,  p-value: < 2.2e-16

Air EQI and ACT

summary(lm(water_EQI_22July2013 ~cat_rucc+ act+sk09+education+income+black , data = data))

Call:
lm(formula = water_EQI_22July2013 ~ cat_rucc + act + sk09 + education + 
    income + black, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-2.0571 -0.7410  0.2850  0.7749  2.2054 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.075287   0.036142  -2.083  0.03732 *  
cat_rucc2    0.083753   0.063041   1.329  0.18409    
cat_rucc3    0.114527   0.048726   2.350  0.01881 *  
cat_rucc4   -0.137694   0.059927  -2.298  0.02165 *  
act1         0.191411   0.037896   5.051 4.65e-07 ***
sk09        -0.182350   0.022717  -8.027 1.40e-15 ***
education    0.080548   0.025162   3.201  0.00138 ** 
income      -0.007867   0.023672  -0.332  0.73966    
black       -0.250012   0.019135 -13.065  < 2e-16 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9523 on 3099 degrees of freedom
  (33 observations deleted due to missingness)
Multiple R-squared:  0.1005,    Adjusted R-squared:  0.09815 
F-statistic: 43.27 on 8 and 3099 DF,  p-value: < 2.2e-16

Water EQI and ACT

summary(lm(EQI_22July2013 ~ cat_rucc+act+sk09+education+income+black , data = data))

Call:
lm(formula = EQI_22July2013 ~ cat_rucc + act + sk09 + education + 
    income + black, data = data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.6559 -0.3370  0.0672  0.4119  1.6004 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.28542    0.02281  12.511  < 2e-16 ***
cat_rucc2    0.10202    0.03979   2.564  0.01040 *  
cat_rucc3   -0.28131    0.03076  -9.146  < 2e-16 ***
cat_rucc4   -1.10062    0.03783 -29.095  < 2e-16 ***
act1         0.19954    0.02392   8.341  < 2e-16 ***
sk09        -0.04096    0.01434  -2.857  0.00431 ** 
education    0.31418    0.01588  19.781  < 2e-16 ***
income       0.25362    0.01494  16.973  < 2e-16 ***
black       -0.05970    0.01208  -4.943 8.11e-07 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6011 on 3099 degrees of freedom
  (33 observations deleted due to missingness)
Multiple R-squared:  0.6087,    Adjusted R-squared:  0.6077 
F-statistic: 602.6 on 8 and 3099 DF,  p-value: < 2.2e-16

EQI and Act

summary(lm(EQI_22July2013 ~ cat_rucc+act+sk09+education+income+black , data = data))
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQojIGltcG9ydCBhbmQgc2NhbGUgbnVtZXJpY2FsIGRhdGEKYGBge3J9CmxpYnJhcnkoZHBseXIpCmRhdGE9bGVmdF9qb2luKGNsZWFuX3N0cmF0aWZpZWQsZW1pc3Npb25bYygzLDQsNSldLGJ5PSJzdGF0ZSIpCmRhdGEkdGVzdCA8LSBmYWN0b3IoZGF0YSR0ZXN0KQpkYXRhJGNhdF9ydWNjPC1mYWN0b3IoZGF0YSRjYXRfcnVjYykKZGF0YSRhY3Q8LWZhY3RvcihkYXRhJGFjdCkKZGF0YVtjKDY6NDQpXTwtc2NhbGUoZGF0YVtjKDY6NDQpXSkKZ2luaTwtIHJlYWQuY3N2KCJ+L0Rlc2t0b3AvQ29sdW1iaWEgcmVzZWFyY2gvU29jaWFsIENhcGl0YWwgYW5kIEVRSS9kYXRhLzIwMTAgZ2luaS5jc3YiLHN0cmluZ3NBc0ZhY3RvcnM9RilbYygyLDUpXQpuYW1lcyhnaW5pKVsxXT0ic3RhdGUiCm5hbWVzKGdpbmkpWzJdPSJnaW5pIgpkYXRhPWxlZnRfam9pbihkYXRhLGdpbmksYnk9InN0YXRlIikKCmBgYAojU3VwZXJmdW5kIGFuZCBFUUkKYGBge3J9CnNjb3JlPXN1cGVyZnVuZCU+JWdyb3VwX2J5KFN0YXRlLENvdW50eSklPiVzdW1tYXJpc2Uoc2NvcmU9bWVhbihTaXRlLlNjb3JlKSkKc2l0ZT1zdXBlcmZ1bmQlPiVncm91cF9ieShTdGF0ZSxDb3VudHkpJT4lY291bnQoKQpmdW5kPXNjb3JlJT4lbGVmdF9qb2luKHNpdGUsYnk9YygiU3RhdGUiLCJDb3VudHkiKSkKbmFtZXMoZnVuZCk9Yygic3RhdGUiLCJjb3VudHkiLCJzY29yZSIsInNpdGUiKQpuYW1lcyh1di5jb3VudHkpPWMoInN0YXRlIiwic2hvcnQiKQpmdW5kPWZ1bmQlPiVsZWZ0X2pvaW4odXYuY291bnR5LGJ5PSJzdGF0ZSIpCmZ1bmQ9ZnVuZFstMV0KbmFtZXMoZnVuZClbNF09InN0YXRlIgpuYW1lcyhmdW5kKVsxXT0iY291bnR5X25hbWUiCmBgYAoKYGBge3J9CmxpYnJhcnkoc3RyaW5ncikKZGF0YSRjb3VudHlfbmFtZT1zdHJfcmVwbGFjZShkYXRhJGNvdW50eV9uYW1lLCIgQ291bnR5IiwiIikKZGF0YT1kYXRhJT4lbGVmdF9qb2luKGZ1bmQsYnk9Yygic3RhdGUiLCJjb3VudHlfbmFtZSIpKQpkYXRhW2lzLm5hKGRhdGEkc2NvcmUpPT1ULF0kc2NvcmU9MApkYXRhW2lzLm5hKGRhdGEkc2l0ZSk9PVQsXSRzaXRlPTAKYGBgCmBgYHtyfQpzdWJkYXRhPWRhdGFbZGF0YSRnaW5pIT0wLF0Kc3VtbWFyeShsbShzaXRlfmdpbmkrYmxhY2ssZGF0YT1zdWJkYXRhKSkKc3VtbWFyeShsbShzY29yZX5naW5pK2JsYWNrLGRhdGE9c3ViZGF0YSkpCmBgYAoKIyBFUUkgYW5kIEdJTkkKCk9ubHkgYWlyIEVRSSBpcyBwb3NpdGl2ZS4KCmBgYHtyfQpkYXRhJGdpbmk9YXMubnVtZXJpYyhkYXRhJGdpbmkpCnN1bW1hcnkobG0oRVFJXzIySnVseTIwMTN+Z2luaSxkYXRhPWRhdGEpKQpzdW1tYXJ5KGxtKGFpcl9FUUlfMjJKdWx5MjAxM35naW5pLGRhdGE9ZGF0YSkpCnN1bW1hcnkobG0obGFuZF9FUUlfMjJKdWx5MjAxM35naW5pLGRhdGE9ZGF0YSkpCnN1bW1hcnkobG0oYnVpbHRfRVFJXzIySnVseTIwMTN+Z2luaSxkYXRhPWRhdGEpKQpzdW1tYXJ5KGxtKHNvY2lvZF9FUUlfMjJKdWx5MjAxM35naW5pLGRhdGE9ZGF0YSkpCnN1bW1hcnkobG0od2F0ZXJfRVFJXzIySnVseTIwMTN+Z2luaSxkYXRhPWRhdGEpKQpgYGAKCgojIEVtaXNzaW9uCiMjIGVtaXNzaW9uIHRlc3QgYW5kIHNrCmBgYHtyfQpzdW1tYXJ5KGdsbSh0ZXN0IH4gY2F0X3J1Y2Mrc2swOStlZHVjYXRpb24raW5jb21lK2JsYWNrICwgZGF0YSA9IGRhdGEsIGZhbWlseSA9ICJiaW5vbWlhbCIpKQpgYGAKCiMjIGFpciBFUUkgYWdhaW5zdCBlbWlzc2lvbiB0ZXN0CmBgYHtyfQpzdW1tYXJ5KGxtKGFpcl9FUUlfMjJKdWx5MjAxMyB+IGNhdF9ydWNjK3Rlc3Qrc2swOStlZHVjYXRpb24raW5jb21lK2JsYWNrICwgZGF0YSA9IGRhdGEpKQpgYGAKCiMgU3RhdGUgRW52aXJvbm1lbnRhbCBQb2xpY3kgQWN0IGFuZCBTSwojIyBBY3QgYW5kIFNLCmBgYHtyfQpzdW1tYXJ5KGdsbShhY3QgfmNhdF9ydWNjKyBzazA5K2VkdWNhdGlvbitpbmNvbWUrYmxhY2sgLCBkYXRhID0gZGF0YSwgZmFtaWx5ID0gImJpbm9taWFsIikpCmBgYAoKIyMgQWlyIEVRSSBhbmQgQUNUCmBgYHtyfQpzdW1tYXJ5KGxtKGFpcl9FUUlfMjJKdWx5MjAxMyB+Y2F0X3J1Y2MrIGFjdCtzazA5K2VkdWNhdGlvbitpbmNvbWUrYmxhY2sgLCBkYXRhID0gZGF0YSkpCmBgYAoKIyMgV2F0ZXIgRVFJIGFuZCBBQ1QKYGBge3J9CnN1bW1hcnkobG0od2F0ZXJfRVFJXzIySnVseTIwMTMgfmNhdF9ydWNjKyBhY3Qrc2swOStlZHVjYXRpb24raW5jb21lK2JsYWNrICwgZGF0YSA9IGRhdGEpKQpgYGAKCiMjIEVRSSBhbmQgQWN0CmBgYHtyfQpzdW1tYXJ5KGxtKEVRSV8yMkp1bHkyMDEzIH4gY2F0X3J1Y2MrYWN0K3NrMDkrZWR1Y2F0aW9uK2luY29tZStibGFjayAsIGRhdGEgPSBkYXRhKSkKYGBgCg==