yardstick

library(yardstick)
## For binary classification, the first factor level is assumed to be the event.
## Set the global option `yardstick.event_first` to `FALSE` to change this.
library(yardstick)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
head(two_class_example)
##    truth      Class1       Class2 predicted
## 1 Class2 0.003589243 0.9964107574    Class2
## 2 Class1 0.678621054 0.3213789460    Class1
## 3 Class2 0.110893522 0.8891064779    Class2
## 4 Class1 0.735161703 0.2648382969    Class1
## 5 Class2 0.016239960 0.9837600397    Class2
## 6 Class1 0.999275071 0.0007249286    Class1
metrics(two_class_example, truth, predicted)
## # A tibble: 2 x 3
##   .metric  .estimator .estimate
##   <chr>    <chr>          <dbl>
## 1 accuracy binary         0.838
## 2 kap      binary         0.675
two_class_example %>% 
  roc_auc(truth, Class1)
## # A tibble: 1 x 3
##   .metric .estimator .estimate
##   <chr>   <chr>          <dbl>
## 1 roc_auc binary         0.939
data("hpc_cv")
hpc_cv <- as_tibble(hpc_cv)
hpc_cv
## # A tibble: 3,467 x 7
##    obs   pred     VF      F       M          L Resample
##    <fct> <fct> <dbl>  <dbl>   <dbl>      <dbl> <chr>   
##  1 VF    VF    0.914 0.0779 0.00848 0.0000199  Fold01  
##  2 VF    VF    0.938 0.0571 0.00482 0.0000101  Fold01  
##  3 VF    VF    0.947 0.0495 0.00316 0.00000500 Fold01  
##  4 VF    VF    0.929 0.0653 0.00579 0.0000156  Fold01  
##  5 VF    VF    0.942 0.0543 0.00381 0.00000729 Fold01  
##  6 VF    VF    0.951 0.0462 0.00272 0.00000384 Fold01  
##  7 VF    VF    0.914 0.0782 0.00767 0.0000354  Fold01  
##  8 VF    VF    0.918 0.0744 0.00726 0.0000157  Fold01  
##  9 VF    VF    0.843 0.128  0.0296  0.000192   Fold01  
## 10 VF    VF    0.920 0.0728 0.00703 0.0000147  Fold01  
## # ... with 3,457 more rows
precision(hpc_cv, obs, pred)
## # A tibble: 1 x 3
##   .metric   .estimator .estimate
##   <chr>     <chr>          <dbl>
## 1 precision macro          0.631
precision(hpc_cv, obs, pred, estimator = "micro")
## # A tibble: 1 x 3
##   .metric   .estimator .estimate
##   <chr>     <chr>          <dbl>
## 1 precision micro          0.709
hpc_cv %>%
  group_by(Resample) %>%
  roc_auc(obs, VF:L)
## # A tibble: 10 x 4
##    Resample .metric .estimator .estimate
##    <chr>    <chr>   <chr>          <dbl>
##  1 Fold01   roc_auc hand_till      0.831
##  2 Fold02   roc_auc hand_till      0.817
##  3 Fold03   roc_auc hand_till      0.869
##  4 Fold04   roc_auc hand_till      0.849
##  5 Fold05   roc_auc hand_till      0.811
##  6 Fold06   roc_auc hand_till      0.836
##  7 Fold07   roc_auc hand_till      0.825
##  8 Fold08   roc_auc hand_till      0.846
##  9 Fold09   roc_auc hand_till      0.836
## 10 Fold10   roc_auc hand_till      0.820
library(ggplot2)

hpc_cv %>%
  group_by(Resample) %>%
  roc_curve(obs, VF:L) %>%
  autoplot()

2019-08-27