# Plot
ggplot(trial1.event,aes(x=wt_md,y=visit.length))+
geom_point()+geom_smooth(method="lm")+
labs(title = "Median weight vs visit length")+
xlab("Median weight (kg)")+ylab("Visit length (min)")
ggplot(trial1.event,aes(x=wt_md,y=visit.length,color=Location))+
geom_point()+geom_smooth(method="lm")+
scale_color_brewer(type = "qual", palette = "Paired",direction = -1)+
scale_fill_brewer(direction = -1)+
labs(title = "Median weight vs visit length by location")+
xlab("Hour entry feeder")+ylab("Visit length (min)")
ggplot(trial1.event,aes(x=wt_md,y=Consumed,color=Location))+
geom_point()+geom_smooth(aes(color = Location, fill = Location),method="lm")+
scale_color_brewer(type = "qual", palette = "Paired",direction = -1)+
scale_fill_brewer(direction = -1)+
labs(title = "Median weight vs Cosumed by location")+
xlab("Hour entry feeder")+ylab("Consumed (kg)")
ggplot(trial1.event,aes(x=as.numeric(hour.entry),y=visit.length))+
geom_point()+geom_smooth()+
labs(title = "Horur entry feder vs visit length")+
xlab("Hour entry feeder")+ylab("Visit length (min)")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
ggplot(trial1.event,aes(x=as.numeric(hour.entry),y=visit.length,color=Location))+
geom_point()+geom_smooth()+
labs(title = "Horur entry feder vs visit length by location")+
xlab("Hour entry feeder")+ylab("Visit length (min)")
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
###2.1. Mixed model: y= location + Eartag
m0<-lmer(visit.length ~ Location -1 + (1|Ear_Tag),data=trial1.event)
summary(m0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: visit.length ~ Location - 1 + (1 | Ear_Tag)
## Data: trial1.event
##
## REML criterion at convergence: 35665.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5654 -0.7303 -0.0977 0.6024 7.3232
##
## Random effects:
## Groups Name Variance Std.Dev.
## Ear_Tag (Intercept) 12.13 3.484
## Residual 68.31 8.265
## Number of obs: 5039, groups: Ear_Tag, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## Location1 13.735 1.021 22.057 13.45 4.14e-12 ***
## Location2 11.720 1.019 21.839 11.51 9.72e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## Loctn1
## Location2 0.000
m1<-lmer(visit.length ~ Location -1 + wt_md+(1|Ear_Tag),data=trial1.event)
summary(m1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: visit.length ~ Location - 1 + wt_md + (1 | Ear_Tag)
## Data: trial1.event
##
## REML criterion at convergence: 35643.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6035 -0.7243 -0.0937 0.6150 7.2601
##
## Random effects:
## Groups Name Variance Std.Dev.
## Ear_Tag (Intercept) 12.02 3.467
## Residual 67.93 8.242
## Number of obs: 5039, groups: Ear_Tag, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## Location1 20.82733 1.66696 157.33809 12.494 < 2e-16 ***
## Location2 18.84427 1.67020 158.54568 11.283 < 2e-16 ***
## wt_md -0.08009 0.01492 5018.32995 -5.368 8.33e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## Loctn1 Loctn2
## Location2 0.630
## wt_md -0.793 -0.795
m2<-lmer(visit.length ~ Location -1 + hour.entry+ wt_md+(1|Ear_Tag),data=trial1.event)
summary(m2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: visit.length ~ Location - 1 + hour.entry + wt_md + (1 | Ear_Tag)
## Data: trial1.event
##
## REML criterion at convergence: 35329.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9508 -0.7040 -0.0817 0.6047 7.0863
##
## Random effects:
## Groups Name Variance Std.Dev.
## Ear_Tag (Intercept) 11.50 3.392
## Residual 64.38 8.024
## Number of obs: 5039, groups: Ear_Tag, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## Location1 21.10299 1.79839 230.12017 11.734 < 2e-16 ***
## Location2 19.35129 1.79909 230.46621 10.756 < 2e-16 ***
## hour.entry1 -0.47619 1.02404 4992.22429 -0.465 0.641945
## hour.entry2 -1.05195 1.05669 4992.34400 -0.996 0.319534
## hour.entry3 -1.18266 1.04306 4992.67211 -1.134 0.256914
## hour.entry4 -0.73880 1.01192 4992.87460 -0.730 0.465366
## hour.entry5 -2.13691 0.94220 4993.15316 -2.268 0.023372 *
## hour.entry6 -2.22574 0.91388 4992.73261 -2.435 0.014906 *
## hour.entry7 -3.76553 0.87497 4992.63822 -4.304 1.71e-05 ***
## hour.entry8 -4.48515 0.85793 4992.61771 -5.228 1.78e-07 ***
## hour.entry9 -2.47296 0.88235 4993.28125 -2.803 0.005087 **
## hour.entry10 -1.60769 0.88655 4993.08432 -1.813 0.069829 .
## hour.entry11 -1.88934 0.88550 4992.90796 -2.134 0.032920 *
## hour.entry12 -1.56941 0.88502 4992.87056 -1.773 0.076238 .
## hour.entry13 -1.03938 0.88362 4993.05873 -1.176 0.239544
## hour.entry14 -0.47700 0.90539 4992.81334 -0.527 0.598322
## hour.entry15 0.01161 0.90927 4993.20493 0.013 0.989815
## hour.entry16 3.54266 0.93594 4993.34525 3.785 0.000155 ***
## hour.entry17 3.52724 0.99554 4993.21432 3.543 0.000399 ***
## hour.entry18 1.82496 1.07246 4992.30787 1.702 0.088881 .
## hour.entry19 2.21759 1.08121 4991.66008 2.051 0.040316 *
## hour.entry20 0.74471 1.01730 4993.37340 0.732 0.464174
## hour.entry21 0.62861 1.06520 4992.09771 0.590 0.555124
## hour.entry22 0.01534 1.01374 4991.90134 0.015 0.987927
## hour.entry23 0.22555 1.03545 4992.76654 0.218 0.827570
## wt_md -0.07338 0.01462 4995.46743 -5.018 5.41e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 26 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
m3<-lmer(visit.length ~ Location -1 + (1|Ear_Tag) + (1|follower),data=trial1.event)
summary(m3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: visit.length ~ Location - 1 + (1 | Ear_Tag) + (1 | follower)
## Data: trial1.event
##
## REML criterion at convergence: 35592.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.6507 -0.6941 -0.1099 0.6102 7.2796
##
## Random effects:
## Groups Name Variance Std.Dev.
## Ear_Tag (Intercept) 12.017 3.467
## follower (Intercept) 1.163 1.078
## Residual 66.875 8.178
## Number of obs: 5039, groups: Ear_Tag, 24; follower, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## Location1 13.761 1.063 26.105 12.95 7.21e-13 ***
## Location2 12.086 1.061 25.927 11.39 1.37e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## Loctn1
## Location2 0.000
m4<-lmer(visit.length ~ Location -1 + wt_md+(1|Ear_Tag)+ (1|follower),data=trial1.event)
summary(m4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## visit.length ~ Location - 1 + wt_md + (1 | Ear_Tag) + (1 | follower)
## Data: trial1.event
##
## REML criterion at convergence: 35568.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7038 -0.6941 -0.1054 0.6193 7.2122
##
## Random effects:
## Groups Name Variance Std.Dev.
## Ear_Tag (Intercept) 11.905 3.450
## follower (Intercept) 1.178 1.085
## Residual 66.488 8.154
## Number of obs: 5039, groups: Ear_Tag, 24; follower, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## Location1 20.97874 1.68872 166.78265 12.423 < 2e-16 ***
## Location2 19.33585 1.69205 168.08361 11.427 < 2e-16 ***
## wt_md -0.08152 0.01485 5017.88612 -5.487 4.28e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## Loctn1 Loctn2
## Location2 0.608
## wt_md -0.779 -0.781
m5<-lmer(visit.length ~ Location -1 +hour.entry+ wt_md+(1|Ear_Tag) + (1|follower),
data=trial1.event)
summary(m5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## visit.length ~ Location - 1 + hour.entry + wt_md + (1 | Ear_Tag) +
## (1 | follower)
## Data: trial1.event
##
## REML criterion at convergence: 35286.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9973 -0.6916 -0.0862 0.6027 7.0395
##
## Random effects:
## Groups Name Variance Std.Dev.
## Ear_Tag (Intercept) 11.5331 3.3960
## follower (Intercept) 0.7558 0.8694
## Residual 63.4817 7.9675
## Number of obs: 5039, groups: Ear_Tag, 24; follower, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## Location1 20.91513 1.81325 235.05912 11.535 < 2e-16 ***
## Location2 19.40450 1.81336 235.14791 10.701 < 2e-16 ***
## hour.entry1 -0.39283 1.01806 4981.47448 -0.386 0.699618
## hour.entry2 -1.00681 1.05200 4988.22184 -0.957 0.338591
## hour.entry3 -1.12622 1.03723 4983.09136 -1.086 0.277624
## hour.entry4 -0.67113 1.00828 4991.02125 -0.666 0.505691
## hour.entry5 -1.75350 0.93961 4992.35173 -1.866 0.062073 .
## hour.entry6 -1.82112 0.91150 4991.64401 -1.998 0.045776 *
## hour.entry7 -3.33538 0.87215 4990.43677 -3.824 0.000133 ***
## hour.entry8 -4.15494 0.85464 4989.32832 -4.862 1.20e-06 ***
## hour.entry9 -2.08570 0.88030 4993.22789 -2.369 0.017859 *
## hour.entry10 -1.06724 0.88551 4993.50225 -1.205 0.228177
## hour.entry11 -1.41000 0.88333 4992.47259 -1.596 0.110499
## hour.entry12 -1.11883 0.88254 4991.54195 -1.268 0.204953
## hour.entry13 -0.62854 0.88086 4991.43946 -0.714 0.475539
## hour.entry14 -0.06810 0.90213 4989.49457 -0.075 0.939826
## hour.entry15 0.21716 0.90512 4988.45830 0.240 0.810397
## hour.entry16 3.67875 0.93203 4990.11052 3.947 8.02e-05 ***
## hour.entry17 3.68154 0.99058 4986.61369 3.717 0.000204 ***
## hour.entry18 1.83706 1.06662 4983.51313 1.722 0.085074 .
## hour.entry19 2.34890 1.07638 4987.02576 2.182 0.029139 *
## hour.entry20 0.91457 1.01221 4987.00740 0.904 0.366283
## hour.entry21 0.72096 1.05976 4984.77700 0.680 0.496343
## hour.entry22 0.19344 1.00864 4985.36439 0.192 0.847922
## hour.entry23 0.32981 1.03018 4985.95333 0.320 0.748874
## wt_md -0.07432 0.01461 4995.47327 -5.087 3.76e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 26 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it
a %>%
kable() %>%
kable_styling()
| var Eartag | var Follower | var error | -2loglike | |
|---|---|---|---|---|
| loc + Eartag | 12.13 | – | 68.31 | 35665.7 |
| loc + wt + Eartag | 12.02 | – | 67.93 | 35643.5 |
| loc + wt + hour.ent + Eartag | 11.5 | – | 64.38 | 35329.9 |
| loc + Eartag + Foll | 12.07 | 1.163 | 66.87 | 35592.4 |
| loc + wt + Eartag + Foll | 11.905 | 1.178 | 66.48 | 35568.9 |
| loc + wt + + hour.ent + Eartag + Foll | 11.53 | 0.75 | 63.48 | 35286.2 |