Results of bayesian estimating of variance components on visit length at the when the median weight is included in the model. iter = 82000, burn-in = 2000, thin = 5.
autocorr.plot(m1.chain)
autocorr.diag(m1.chain)
## Locat_eff[1] Locat_eff[2] deviance eff_wt var_Eartag
## Lag 0 1.0000000 1.0000000 1.000000000 1.0000000 1.000000000
## Lag 1 0.9496372 0.9597228 0.036518567 0.9626936 0.095671888
## Lag 5 0.7841315 0.8152752 0.023886078 0.8259834 0.047438338
## Lag 10 0.6290632 0.6701756 0.018859057 0.6842909 0.018870483
## Lag 50 0.1723512 0.1616493 0.003588325 0.1758652 0.003503853
## var_e
## Lag 0 1.0000000000
## Lag 1 -0.0001785449
## Lag 5 0.0014752814
## Lag 10 -0.0090181487
## Lag 50 0.0076006735
effectiveSize(m1.chain)
## Locat_eff[1] Locat_eff[2] deviance eff_wt var_Eartag
## 1608.298 1603.076 45659.019 1482.587 37025.462
## var_e
## 78000.000
geweke.diag(m1.chain)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Locat_eff[1] Locat_eff[2] deviance eff_wt var_Eartag
## 0.7820 0.7908 1.3090 -0.7934 -0.1526
## var_e
## 2.1667
traplot(m1.chain, col = "darkblue")
denplot(m1.chain, col = "darkblue")
# DIC and pD
bugs.log("Trial_1_covariate_OpenBugs/log.txt")
## $stats
## mean sd val2.5pc median val97.5pc sample
## Locat_eff[1] 2.084e+01 1.71900 17.4600 2.084e+01 2.419e+01 78000
## Locat_eff[2] 1.889e+01 1.72100 15.5100 1.888e+01 2.223e+01 78000
## deviance 3.556e+04 7.25500 35550.0000 3.556e+04 3.557e+04 78000
## eff_wt -8.048e-02 0.01496 -0.1101 -8.047e-02 -5.094e-02 78000
## var_Eartag 1.396e+01 4.92500 7.3000 1.301e+01 2.618e+01 78000
## var_e 6.797e+01 1.36000 65.3600 6.796e+01 7.070e+01 78000
##
## $DIC
## Dbar Dhat DIC pD
## y 35560 35530 35580 25.47
## total 35560 35530 35580 25.47
summary(m1.chain)
##
## Iterations = 2001:80000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 78000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Locat_eff[1] 2.084e+01 1.71930 6.156e-03 0.0428714
## Locat_eff[2] 1.889e+01 1.72081 6.161e-03 0.0429789
## deviance 3.556e+04 7.80844 2.796e-02 0.0365428
## eff_wt -8.048e-02 0.01496 5.357e-05 0.0003886
## var_Eartag 1.396e+01 4.92464 1.763e-02 0.0255932
## var_e 6.797e+01 1.36000 4.870e-03 0.0048696
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Locat_eff[1] 17.470 1.969e+01 2.084e+01 2.201e+01 24.190
## Locat_eff[2] 15.500 1.773e+01 1.889e+01 2.005e+01 22.260
## deviance 35550.000 3.555e+04 3.556e+04 3.556e+04 35570.000
## eff_wt -0.110 -9.041e-02 -8.051e-02 -7.048e-02 -0.051
## var_Eartag 7.295 1.055e+01 1.301e+01 1.630e+01 26.190
## var_e 65.370 6.704e+01 6.796e+01 6.888e+01 70.710
###Plot of posterior correlations between model parameters from MCMC simulation
parcorplot(m1.chain,col = terrain.colors(15,0.5,T), cex.axis=0.5)
autocorr.plot(m2.mcmc.chain)
autocorr.diag(m2.mcmc.chain)
## Locat_eff[1] Locat_eff[2] deviance eff_wt var_Eartag
## Lag 0 1.0000000 1.0000000 1.000000000 1.0000000 1.0000000000
## Lag 1 0.9525238 0.9627597 0.018662328 0.9635699 0.0964459207
## Lag 5 0.7860085 0.8250976 0.012560780 0.8320887 0.0471363831
## Lag 10 0.6285846 0.6825646 0.009299299 0.6896681 0.0214178082
## Lag 50 0.1336372 0.1446004 0.001759626 0.1346878 0.0003951272
## var_Follower var_e
## Lag 0 1.000000000 1.000000e+00
## Lag 1 0.052651045 -3.703953e-03
## Lag 5 -0.000123366 -8.685499e-05
## Lag 10 0.001758632 5.173715e-03
## Lag 50 -0.003681747 -3.405970e-03
effectiveSize(m2.mcmc.chain)
## Locat_eff[1] Locat_eff[2] deviance eff_wt var_Eartag
## 1777.990 1533.230 55168.210 1484.222 34341.811
## var_Follower var_e
## 69980.694 80000.000
geweke.diag(m2.mcmc.chain)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Locat_eff[1] Locat_eff[2] deviance eff_wt var_Eartag
## -0.5640 -1.5043 -0.2517 1.2326 0.9062
## var_Follower var_e
## -0.1036 -0.3596
traplot(m2.mcmc.chain, col = "darkslateblue")
denplot(m2.mcmc.chain, col = "darkslateblue")
bugs.log("Trial_1_covariate_OpenBugs/Model_EF_wt_covariate/log.txt")
## $stats
## mean sd val2.5pc median val97.5pc sample
## Locat_eff[1] 2.104e+01 1.75900 17.5700 2.103e+01 2.446e+01 80000
## Locat_eff[2] 1.935e+01 1.77900 15.9100 1.936e+01 2.277e+01 80000
## deviance 3.545e+04 9.62300 35430.0000 3.545e+04 3.547e+04 80000
## eff_wt -8.168e-02 0.01507 -0.1107 -8.179e-02 -5.179e-02 80000
## var_Eartag 1.380e+01 4.87800 7.2600 1.285e+01 2.573e+01 80000
## var_Follower 1.390e+00 0.56500 0.6283 1.280e+00 2.793e+00 80000
## var_e 6.653e+01 1.33200 64.0000 6.651e+01 6.920e+01 80000
##
## $DIC
## Dbar Dhat DIC pD
## y 35450 35410 35490 43.08
## total 35450 35410 35490 43.08
summary(m2.mcmc.chain)
##
## Iterations = 2001:82000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 80000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Locat_eff[1] 2.104e+01 1.75860 6.218e-03 0.0417065
## Locat_eff[2] 1.935e+01 1.77899 6.290e-03 0.0454328
## deviance 3.545e+04 10.04023 3.550e-02 0.0427464
## eff_wt -8.168e-02 0.01507 5.327e-05 0.0003911
## var_Eartag 1.380e+01 4.87780 1.725e-02 0.0263216
## var_Follower 1.390e+00 0.56496 1.997e-03 0.0021356
## var_e 6.653e+01 1.33215 4.710e-03 0.0047098
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Locat_eff[1] 17.5200 19.8800 2.104e+01 2.222e+01 24.4600
## Locat_eff[2] 15.8697 18.1600 1.936e+01 2.056e+01 22.7700
## deviance 35430.0000 35440.0000 3.545e+04 3.546e+04 35470.0000
## eff_wt -0.1105 -0.0920 -8.172e-02 -7.153e-02 -0.0517
## var_Eartag 7.2530 10.4300 1.285e+01 1.609e+01 25.7900
## var_Follower 0.6285 0.9995 1.280e+00 1.656e+00 2.7980
## var_e 63.9900 65.6300 6.651e+01 6.742e+01 69.2000
parcorplot(m1.chain,col = terrain.colors(15,0.5,T), cex.axis=0.5)
autocorr.plot(m3.mcmc.chain)
autocorr.diag(m3.mcmc.chain)
## Locat_eff[1] Locat_eff[2] deviance eff_wt rho_ef
## Lag 0 1.0000000 1.0000000 1.0000000000 1.0000000 1.00000000
## Lag 1 0.9533172 0.9628283 0.0298971515 0.9628320 0.85314522
## Lag 5 0.7940939 0.8294131 0.0166336360 0.8271444 0.46601322
## Lag 10 0.6400047 0.6871541 0.0033106558 0.6837801 0.23614759
## Lag 50 0.1389541 0.1792229 -0.0006441587 0.1562898 0.01244334
## var_Eartag var_Follower var_e
## Lag 0 1.00000000 1.000000000 1.000000000
## Lag 1 0.82709940 0.358445126 -0.002670875
## Lag 5 0.47151913 0.033674681 -0.003854224
## Lag 10 0.25887238 0.009985289 0.002850645
## Lag 50 0.01294272 -0.002489581 0.003356217
effectiveSize(m3.mcmc.chain)
## Locat_eff[1] Locat_eff[2] deviance eff_wt rho_ef
## 1728.512 1515.008 56487.289 1514.854 5751.884
## var_Eartag var_Follower var_e
## 5313.879 32129.247 80384.053
geweke.diag(m3.mcmc.chain)
## [[1]]
##
## Fraction in 1st window = 0.1
## Fraction in 2nd window = 0.5
##
## Locat_eff[1] Locat_eff[2] deviance eff_wt rho_ef
## 0.17577 -0.24695 -0.37251 0.02375 0.99474
## var_Eartag var_Follower var_e
## -0.92731 1.13242 0.43647
traplot(m3.mcmc.chain, col = "slateblue4")
denplot(m3.mcmc.chain, col = "slateblue4")
bugs.log("Trial_1_covariate_OpenBugs/EFcovariance_wtmodel/log.txt")
## $stats
## mean sd val2.5pc median val97.5pc sample
## Locat_eff[1] 2.103e+01 1.8380 1.745e+01 2.103e+01 24.6700 80000
## Locat_eff[2] 1.939e+01 1.8300 1.584e+01 1.938e+01 22.9700 80000
## deviance 3.545e+04 9.6440 3.543e+04 3.545e+04 35470.0000 80000
## eff_wt -8.148e-02 0.0148 -1.104e-01 -8.145e-02 -0.0522 80000
## rho_ef 4.234e-01 0.2023 -1.921e-02 4.428e-01 0.7565 80000
## var_Eartag 1.423e+01 5.0390 7.399e+00 1.328e+01 26.0400 80000
## var_Follower 1.431e+00 0.5798 6.502e-01 1.322e+00 2.8550 80000
## var_e 6.654e+01 1.3370 6.396e+01 6.652e+01 69.2100 80000
##
## $DIC
## Dbar Dhat DIC pD
## y 35450 35410 35490 42.45
## total 35450 35410 35490 42.45
summary(m3.mcmc.chain)
##
## Iterations = 2001:82000
## Thinning interval = 1
## Number of chains = 1
## Sample size per chain = 80000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## Locat_eff[1] 2.103e+01 1.8377 6.497e-03 0.0442009
## Locat_eff[2] 1.939e+01 1.8302 6.471e-03 0.0470212
## deviance 3.545e+04 10.0746 3.562e-02 0.0423890
## eff_wt -8.148e-02 0.0148 5.233e-05 0.0003803
## rho_ef 4.234e-01 0.2023 7.152e-04 0.0026671
## var_Eartag 1.423e+01 5.0388 1.781e-02 0.0691230
## var_Follower 1.431e+00 0.5798 2.050e-03 0.0032346
## var_e 6.654e+01 1.3370 4.727e-03 0.0047157
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## Locat_eff[1] 17.4500 1.979e+01 2.103e+01 2.225e+01 2.467e+01
## Locat_eff[2] 15.8000 1.817e+01 1.938e+01 2.061e+01 2.297e+01
## deviance 35430.0000 3.544e+04 3.545e+04 3.546e+04 3.547e+04
## eff_wt -0.1103 -9.164e-02 -8.152e-02 -7.144e-02 -5.251e-02
## rho_ef -0.0220 2.973e-01 4.424e-01 5.718e-01 7.583e-01
## var_Eartag 7.4030 1.074e+01 1.328e+01 1.661e+01 2.650e+01
## var_Follower 0.6497 1.028e+00 1.321e+00 1.709e+00 2.856e+00
## var_e 63.9600 6.563e+01 6.652e+01 6.743e+01 6.921e+01
parcorplot(m3.mcmc.chain,col = terrain.colors(15,0.5,T), cex.axis=0.5)