Curva de Kaplan Meier

Lo primero que vamos a hacer es cargar la libreria que vamos a utilizar para el analisis de supervivencia. y recomiendo para graficar con ggplot la libreria “survminer”, al igual de “muhaz” para utilizar una herramienta que permite calcular la funcion Hazard.

library(survival)
library(KMsurv)
library(survMisc)
library(survminer)
library(ggfortify)
library(flexsurv)
library(actuar)
library(dplyr)
library(survminer)
library(muhaz)
## Warning: package 'survMisc' was built under R version 3.5.3
## Warning: package 'survminer' was built under R version 3.5.3
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package:survMisc':
## 
##     autoplot
## Loading required package: ggpubr
## Loading required package: magrittr
## Warning: package 'ggfortify' was built under R version 3.5.3
## Warning: package 'flexsurv' was built under R version 3.5.3
## Warning: package 'actuar' was built under R version 3.5.3
## 
## Attaching package: 'actuar'
## The following objects are masked from 'package:flexsurv':
## 
##     dllogis, pllogis, qllogis, rllogis
## The following object is masked from 'package:grDevices':
## 
##     cm
## Warning: package 'dplyr' was built under R version 3.5.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Warning: package 'muhaz' was built under R version 3.5.3

Agregar la base de datos de Colangitis biliar primaria o PBC

antes de agregar la base de datos se puede modificar en excel o en SPSS, dado que hay algunas variables que se deben convertir como la albumina, protrombina y la bilirrubina en su escala logaritmica.

Luego de agregar la base de datos

library(haven)
PBC <- read_sav("~/Maestria Epidemiologia/Tercer Semestre/Bioestadistica III/Trabajo Final/PBC datos_2.sav")
View(PBC)

AHORA SI A LO QUE VINIMOS

Se tiene que crear un Objet surv de la siguiente manera

## Add survival object. status == 1 is death
PBC.surv <- Surv(PBC$years, PBC$status)

Luego creaos los estimadoes de Kaplan-Meier

PBC.km <- survfit(PBC.surv ~ 1, data = PBC, type = "kaplan-meier")
head(PBC.km)
## Warning in if (j > 1) stop("subscript out of bounds"): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Call: survfit(formula = PBC.surv ~ 1, data = PBC, type = "kaplan-meier")
## 
##       n  events  median 0.95LCL 0.95UCL 
##  312.00  125.00    9.30    8.45   10.55

Y procedemos a realizar la grafica

ggsurvplot(fit = PBC.km, data = PBC, conf.int = T, title = "Curva de Supervivencia", 
    xlab = "Tiempo", ylab = "Probabilidad de supervivencia", legend.title = "Estimación", 
    legend.labs = "Kaplan-Meier")

o de la siguiente manera

plot(PBC.surv, xlab="Survival Time in years", 
     ylab="% Surviving", yscale=100,
     main="Survival Distribution (Overall)") 

Estimacion de la funcion de riesgo acumulado

maxima verosimilitud

Hdet <- PBC.km %>% fortify %>% mutate(CumHaz = cumsum(n.event/n.risk))

graficar el riesgo acumulado

plot(PBC.km, fun = "cumhaz", conf.int = F, main = "Riesgo Acumulado", col = 1:2, 
    xlab = "Tiempo", ylab = "Riesgo Acumulado")

Con covariables

La forma de hacerlo por estratos, yo lo hari ade la siguiente manera, ceando un vector para el objeto de supervivencia distribuido por la variable histologia, posterior agregar la columna riesgo acumulado

km.as.hist <- survfit(PBC.surv ~ histol, data = PBC)

Histol <- km.as.hist %>% fortify %>% mutate(CumHaz = cumsum(n.event/n.risk))

graficar el riesgo acumulado

plot(km.as.hist, fun = "cumhaz", conf.int = F, main = "Riesgo Acumulado por Histologia", col = 1:2, 
    xlab = "Tiempo", ylab = "Riesgo Acumulado")

ggsurvplot(km.as.hist, fun = "cumhaz", xlab = "Tiempo", censor = T, 
    ylab = "Riesgo Acumulado", title = "Riesgo Acumulado por Histologia", legend.title = "Grado histologico")

Estimacion de Nelson Aalen

qplot(time, CumHaz, data = Hdet, geom = "step", xlab = "Tiempo (years)", ylab = "Riesgo Acumulado", 
    main = "Riesgo Acumulado")

qplot(time, CumHaz, col = strata, data = R, geom = "step", xlab = "Tiempo (Semanas)", 
    ylab = "Riesgo Acumulado", main = "Riesgo Acumulado")

logRank

Despues vamos a crear la grafica de logRank para comparacion por dos variables, en el caso de este estudio es por el tratamiento (rx), se debe crear datos donde se separan por tratamiento.

al igual que podemos crear de una vez datos para comparar por sexo, que es otra de las variables dicotomicas.

km.by.sex <- survfit(PBC.surv ~ sex, data = PBC, conf.type = "log-log")
km.by.rx <- survfit(PBC.surv ~ rx, data = PBC, conf.type = "log-log")

## y el siguiente codigo permite crear un datos mas facil para posterior graficar por medio de Log-Log
km.as.one <- survfit(PBC.surv ~ 1, data = PBC, conf.type = "log-log")

## Show object
km.as.one
## Call: survfit(formula = PBC.surv ~ 1, data = PBC, conf.type = "log-log")
## 
##       n  events  median 0.95LCL 0.95UCL 
##  312.00  125.00    9.30    8.45   10.51
km.by.sex
## Call: survfit(formula = PBC.surv ~ sex, data = PBC, conf.type = "log-log")
## 
##         n events median 0.95LCL 0.95UCL
## sex=0  36     22   6.53    3.15    11.2
## sex=1 276    103   9.39    8.46    10.5
km.by.rx
## Call: survfit(formula = PBC.surv ~ rx, data = PBC, conf.type = "log-log")
## 
##        n events median 0.95LCL 0.95UCL
## rx=0 158     65   8.99    6.95    11.5
## rx=1 154     60   9.39    8.46    10.5

Con este metodo podemos observar el numero de eventos de cada grupo su mediana y sus intervalos de confianza.

y con el siguiente se puede observar todos los datos.

## See survival estimates at given time (lots of outputs)
summary.data.frame (km.by.rx, maxsum = 10)
##        n            time             n.risk          n.event      
##  Min.   :154   Min.   : 0.1123   Min.   :  1.00   Min.   :0.0000  
##  1st Qu.:155   1st Qu.: 3.2752   1st Qu.: 39.25   1st Qu.:0.0000  
##  Median :156   Median : 5.1417   Median : 77.50   Median :0.0000  
##  Mean   :156   Mean   : 5.5165   Mean   : 78.15   Mean   :0.4085  
##  3rd Qu.:157   3rd Qu.: 7.4134   3rd Qu.:117.00   3rd Qu.:1.0000  
##  Max.   :158   Max.   :12.4736   Max.   :158.00   Max.   :2.0000  
##     n.censor           surv            type               strata   
##  Min.   :0.0000   Min.   :0.3186   Length:1           Min.   :151  
##  1st Qu.:0.0000   1st Qu.:0.5866   Class :character   1st Qu.:152  
##  Median :1.0000   Median :0.7052   Mode  :character   Median :153  
##  Mean   :0.6111   Mean   :0.6886                      Mean   :153  
##  3rd Qu.:1.0000   3rd Qu.:0.7920                      3rd Qu.:154  
##  Max.   :2.0000   Max.   :0.9937                      Max.   :155  
##     std.err             lower            upper         conf.type        
##  Min.   :0.006349   Min.   :0.1735   Min.   :0.4737   Length:1          
##  1st Qu.:0.041406   1st Qu.:0.4900   1st Qu.:0.6779   Class :character  
##  Median :0.054304   Median :0.6227   Median :0.7730   Mode  :character  
##  Mean   :0.068981   Mean   :0.6030   Mean   :0.7602                     
##  3rd Qu.:0.077602   3rd Qu.:0.7187   3rd Qu.:0.8481                     
##  Max.   :0.248664   Max.   :0.9559   Max.   :0.9991                     
##     conf.int        call     
##  Min.   :0.95   Length:4     
##  1st Qu.:0.95   Class :call  
##  Median :0.95   Mode  :call  
##  Mean   :0.95                
##  3rd Qu.:0.95                
##  Max.   :0.95

La forma de graficar mas sencillo es la siguiente

## Plotting without any specification
plot(km.as.one)

## Plotting without any specification
plot(km.by.sex)

## Plotting without any specification
plot(km.by.rx)

sin embargo tambien se pueden modificar los tirulos y marcas, hasta colores

plot(km.by.rx, xlab="Survival Time in Years", 
     ylab="% Surviving", yscale=100, col=c("red","blue"),
     main="Survival Distributions by Treatment") 
legend("topright", title="Tratamiento", c("Placebo", "DPCA"),
       fill=c("red", "blue"))

Y para crear un grafico de riesgo acumlado por grupos

ggsurvplot(km.by.rx, fun = "event", censor = F, xlab = "Time (years)")

Estimacion de Mediana

Prueba de hipótesis para igualdad de dos o más funciones de supervivencia.

Y para el metodo estadistico para comparacion de curvas es el siguiente

Es necesario tener el objeto surv que habiamos creado al inicio

##### test for difference between placebo y DPCA 
# survival curves (logrank test) 
survdiff(PBC.surv~rx, data=PBC) 
## Call:
## survdiff(formula = PBC.surv ~ rx, data = PBC)
## 
##        N Observed Expected (O-E)^2/E (O-E)^2/V
## rx=0 158       65     63.2    0.0502     0.102
## rx=1 154       60     61.8    0.0513     0.102
## 
##  Chisq= 0.1  on 1 degrees of freedom, p= 0.7
# survival curves (Peto&Peto) 
survdiff(PBC.surv~rx, data=PBC, rho = 1) 
## Call:
## survdiff(formula = PBC.surv ~ rx, data = PBC, rho = 1)
## 
##        N Observed Expected (O-E)^2/E (O-E)^2/V
## rx=0 158     49.7     49.0   0.00963    0.0243
## rx=1 154     46.8     47.5   0.00993    0.0243
## 
##  Chisq= 0  on 1 degrees of freedom, p= 0.9

Al igual se puede hacer con las demas variables para ver cuales on significativas y cuales se deben ingresar al modelo.

## Call:
## survdiff(formula = PBC.surv ~ sex, data = PBC)
## 
##         N Observed Expected (O-E)^2/E (O-E)^2/V
## sex=0  36       22     14.6     3.728      4.27
## sex=1 276      103    110.4     0.494      4.27
## 
##  Chisq= 4.3  on 1 degrees of freedom, p= 0.04
## Call:
## survdiff(formula = PBC.surv ~ rx, data = PBC)
## 
##        N Observed Expected (O-E)^2/E (O-E)^2/V
## rx=0 158       65     63.2    0.0502     0.102
## rx=1 154       60     61.8    0.0513     0.102
## 
##  Chisq= 0.1  on 1 degrees of freedom, p= 0.7
## Call:
## survdiff(formula = PBC.surv ~ edema, data = PBC)
## 
##           N Observed Expected (O-E)^2/E (O-E)^2/V
## edema=0 263       89    113.4      5.24      56.8
## edema=1  49       36     11.6     51.14      56.8
## 
##  Chisq= 56.8  on 1 degrees of freedom, p= 5e-14
## Call:
## survdiff(formula = PBC.surv ~ asictes, data = PBC)
## 
##             N Observed Expected (O-E)^2/E (O-E)^2/V
## asictes=0 288      102   121.28      3.06       104
## asictes=1  24       23     3.72     99.91       104
## 
##  Chisq= 104  on 1 degrees of freedom, p= <2e-16
## Call:
## survdiff(formula = PBC.surv ~ spiders, data = PBC)
## 
##             N Observed Expected (O-E)^2/E (O-E)^2/V
## spiders=0 222       73     98.1      6.43      30.3
## spiders=1  90       52     26.9     23.44      30.3
## 
##  Chisq= 30.3  on 1 degrees of freedom, p= 4e-08
## Call:
## survdiff(formula = PBC.surv ~ histol, data = PBC)
## 
##            N Observed Expected (O-E)^2/E (O-E)^2/V
## histol=1  16        1      9.9      8.00      8.78
## histol=2  67       16     32.3      8.22     11.17
## histol=3 120       43     51.2      1.30      2.22
## histol=4 109       65     31.6     35.17     47.84
## 
##  Chisq= 53.8  on 3 degrees of freedom, p= 1e-11

Modelo Predictivo de COX

Se deben corroborar que las variables nominales sean un factor, de no ser asi toca convertilo con la funcion factor

PBC$sex <- factor(x = PBC$sex, levels = c(0, 1), labels = c("H", "M"))
PBC$asictes <- factor(x = PBC$asictes, levels = c(0, 1), labels = c("Ausente", "Presente"))

PBC$hepatom <- factor(x = PBC$hepatom, levels = c(0, 1), labels = c("Ausente", "Presente"))

PBC$edema <- factor(x = PBC$edema, levels = c(0, 1), labels = c("Ausente", "Presente"))

PBC$spiders <- factor(x = PBC$spiders, levels = c(0, 1), labels = c("Ausente", "Presente"))

Crear el modelo

Para crear el modelo se seleccionas la variables con significancia

ModCoxPBC <- coxph(PBC.surv ~ age + logbili + logalbu + logprot + copper , data = PBC)

la variable edema la considere una posible variable confusora por lo que cree el siguiente modelo para realizar su comparacion.

ModCoxPBCedema <- coxph(PBC.surv ~ age + logbili + logalbu + logprot + edema , data =  PBC)

display results

ModCoxPBC
## Call:
## coxph(formula = PBC.surv ~ age + logbili + logalbu + logprot + 
##     copper, data = PBC)
## 
##              coef exp(coef)  se(coef)      z        p
## age      0.028833  1.029253  0.008567  3.366 0.000764
## logbili  0.843135  2.323641  0.108050  7.803 6.04e-15
## logalbu -3.407564  0.033122  0.687241 -4.958 7.11e-07
## logprot  3.576517 35.748802  0.997247  3.586 0.000335
## copper   0.002271  1.002273  0.001002  2.267 0.023390
## 
## Likelihood ratio test=197.7  on 5 df, p=< 2.2e-16
## n= 310, number of events= 124 
##    (2 observations deleted due to missingness)
ModCoxPBCedema
## Call:
## coxph(formula = PBC.surv ~ age + logbili + logalbu + logprot + 
##     edema, data = PBC)
## 
##              coef exp(coef)  se(coef)      z        p
## age      0.032602  1.033140  0.008626  3.779 0.000157
## logbili  0.894493  2.446095  0.098032  9.124  < 2e-16
## logalbu -3.228639  0.039611  0.707401 -4.564 5.02e-06
## logprot  3.235409 25.416777  0.998202  3.241 0.001190
## edema    0.401057  1.493402  0.221426  1.811 0.070103
## 
## Likelihood ratio test=195.9  on 5 df, p=< 2.2e-16
## n= 312, number of events= 125

validacion de supuestos

evaluar: proportional hazards assumption

cada covariable calcula el coeficiente rho, el estadístico de prueba chisq y su respectivo p-valor, además incluye una prueba global

y otro metodo mas grafico de evaluar la proporcionalidad de riesgos es la siguiente funcion que se encuentra en el paquete servminer

library(survminer)

COX.PBC<- cox.zph(ModCoxPBC)
COX.PBC.edema <- cox.zph(ModCoxPBCedema)
COX.PBC
##              rho    chisq      p
## age      0.00035 1.39e-05 0.9970
## logbili  0.13844 2.31e+00 0.1285
## logalbu  0.04341 2.37e-01 0.6262
## logprot -0.24080 5.75e+00 0.0165
## copper  -0.08131 8.14e-01 0.3669
## GLOBAL        NA 7.73e+00 0.1718
COX.PBC.edema 
##              rho    chisq      p
## age     -0.04078  0.17921 0.6721
## logbili  0.15785  2.80313 0.0941
## logalbu -0.00786  0.00797 0.9288
## logprot -0.20503  4.05904 0.0439
## edema   -0.20243  4.53766 0.0332
## GLOBAL        NA 12.34570 0.0303

l valor-p no es menor a .05 por lo que no podemos rechazar la hipótesis de riesgos proporcionales.

la forma grafica de realizarlo es

ggcoxzph(COX.PBC)

otro comando para realizar esot seria

ggcoxzph(cox.zph(ModCoxPBC))

Y obtenemos la misma grafica con el test de Shchoenfeld

Residuales

ggcoxdiagnostics(ModCoxPBC, type = "schoenfeld")

ggcoxdiagnostics(ModCoxPBC, type = "dfbetas", ox.scale = "observation.id", title = "Residuales dfbetas", 
    subtitle = "dfbetas vs id", caption = "Análisis residual")

linealidad

ggcoxdiagnostics(ModCoxPBC, type = "martingale")

Prediccion

Numero 1

datos1<- data.frame(age = c(52), logbili = c(log(0.5)), logalbu = c(log(4.5)), logprot = c(log(10.1)), copper= c(98))

Pred1 <- survfit(ModCoxPBC, newdata = datos1, conf.type = "log-log")

ggsurvplot(fit = Pred1, data = datos1, conf.int = T, title = "Curva de Supervivencia", 
    xlab = "Tiempo", ylab = "Probabilidad de supervivencia")

0.027*52 + 0.826*log(0.5) + 3.323*log(10.1) - 3.177*log(4.5)  + 0.002*98
## [1] 3.933562

Numero 2

datos2 <- data.frame(age = c(52), logbili = c(log(13.9)), logalbu = c(log(2.8)), logprot = c(log(13.8)), copper= c(98))

Pred2 <- survfit(ModCoxPBC, data = datos2, conf.type = "log-log")

ggsurvplot(fit = Pred2, data = datos2, conf.int = T, title = "Curva de Supervivencia", 
    xlab = "Tiempo", ylab = "Probabilidad de supervivencia")

0.027*52 + 0.826*log(13.9) + 3.323*log(13.8) - 3.177*log(2.8)  + 0.002*98
## [1] 9.224613

Estimacin de riesgo de Base

La estimación de riesgo base,predicción de la curva de supervivencia utilizando las covariables igual a 0

Rbase <- data.frame(age = c(0), logbili = c(log(0)), logalbu = c(log(0)), logprot = c(log(0)), copper= c(0))

Rbase <- survfit(ModCoxPBC, data = Rbase, conf.type = "log-log")

cbind(Tiempo = Rbase$time, RiesgoAcumulado = Rbase$cumhaz)
##            Tiempo RiesgoAcumulado
##   [1,]  0.1122519    0.0008263517
##   [2,]  0.1396304    0.0017807378
##   [3,]  0.1943874    0.0027640869
##   [4,]  0.2108145    0.0037585667
##   [5,]  0.3011636    0.0047757565
##   [6,]  0.3559206    0.0057941287
##   [7,]  0.3586585    0.0068410770
##   [8,]  0.3832991    0.0079570356
##   [9,]  0.4900753    0.0091028593
##  [10,]  0.5092403    0.0103001102
##  [11,]  0.5229295    0.0115035537
##  [12,]  0.5420945    0.0127127834
##  [13,]  0.5667351    0.0139223069
##  [14,]  0.5913758    0.0151813549
##  [15,]  0.6105407    0.0165332335
##  [16,]  0.7227926    0.0193504587
##  [17,]  0.8323066    0.0208647755
##  [18,]  0.8788501    0.0223915688
##  [19,]  0.8925394    0.0239312822
##  [20,]  0.9144422    0.0254863291
##  [21,]  0.9527721    0.0271229393
##  [22,]  1.0622861    0.0287809750
##  [23,]  1.0951403    0.0304489169
##  [24,]  1.2594113    0.0322293255
##  [25,]  1.4099932    0.0340201108
##  [26,]  1.4592744    0.0340201108
##  [27,]  1.5030801    0.0358152255
##  [28,]  1.5112936    0.0376766522
##  [29,]  1.6344969    0.0395508763
##  [30,]  1.6728269    0.0414428872
##  [31,]  1.8425735    0.0433458848
##  [32,]  1.9000684    0.0452693544
##  [33,]  1.9383984    0.0471977901
##  [34,]  2.0041068    0.0471977901
##  [35,]  2.0068445    0.0491412256
##  [36,]  2.0177960    0.0491412256
##  [37,]  2.0533881    0.0511160818
##  [38,]  2.0862422    0.0531093149
##  [39,]  2.1054072    0.0551103149
##  [40,]  2.1519508    0.0571206653
##  [41,]  2.1574264    0.0571206653
##  [42,]  2.1629021    0.0591434418
##  [43,]  2.1820672    0.0611815282
##  [44,]  2.1875427    0.0632624541
##  [45,]  2.2915812    0.0632624541
##  [46,]  2.2970569    0.0632624541
##  [47,]  2.3271732    0.0653632929
##  [48,]  2.3353868    0.0674780704
##  [49,]  2.3518138    0.0696894631
##  [50,]  2.4010952    0.0696894631
##  [51,]  2.4366872    0.0719800995
##  [52,]  2.4668036    0.0719800995
##  [53,]  2.4750171    0.0743187585
##  [54,]  2.5462012    0.0766717706
##  [55,]  2.5708418    0.0766717706
##  [56,]  2.5817933    0.0790923870
##  [57,]  2.6584532    0.0815874049
##  [58,]  2.6666667    0.0841122343
##  [59,]  2.6830938    0.0866633220
##  [60,]  2.7214236    0.0866633220
##  [61,]  2.7351129    0.0892384338
##  [62,]  2.7378509    0.0918238805
##  [63,]  2.7707050    0.0944346952
##  [64,]  2.8199863    0.0944346952
##  [65,]  2.8391514    0.0970682567
##  [66,]  2.9212868    0.0970682567
##  [67,]  2.9486654    0.0998271937
##  [68,]  2.9568789    0.1026065711
##  [69,]  2.9650924    0.1053991054
##  [70,]  2.9678302    0.1053991054
##  [71,]  3.1457906    0.1053991054
##  [72,]  3.1540041    0.1082475770
##  [73,]  3.1567419    0.1082475770
##  [74,]  3.1895962    0.1111434722
##  [75,]  3.2032855    0.1141840981
##  [76,]  3.2607803    0.1207502718
##  [77,]  3.3182752    0.1243409527
##  [78,]  3.3292265    0.1243409527
##  [79,]  3.3319645    0.1279530405
##  [80,]  3.3675566    0.1279530405
##  [81,]  3.3785079    0.1279530405
##  [82,]  3.3812456    0.1316500467
##  [83,]  3.4223135    0.1316500467
##  [84,]  3.4798083    0.1316500467
##  [85,]  3.5400410    0.1316500467
##  [86,]  3.5455167    0.1316500467
##  [87,]  3.5509925    0.1354305969
##  [88,]  3.5592060    0.1354305969
##  [89,]  3.5619438    0.1354305969
##  [90,]  3.5646818    0.1354305969
##  [91,]  3.6139631    0.1354305969
##  [92,]  3.6167009    0.1354305969
##  [93,]  3.6386037    0.1354305969
##  [94,]  3.6933608    0.1354305969
##  [95,]  3.6960986    0.1397219084
##  [96,]  3.7125256    0.1440761587
##  [97,]  3.7234771    0.1485686846
##  [98,]  3.7316906    0.1485686846
##  [99,]  3.8357289    0.1485686846
## [100,]  3.8548939    0.1485686846
## [101,]  3.8658452    0.1485686846
## [102,]  3.8685832    0.1531605401
## [103,]  3.8822725    0.1531605401
## [104,]  3.8877480    0.1531605401
## [105,]  3.9069130    0.1580148804
## [106,]  3.9233401    0.1580148804
## [107,]  3.9260781    0.1629322870
## [108,]  3.9288158    0.1629322870
## [109,]  3.9534566    0.1678898292
## [110,]  3.9616702    0.1678898292
## [111,]  3.9835730    0.1678898292
## [112,]  3.9890485    0.1678898292
## [113,]  4.0547571    0.1678898292
## [114,]  4.0711842    0.1729343368
## [115,]  4.0848732    0.1780213718
## [116,]  4.1177278    0.1780213718
## [117,]  4.1752224    0.1780213718
## [118,]  4.2053390    0.1831772363
## [119,]  4.2217660    0.1831772363
## [120,]  4.2655716    0.1831772363
## [121,]  4.2929502    0.1831772363
## [122,]  4.2956877    0.1831772363
## [123,]  4.3148527    0.1884921581
## [124,]  4.3586583    0.1884921581
## [125,]  4.4188910    0.1884921581
## [126,]  4.4216290    0.1884921581
## [127,]  4.5338807    0.1884921581
## [128,]  4.5366187    0.1942118250
## [129,]  4.5612593    0.1942118250
## [130,]  4.5913758    0.1942118250
## [131,]  4.6050649    0.2001501887
## [132,]  4.6269679    0.2121734777
## [133,]  4.6570840    0.2121734777
## [134,]  4.6598220    0.2121734777
## [135,]  4.7501712    0.2121734777
## [136,]  4.7665982    0.2183761970
## [137,]  4.8323069    0.2183761970
## [138,]  4.8432579    0.2183761970
## [139,]  4.8459959    0.2183761970
## [140,]  4.8624229    0.2183761970
## [141,]  4.8815880    0.2183761970
## [142,]  4.8870635    0.2183761970
## [143,]  4.8898015    0.2260459551
## [144,]  4.9007530    0.2260459551
## [145,]  4.9555101    0.2260459551
## [146,]  5.0020533    0.2338930805
## [147,]  5.0130048    0.2338930805
## [148,]  5.0157428    0.2338930805
## [149,]  5.0568104    0.2420360642
## [150,]  5.1526351    0.2420360642
## [151,]  5.2238193    0.2420360642
## [152,]  5.2703629    0.2505180837
## [153,]  5.2895279    0.2505180837
## [154,]  5.3251200    0.2505180837
## [155,]  5.3415470    0.2505180837
## [156,]  5.3853526    0.2505180837
## [157,]  5.4154687    0.2505180837
## [158,]  5.4182067    0.2505180837
## [159,]  5.5359344    0.2505180837
## [160,]  5.5660505    0.2505180837
## [161,]  5.6125941    0.2505180837
## [162,]  5.6262832    0.2596597803
## [163,]  5.6974673    0.2688092272
## [164,]  5.7221084    0.2780515880
## [165,]  5.7631760    0.2873257188
## [166,]  5.7659140    0.2873257188
## [167,]  5.9055443    0.2873257188
## [168,]  5.9356604    0.2873257188
## [169,]  5.9411364    0.2873257188
## [170,]  5.9438739    0.2873257188
## [171,]  5.9575634    0.2873257188
## [172,]  5.9630389    0.2873257188
## [173,]  6.0095825    0.2873257188
## [174,]  6.0670772    0.2873257188
## [175,]  6.0807667    0.2873257188
## [176,]  6.0889802    0.2969998477
## [177,]  6.1355238    0.2969998477
## [178,]  6.1738534    0.2969998477
## [179,]  6.1765914    0.3067943219
## [180,]  6.2203970    0.3067943219
## [181,]  6.2642026    0.3177098150
## [182,]  6.2806296    0.3177098150
## [183,]  6.2888432    0.3288700257
## [184,]  6.2997947    0.3288700257
## [185,]  6.3463383    0.3288700257
## [186,]  6.3791924    0.3288700257
## [187,]  6.3846679    0.3288700257
## [188,]  6.4339495    0.3288700257
## [189,]  6.4531145    0.3288700257
## [190,]  6.4695415    0.3288700257
## [191,]  6.4750171    0.3288700257
## [192,]  6.5325122    0.3409355565
## [193,]  6.5708418    0.3533906733
## [194,]  6.6228609    0.3661897506
## [195,]  6.6885695    0.3661897506
## [196,]  6.7049966    0.3661897506
## [197,]  6.7132101    0.3661897506
## [198,]  6.7241616    0.3661897506
## [199,]  6.7515402    0.3792760929
## [200,]  6.7570157    0.3792760929
## [201,]  6.7761807    0.3792760929
## [202,]  6.8528404    0.3927180888
## [203,]  6.8555784    0.3927180888
## [204,]  6.9185491    0.3927180888
## [205,]  6.9541411    0.4064951457
## [206,]  6.9952087    0.4064951457
## [207,]  6.9979467    0.4064951457
## [208,]  7.0171118    0.4064951457
## [209,]  7.0444899    0.4064951457
## [210,]  7.0472279    0.4064951457
## [211,]  7.0527039    0.4064951457
## [212,]  7.0636549    0.4064951457
## [213,]  7.0718684    0.4228369901
## [214,]  7.1129365    0.4392342339
## [215,]  7.1430526    0.4392342339
## [216,]  7.1594796    0.4392342339
## [217,]  7.1841207    0.4392342339
## [218,]  7.2388773    0.4392342339
## [219,]  7.2744694    0.4392342339
## [220,]  7.2991104    0.4392342339
## [221,]  7.3620806    0.4564431645
## [222,]  7.3702941    0.4564431645
## [223,]  7.4277892    0.4564431645
## [224,]  7.4496918    0.4564431645
## [225,]  7.5811090    0.4743917211
## [226,]  7.5893226    0.4743917211
## [227,]  7.6550307    0.4925685673
## [228,]  7.6577687    0.4925685673
## [229,]  7.7618070    0.4925685673
## [230,]  7.7946610    0.5112049404
## [231,]  7.8384666    0.5112049404
## [232,]  7.8576317    0.5112049404
## [233,]  7.9151268    0.5112049404
## [234,]  8.0602331    0.5112049404
## [235,]  8.1478443    0.5112049404
## [236,]  8.1861734    0.5112049404
## [237,]  8.1998634    0.5112049404
## [238,]  8.3504448    0.5112049404
## [239,]  8.3750858    0.5112049404
## [240,]  8.4024639    0.5112049404
## [241,]  8.4490080    0.5322467712
## [242,]  8.4599590    0.5534919977
## [243,]  8.4654350    0.5534919977
## [244,]  8.4818621    0.5534919977
## [245,]  8.4845991    0.5534919977
## [246,]  8.6214924    0.5534919977
## [247,]  8.6242304    0.5534919977
## [248,]  8.6789865    0.5779303741
## [249,]  8.8213549    0.6030142389
## [250,]  8.8678989    0.6030142389
## [251,]  8.8815880    0.6291000125
## [252,]  8.9117041    0.6291000125
## [253,]  8.9856262    0.6561359330
## [254,]  9.0266943    0.6561359330
## [255,]  9.1334705    0.6561359330
## [256,]  9.1937027    0.6883523143
## [257,]  9.2758389    0.6883523143
## [258,]  9.2950039    0.7238004666
## [259,]  9.3689251    0.7238004666
## [260,]  9.3853521    0.7615571061
## [261,]  9.4318962    0.8018409351
## [262,]  9.4674883    0.8018409351
## [263,]  9.7850790    0.8459689158
## [264,]  9.7932920    0.8459689158
## [265,]  9.8042440    0.8459689158
## [266,]  9.8124571    0.8976938443
## [267,]  9.8863792    0.8976938443
## [268,] 10.0533876    0.8976938443
## [269,] 10.1492128    0.8976938443
## [270,] 10.2997942    0.9535661255
## [271,] 10.4585896    0.9535661255
## [272,] 10.4668036    0.9535661255
## [273,] 10.5106096    1.0162357007
## [274,] 10.5407257    1.0162357007
## [275,] 10.5489388    1.0883390064
## [276,] 10.7132101    1.0883390064
## [277,] 10.7679672    1.0883390064
## [278,] 10.9295006    1.0883390064
## [279,] 11.0198498    1.0883390064
## [280,] 11.0390148    1.0883390064
## [281,] 11.0581789    1.0883390064
## [282,] 11.0882959    1.0883390064
## [283,] 11.1676931    1.1878621915
## [284,] 11.2991104    1.1878621915
## [285,] 11.4551678    1.1878621915
## [286,] 11.4715948    1.1878621915
## [287,] 11.4743328    1.3003477453
## [288,] 11.4880219    1.3003477453
## [289,] 11.5865841    1.3003477453
## [290,] 11.6522932    1.3003477453
## [291,] 11.9507189    1.3003477453
## [292,] 12.1204653    1.3003477453
## [293,] 12.1916494    1.3003477453
## [294,] 12.2080765    1.3003477453
## [295,] 12.2299795    1.3003477453
## [296,] 12.3203287    1.3003477453
## [297,] 12.3449688    1.3003477453
## [298,] 12.3832989    1.3003477453
## [299,] 12.4736481    1.3003477453