Nomogramas

Mejores “p” con: BMI, CTdiameter y TumorSolido

Pero mejores AUC y confusion matrix con:

BMI, CharlsonIndex, CTdiameter y TumorSolido

Voy a usar Diameter = CTDiameter (pero los valores superiores a 6 lo dejo en 6)

d <- datadist(df) 
options(datadist='d') 
f<-lrm(Trifecta ~ BMI+ Diameter + TumorSolido,data=df) 
summary(f)
##              Effects              Response : Trifecta 
## 
##  Factor            Low  High Diff. Effect   S.E.    Lower 0.95 Upper 0.95
##  BMI               24.8 30.2 5.4   -0.80635 0.38460 -1.560200  -0.052537 
##   Odds Ratio       24.8 30.2 5.4    0.44649      NA  0.210100   0.948820 
##  Diameter           1.9  3.2 1.3   -0.70091 0.30931 -1.307100  -0.094681 
##   Odds Ratio        1.9  3.2 1.3    0.49613      NA  0.270590   0.909660 
##  TumorSolido - 0:1  2.0  1.0  NA    1.18850 0.64884 -0.083205   2.460200 
##   Odds Ratio        2.0  1.0  NA    3.28210      NA  0.920160  11.707000
summary(f,BMI=c(20,40),Diameter=c(0,5)) 
##              Effects              Response : Trifecta 
## 
##  Factor            Low High Diff. Effect    S.E.    Lower 0.95 Upper 0.95
##  BMI               20  40   20    -2.986500 1.42450 -5.7783000 -0.19458  
##   Odds Ratio       20  40   20     0.050465      NA  0.0030938  0.82318  
##  Diameter           0   5    5    -2.695800 1.18960 -5.0275000 -0.36416  
##   Odds Ratio        0   5    5     0.067488      NA  0.0065554  0.69478  
##  TumorSolido - 0:1  2   1   NA     1.188500 0.64884 -0.0832050  2.46020  
##   Odds Ratio        2   1   NA     3.282100      NA  0.9201600 11.70700
plot(nomogram(f,fun=plogis,funlabel="Probability of Trifecta"
              #, fun.at=c(.05,.1,.25,.5,.75,.9,.95), #Perdidas1Mes=c(0,5,10,20,seq(50,700,by=50))
))

d <- datadist(df) 
options(datadist='d') 
f<-lrm(Trifecta ~ BMI+ CharlsonIndex+ Diameter + TumorSolido,data=df) 
summary(f)
##              Effects              Response : Trifecta 
## 
##  Factor            Low  High Diff. Effect   S.E.    Lower 0.95 Upper 0.95
##  BMI               24.8 30.2 5.4   -0.95999 0.41555 -1.77450   -0.145530 
##   Odds Ratio       24.8 30.2 5.4    0.38290      NA  0.16958    0.864570 
##  CharlsonIndex      4.0  6.0 2.0   -0.61143 0.36051 -1.31800    0.095157 
##   Odds Ratio        4.0  6.0 2.0    0.54258      NA  0.26767    1.099800 
##  Diameter           1.9  3.2 1.3   -0.58146 0.32246 -1.21350    0.050555 
##   Odds Ratio        1.9  3.2 1.3    0.55908      NA  0.29716    1.051900 
##  TumorSolido - 0:1  2.0  1.0  NA    1.13450 0.65985 -0.15878    2.427800 
##   Odds Ratio        2.0  1.0  NA    3.10960      NA  0.85318   11.334000
summary(f,BMI=c(20,40),Diameter=c(0,5)) 
##              Effects              Response : Trifecta 
## 
##  Factor            Low High Diff. Effect    S.E.    Lower 0.95 Upper 0.95
##  BMI               20  40   20    -3.555500 1.53910 -6.5720000 -0.538990 
##   Odds Ratio       20  40   20     0.028567      NA  0.0013989  0.583340 
##  CharlsonIndex      4   6    2    -0.611430 0.36051 -1.3180000  0.095157 
##   Odds Ratio        4   6    2     0.542580      NA  0.2676700  1.099800 
##  Diameter           0   5    5    -2.236400 1.24020 -4.6672000  0.194440 
##   Odds Ratio        0   5    5     0.106840      NA  0.0093985  1.214600 
##  TumorSolido - 0:1  2   1   NA     1.134500 0.65985 -0.1587800  2.427800 
##   Odds Ratio        2   1   NA     3.109600      NA  0.8531800 11.334000
plot(nomogram(f,fun=plogis,funlabel="Probability of Trifecta"
              #, fun.at=c(.05,.1,.25,.5,.75,.9,.95), #Perdidas1Mes=c(0,5,10,20,seq(50,700,by=50))
))

Mejores modelos para ComplicationYN, sin usar interacciones. Búsqueda exhaustiva.

Voy a comenzar explorando todos los factores principales y pidiendo una lista de los 5 mejores modelos. Quito CRput por tener muchos missing

glmulti.lm.out <-
    glmulti(ComplicationYN ~Sex+ BMI+ CharlsonIndex + TumorSolido+ CTdiameter+RENALscore+OperatorAndTys+Bleeding+ClampingTime+Dren +Handport,
            data = df,
            family = binomial,
            level = 1,               # No interaction considered
            method = "h",            # Exhaustive approach
            crit = "aic",            # AIC as criteria
            confsetsize = 5,         # Keep 5 best models
            plotty = F, report = F,  # No plot or interim reports
)
glmulti.lm.out@formulas
## [[1]]
## ComplicationYN ~ 1 + CharlsonIndex + Dren
## <environment: 0x0000000069a82808>
## 
## [[2]]
## ComplicationYN ~ 1 + CharlsonIndex + ClampingTime + Dren
## <environment: 0x0000000069a82808>
## 
## [[3]]
## ComplicationYN ~ 1 + CharlsonIndex + CTdiameter + Dren
## <environment: 0x0000000069a82808>
## 
## [[4]]
## ComplicationYN ~ 1 + CharlsonIndex + RENALscore + Dren
## <environment: 0x0000000069a82808>
## 
## [[5]]
## ComplicationYN ~ 1 + Sex + CharlsonIndex + Dren
## <environment: 0x0000000069a82808>

El resumen de estos mejores modelos es:

summary(glm(glmulti.lm.out@formulas[[1]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[1]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4505  -0.8479  -0.4529   0.1006   2.5452  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -5.1461     1.4602  -3.524 0.000425 ***
## CharlsonIndex   0.4868     0.2008   2.424 0.015330 *  
## Dren            1.8743     1.0807   1.734 0.082860 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 89.974  on 79  degrees of freedom
## Residual deviance: 77.338  on 77  degrees of freedom
## AIC: 83.338
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[2]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[2]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.84886  -0.76896  -0.48080   0.06678   2.59081  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -5.83709    1.62758  -3.586 0.000335 ***
## CharlsonIndex  0.49094    0.20629   2.380 0.017320 *  
## ClampingTime   0.05527    0.04742   1.166 0.243794    
## Dren           1.76099    1.08856   1.618 0.105724    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 89.974  on 79  degrees of freedom
## Residual deviance: 75.942  on 76  degrees of freedom
## AIC: 83.942
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[3]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[3]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.36855  -0.75675  -0.47277  -0.08555   2.57268  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -5.2891     1.5068  -3.510 0.000448 ***
## CharlsonIndex   0.4344     0.2050   2.119 0.034081 *  
## CTdiameter      0.2150     0.2333   0.922 0.356770    
## Dren            1.6080     1.1148   1.442 0.149178    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 89.974  on 79  degrees of freedom
## Residual deviance: 75.985  on 76  degrees of freedom
## AIC: 83.985
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[4]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[4]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.64734  -0.79296  -0.48493   0.09529   2.57356  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -6.2080     1.8426  -3.369 0.000754 ***
## CharlsonIndex   0.4915     0.2067   2.378 0.017418 *  
## RENALscore      0.1935     0.1826   1.060 0.289284    
## Dren            1.5937     1.1131   1.432 0.152231    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 89.974  on 79  degrees of freedom
## Residual deviance: 76.189  on 76  degrees of freedom
## AIC: 84.189
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[5]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[5]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6471  -0.7875  -0.4198   0.1294   2.4056  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -5.9866     1.7526  -3.416 0.000636 ***
## Sex             0.5841     0.6076   0.961 0.336448    
## CharlsonIndex   0.4955     0.2025   2.447 0.014400 *  
## Dren            1.9133     1.0898   1.756 0.079136 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 89.974  on 79  degrees of freedom
## Residual deviance: 76.425  on 76  degrees of freedom
## AIC: 84.425
## 
## Number of Fisher Scoring iterations: 5

Lo mismo, pero usando como variable dependiente ClavienDindoGrade2

glmulti.lm.out <-
    glmulti(ClavienDindoGrade2 ~Sex+ BMI+ CharlsonIndex + TumorSolido+ CTdiameter+RENALscore+OperatorAndTys+Bleeding+ClampingTime+Dren +Handport,
            data = df,
            family = binomial,
            level = 1,               # No interaction considered
            method = "h",            # Exhaustive approach
            crit = "aic",            # AIC as criteria
            confsetsize = 5,         # Keep 5 best models
            plotty = F, report = F,  # No plot or interim reports
)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glmulti.lm.out@formulas
## [[1]]
## ClavienDindoGrade2 ~ 1 + CharlsonIndex + ClampingTime + Handport
## <environment: 0x00000000646ea8b0>
## 
## [[2]]
## ClavienDindoGrade2 ~ 1 + CharlsonIndex + RENALscore + ClampingTime + 
##     Handport
## <environment: 0x00000000646ea8b0>
## 
## [[3]]
## ClavienDindoGrade2 ~ 1 + CharlsonIndex + ClampingTime + Dren + 
##     Handport
## <environment: 0x00000000646ea8b0>
## 
## [[4]]
## ClavienDindoGrade2 ~ 1 + ClampingTime + Handport
## <environment: 0x00000000646ea8b0>
## 
## [[5]]
## ClavienDindoGrade2 ~ 1 + RENALscore + ClampingTime + Handport
## <environment: 0x00000000646ea8b0>

El resumen de estos mejores modelos es:

summary(glm(glmulti.lm.out@formulas[[1]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[1]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.12863  -0.53718  -0.35920  -0.00005   2.07942  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -24.08443 2162.37701  -0.011   0.9911  
## CharlsonIndex    0.40783    0.24959   1.634   0.1023  
## ClampingTime     0.14861    0.06495   2.288   0.0221 *
## Handport        18.51948 2162.37607   0.009   0.9932  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 67.633  on 79  degrees of freedom
## Residual deviance: 50.331  on 76  degrees of freedom
## AIC: 58.331
## 
## Number of Fisher Scoring iterations: 18
summary(glm(glmulti.lm.out@formulas[[2]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[2]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.18227  -0.51141  -0.32456  -0.00004   2.00647  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -25.32316 2116.69043  -0.012   0.9905  
## CharlsonIndex    0.39556    0.26348   1.501   0.1333  
## RENALscore       0.29045    0.26736   1.086   0.2773  
## ClampingTime     0.12327    0.06868   1.795   0.0727 .
## Handport        18.13051 2116.68897   0.009   0.9932  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 67.633  on 79  degrees of freedom
## Residual deviance: 49.090  on 75  degrees of freedom
## AIC: 59.09
## 
## Number of Fisher Scoring iterations: 18
summary(glm(glmulti.lm.out@formulas[[3]],data=df,family=binomial))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[3]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0923  -0.5340  -0.3564   0.0000   2.0260  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -41.22232 4706.11935  -0.009    0.993  
## CharlsonIndex    0.40673    0.24913   1.633    0.103  
## ClampingTime     0.13824    0.06484   2.132    0.033 *
## Dren            16.92883 3396.98652   0.005    0.996  
## Handport        18.96254 3256.99844   0.006    0.995  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 67.633  on 79  degrees of freedom
## Residual deviance: 49.102  on 75  degrees of freedom
## AIC: 59.102
## 
## Number of Fisher Scoring iterations: 19
summary(glm(glmulti.lm.out@formulas[[4]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[4]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.59972  -0.55666  -0.41771  -0.00005   2.10108  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -22.05667 2230.23253  -0.010   0.9921  
## ClampingTime    0.15222    0.06293   2.419   0.0156 *
## Handport       18.44378 2230.23214   0.008   0.9934  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 67.633  on 79  degrees of freedom
## Residual deviance: 53.359  on 77  degrees of freedom
## AIC: 59.359
## 
## Number of Fisher Scoring iterations: 18
summary(glm(glmulti.lm.out@formulas[[5]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[5]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.70974  -0.56704  -0.37078  -0.00004   2.03530  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -23.56600 2162.55295  -0.011   0.9913  
## RENALscore      0.31607    0.24501   1.290   0.1971  
## ClampingTime    0.12860    0.06552   1.963   0.0497 *
## Handport       18.06133 2162.55208   0.008   0.9933  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 67.633  on 79  degrees of freedom
## Residual deviance: 51.588  on 76  degrees of freedom
## AIC: 59.588
## 
## Number of Fisher Scoring iterations: 18

Mejores modelos para Trifecta

glmulti.lm.out <-
    glmulti(Trifecta ~ BMI+ CharlsonIndex +TumorSolido + CTdiameter + RENALscore + OperatorAndTys + Handport,
            data = df,
            family = binomial,
            level = 1,               # No interaction considered
            method = "h",            # Exhaustive approach
            crit = "aic",            # AIC as criteria
            confsetsize = 5,         # Keep 5 best models
            plotty = F, report = F,  # No plot or interim reports
)
glmulti.lm.out@formulas
## [[1]]
## Trifecta ~ 1 + TumorSolido + BMI + CharlsonIndex + CTdiameter
## <environment: 0x00000000623bb0e0>
## 
## [[2]]
## Trifecta ~ 1 + TumorSolido + BMI + CTdiameter
## <environment: 0x00000000623bb0e0>
## 
## [[3]]
## Trifecta ~ 1 + BMI + CharlsonIndex + CTdiameter
## <environment: 0x00000000623bb0e0>
## 
## [[4]]
## Trifecta ~ 1 + TumorSolido + BMI + CharlsonIndex + CTdiameter + 
##     RENALscore
## <environment: 0x00000000623bb0e0>
## 
## [[5]]
## Trifecta ~ 1 + TumorSolido + BMI + CharlsonIndex
## <environment: 0x00000000623bb0e0>

El resumen de estos mejores modelos es:

summary(glm(glmulti.lm.out@formulas[[1]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[1]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1838  -0.8874   0.5752   0.8933   1.6815  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    8.67500    2.55868   3.390 0.000698 ***
## TumorSolido1  -1.18254    0.67075  -1.763 0.077899 .  
## BMI           -0.17204    0.07714  -2.230 0.025731 *  
## CharlsonIndex -0.28816    0.18263  -1.578 0.114617    
## CTdiameter    -0.42274    0.25165  -1.680 0.092989 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 106.819  on 79  degrees of freedom
## Residual deviance:  86.917  on 75  degrees of freedom
## AIC: 96.917
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[2]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[2]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2050  -0.9235   0.5209   0.9080   1.6055  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)   6.76415    2.13638   3.166  0.00154 **
## TumorSolido1 -1.27010    0.66498  -1.910  0.05614 . 
## BMI          -0.14311    0.07123  -2.009  0.04453 * 
## CTdiameter   -0.48669    0.24659  -1.974  0.04842 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 106.819  on 79  degrees of freedom
## Residual deviance:  89.541  on 76  degrees of freedom
## AIC: 97.541
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[3]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[3]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1185  -0.9532   0.5908   0.8800   1.7007  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    8.65716    2.50946   3.450 0.000561 ***
## BMI           -0.20561    0.07402  -2.778 0.005474 ** 
## CharlsonIndex -0.31520    0.17913  -1.760 0.078467 .  
## CTdiameter    -0.35434    0.23962  -1.479 0.139201    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 106.819  on 79  degrees of freedom
## Residual deviance:  90.411  on 76  degrees of freedom
## AIC: 98.411
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[4]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[4]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2864  -0.8861   0.5107   0.9119   1.5844  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    9.22122    2.73045   3.377 0.000732 ***
## TumorSolido1  -1.17804    0.66862  -1.762 0.078086 .  
## BMI           -0.17387    0.07762  -2.240 0.025082 *  
## CharlsonIndex -0.27954    0.18540  -1.508 0.131606    
## CTdiameter    -0.34974    0.26923  -1.299 0.193930    
## RENALscore    -0.11624    0.17157  -0.678 0.498071    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 106.819  on 79  degrees of freedom
## Residual deviance:  86.457  on 74  degrees of freedom
## AIC: 98.457
## 
## Number of Fisher Scoring iterations: 5
summary(glm(glmulti.lm.out@formulas[[5]],data=df,family=binomial))
## 
## Call:
## glm(formula = glmulti.lm.out@formulas[[5]], family = binomial, 
##     data = df)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1048  -1.0359   0.6037   0.8777   2.0074  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    8.41921    2.46081   3.421 0.000623 ***
## TumorSolido1  -0.91737    0.61097  -1.501 0.133227    
## BMI           -0.19762    0.07513  -2.630 0.008531 ** 
## CharlsonIndex -0.37923    0.17524  -2.164 0.030456 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 106.819  on 79  degrees of freedom
## Residual deviance:  90.633  on 76  degrees of freedom
## AIC: 98.633
## 
## Number of Fisher Scoring iterations: 4

Reservado para estudiar interacciones. De momento no hacemos nada

Cualquiera de esos modelos se puede defender si se encuentra una idea.

Hay modelos que son más complicados de explicar, pero que puede ser conveniente explorar. Aquellos donde hay interacciones entre pares de variables. Podrían decir que eso es ir de pesca, y sin justificación, la verdad es que algo de razón tienen. Pero bueno, ahora estamos explorando a ver qué ideas surgen, así que vamos a ello, pero limitándonos a las variales que han aparecido en la etapa anterior

ComplicationYN ~ Sex + BMI + CharlsonIndex + RENALscore + Age+ClampingTime

glmulti.lm.out@formulas
## [[1]]
## Trifecta ~ 1 + Diameter + Diameter:BMI + Diameter:CharlsonIndex + 
##     TumorSolido:Diameter
## <environment: 0x000000007db91ce8>
## 
## [[2]]
## Trifecta ~ 1 + CharlsonIndex + Diameter + Diameter:BMI + TumorSolido:Diameter
## <environment: 0x000000007db91ce8>
## 
## [[3]]
## Trifecta ~ 1 + CharlsonIndex + Diameter + Diameter:BMI + TumorSolido:CharlsonIndex
## <environment: 0x000000007db91ce8>
## 
## [[4]]
## Trifecta ~ 1 + BMI + Diameter + Diameter:BMI + Diameter:CharlsonIndex + 
##     TumorSolido:Diameter
## <environment: 0x000000007db91ce8>
## 
## [[5]]
## Trifecta ~ 1 + BMI + Diameter + CharlsonIndex:BMI + Diameter:BMI + 
##     TumorSolido:Diameter
## <environment: 0x000000007db91ce8>