今回の課題

  1. 学級規模に関係なく,どこで学力差が生じるのか
  2. (a)は学級規模で説明されるのか
  3. 学力の変動の大きさは,prior achievementで説明されるのか
  4. (a)に対する(b)と(c)の交互作用は見られるか

とりあえず国語をやってる

NRTデータを読み込む

setwd("/Users/koyo/Dropbox/000078_CSKAKEN/04_NRT/SY2018")
nrt.all <- read.csv("nrt.csv", fileEncoding = "Shift_JIS") 
setwd("/Users/koyo/Dropbox/000078_CSKAKEN/190700_Anal")

国語のデータに限定する

nrt.koku <- nrt.all %>%
              dplyr::select(c("renban", "sho.sid",
                              "koku.ss.1213", #1-2年生追加
                              "koku.ss.1314", 
                              "koku.ss.1415", 
                              "koku.ss.1516",  
                              "koku.ss.1617",
                              "koku.ss.1718" #6-7年生追加
                              ))

colnames(nrt.koku) <- c("renban", "sid",
                         "g12.koku",
                         "g23.koku",
                         "g34.koku",
                         "g45.koku",
                         "g56.koku",
                         "g67.koku"
                         )
nrt.koku <- nrt.koku%>%
  mutate(id = row_number())
# write.csv(nrt.koku, "nrt_koku.csv")

全体について,学年間の分散比を求めてみる

library(psych)
g12.ds <- describe(nrt.koku$g12.koku)
g23.ds <- describe(nrt.koku$g23.koku)
g34.ds <- describe(nrt.koku$g34.koku)
g45.ds <- describe(nrt.koku$g45.koku)
g56.ds <- describe(nrt.koku$g56.koku)
g67.ds <- describe(nrt.koku$g67.koku)

#平均差と分散比
d23 <- matrix(c(g23.ds[,3] - g12.ds[,3], g23.ds[,4]^2 / g12.ds[,4]^2), nrow=1, ncol=2)
d34<- matrix(c(g34.ds[,3] - g23.ds[,3], g34.ds[,4]^2 / g23.ds[,4]^2), nrow=1, ncol=2)
d45<- matrix(c(g45.ds[,3] - g34.ds[,3], g45.ds[,4]^2 / g34.ds[,4]^2), nrow=1, ncol=2)
d56 <- matrix(c(g56.ds[,3] - g45.ds[,3], g56.ds[,4]^2 / g45.ds[,4]^2), nrow=1, ncol=2)
d67 <- matrix(c(g67.ds[,3] - g56.ds[,3], g67.ds[,4]^2 / g56.ds[,4]^2), nrow=1, ncol=2)

diff.1 <- rbind(d23, d34, d45, d56, d67)
colnames(diff.1) <- c("M.Diff", "V.Ratio")
rownames(diff.1) <- c("d23", "d34", "d45", "d56", "d67")
diff.1
##           M.Diff   V.Ratio
## d23 -0.394416929 0.9156668
## d34  0.122917605 1.3135990
## d45 -0.330789788 0.9198229
## d56 -0.509411453 0.7934490
## d67  0.003895468 1.4200221

標準偏差を求めてみる

sd2 <- g12.ds[,4]
sd3 <- g23.ds[,4]
sd4 <- g34.ds[,4]
sd5 <- g45.ds[,4]
sd6 <- g56.ds[,4]
sd7 <- g67.ds[,4]

sd.1 <- matrix(c(sd2, sd3, sd4, sd5, sd6, sd7), nrow=6, ncol=1)
colnames(sd.1) <- c("sd")
rownames(sd.1) <- c("1-2","2-3","3-4","4-5","5-6","6-7")

sd.1
##           sd
## 1-2 8.804191
## 2-3 8.424773
## 3-4 9.655830
## 4-5 9.260656
## 5-6 8.248999
## 6-7 9.829893

標準偏差の学年間の比を求めてみる

sd.ratio23 <- sd.1[2]/ sd.1[1]
sd.ratio34 <- sd.1[3]/ sd.1[2]
sd.ratio45 <- sd.1[4]/ sd.1[3]
sd.ratio56 <- sd.1[5]/ sd.1[4]
sd.ratio67 <- sd.1[6]/ sd.1[5]

sd.ratio1 <- matrix(c(sd.ratio23, sd.ratio34, sd.ratio45, sd.ratio56, sd.ratio67), nrow=5, ncol=1)
colnames(sd.ratio1) <- c("sd.rario")
rownames(sd.ratio1) <- c("2-3", "3-4","4-5","5-6", "6-7")

sd.ratio1
##      sd.rario
## 2-3 0.9569048
## 3-4 1.1461235
## 4-5 0.9590740
## 5-6 0.8907575
## 6-7 1.1916468

学校ごとに標準偏差を求める

g12.mean <- nrt.koku[c("sid", "g12.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(avg.12 = mean(g12.koku))
g12.sd <- nrt.koku[c("sid", "g12.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(sd.12 = sd(g12.koku))
g12.msd <-data.frame(dplyr::inner_join(g12.mean, g12.sd, by = "sid"))

g23.mean <- nrt.koku[c("sid", "g23.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(avg.23 = mean(g23.koku))
g23.sd <- nrt.koku[c("sid", "g23.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(sd.23 = sd(g23.koku))
g23.msd <-data.frame(dplyr::inner_join(g23.mean, g23.sd, by = "sid"))

g34.mean <- nrt.koku[c("sid", "g34.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(avg.34 = mean(g34.koku))
g34.sd <- nrt.koku[c("sid", "g34.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(sd.34 = sd(g34.koku))
g34.msd <-data.frame(dplyr::inner_join(g34.mean, g34.sd, by = "sid"))

g45.mean <- nrt.koku[c("sid", "g45.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(avg.45 = mean(g45.koku))
g45.sd <- nrt.koku[c("sid", "g45.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(sd.45 = sd(g45.koku))
g45.msd <-data.frame(dplyr::inner_join(g45.mean, g45.sd, by = "sid"))

g56.mean <- nrt.koku[c("sid", "g56.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(avg.56 = mean(g56.koku))
g56.sd <- nrt.koku[c("sid", "g56.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(sd.56 = sd(g56.koku))
g56.msd <-data.frame(dplyr::inner_join(g56.mean, g56.sd, by = "sid"))

g67.mean <- nrt.koku[c("sid", "g67.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(avg.67 = mean(g67.koku))
g67.sd <- nrt.koku[c("sid", "g67.koku")] %>% na.omit() %>% group_by(sid) %>% summarise(sd.67 = sd(g67.koku))
g67.msd <-data.frame(dplyr::inner_join(g67.mean, g67.sd, by = "sid"))

g123.msd <- data.frame(dplyr::full_join(g12.msd, g23.msd, by = "sid"))
g1234.msd <- data.frame(dplyr::full_join(g123.msd, g34.msd, by = "sid"))
g12345.msd <- data.frame(dplyr::full_join(g1234.msd, g45.msd, by = "sid"))
g123456.msd <- data.frame(dplyr::full_join(g12345.msd, g56.msd, by = "sid"))
g17.msd <- data.frame(dplyr::full_join(g123456.msd, g67.msd, by = "sid"))

g17.msd <- g17.msd %>% dplyr::mutate(sdr.23 =  sd.23 / sd.12)
g17.msd <- g17.msd %>% dplyr::mutate(sdr.34 =  sd.34 / sd.23)
g17.msd <- g17.msd %>% dplyr::mutate(sdr.45 =  sd.45 / sd.34)
g17.msd <- g17.msd %>% dplyr::mutate(sdr.56 =  sd.56 / sd.45)
g17.msd <- g17.msd %>% dplyr::mutate(sdr.67 =  sd.67 / sd.56)


#head(g16.msd)

hist(g17.msd$sdr.23, breaks=seq(0,4,0.2), main="sdr.23", xlab="sd_ato / sd_mae", ylim=c(0,120), xlim=c(0,4))

hist(g17.msd$sdr.34, breaks=seq(0,4,0.2), main="sdr.34", xlab="sd_ato / sd_mae", ylim=c(0,120), xlim=c(0,4))

hist(g17.msd$sdr.45, breaks=seq(0,4,0.2), main="sdr.45", xlab="sd_ato / sd_mae", ylim=c(0,120), xlim=c(0,4))

hist(g17.msd$sdr.56, breaks=seq(0,4,0.2), main="sdr.56", xlab="sd_ato / sd_mae", ylim=c(0,120), xlim=c(0,4))

hist(g17.msd$sdr.67, breaks=seq(0,4,0.2), main="sdr.67", xlab="sd_ato / sd_mae", ylim=c(0,120), xlim=c(0,4))

plot(g12.msd$avg.12, g12.msd$sd.12, xlim = c(30, 70), ylim = c(0,20), main = "Correl of SS and SD (g12)")

plot(g23.msd$avg.23, g23.msd$sd.23, xlim = c(30, 70), ylim = c(0,20), main = "Correl of SS and SD (g23)")

plot(g34.msd$avg.34, g34.msd$sd.34, xlim = c(30, 70), ylim = c(0,20), main = "Correl of SS and SD (g34)")

plot(g45.msd$avg.45, g45.msd$sd.45, xlim = c(30, 70), ylim = c(0,20), main = "Correl of SS and SD (g45)")

plot(g56.msd$avg.56, g56.msd$sd.56, xlim = c(30, 70), ylim = c(0,20), main = "Correl of SS and SD (g56)")

plot(g67.msd$avg.67, g67.msd$sd.67, xlim = c(30, 70), ylim = c(0,20), main = "Correl of SS and SD (g67)")

## 学級規模データの読み込み

setwd("/Users/koyo/Dropbox/000078_CSKAKEN/01_CSNC")
csnc.all <- read_excel("sho_csnc.xlsx")

# 学校データ整形
setwd("/Users/koyo/Dropbox/000078_CSKAKEN/190700_Anal")
#### 統廃合のない学校のみを対象 複式設置校を除外
csnc.taisho_ <- dplyr::filter(csnc.all, taisho.g1 == 1 &
                          togo == 0 & nonrt == 0 & fuku == 0)

# 学校データを数値型にする
csnc.taisho <- select(csnc.taisho_,(c("taisho", "sid.new", 
                                  "nc.g1", "csmean.g1",
                                  "nc.g2", "csmean.g2",
                                  "nc.g3", "csmean.g3",
                                  "nc.g4", "csmean.g4",
                                  "nc.g5", "csmean.g5",
                                  "nc.g6", "csmean.g6"
                                  )))
csnc.taisho$taisho <- as.numeric(csnc.taisho$taisho)
csnc.taisho$sid.new <- as.numeric(csnc.taisho$sid.new)

csnc.taisho$nc.g1     <- as.numeric(csnc.taisho$nc.g1)
csnc.taisho$csmean.g1 <- as.numeric(csnc.taisho$csmean.g1)
csnc.taisho$nc.g2     <- as.numeric(csnc.taisho$nc.g2)
csnc.taisho$csmean.g2 <- as.numeric(csnc.taisho$csmean.g2)
csnc.taisho$nc.g3     <- as.numeric(csnc.taisho$nc.g3)
csnc.taisho$csmean.g3 <- as.numeric(csnc.taisho$csmean.g3)
csnc.taisho$nc.g4     <- as.numeric(csnc.taisho$nc.g4)
csnc.taisho$csmean.g4 <- as.numeric(csnc.taisho$csmean.g4)
csnc.taisho$nc.g5     <- as.numeric(csnc.taisho$nc.g5)
csnc.taisho$csmean.g5 <- as.numeric(csnc.taisho$csmean.g5)
csnc.taisho$nc.g6     <- as.numeric(csnc.taisho$nc.g6)
csnc.taisho$csmean.g6 <- as.numeric(csnc.taisho$csmean.g6)

csnc.nona <- na.omit(csnc.taisho)
colnames(csnc.nona) <- c("taisho", "sid", 
                         "nc.g1", "cs.g1",
                         "nc.g2", "cs.g2",
                         "nc.g3", "cs.g3",
                         "nc.g4", "cs.g4",
                         "nc.g5", "cs.g5",
                         "nc.g6", "cs.g6"
                        )
csnc <- csnc.nona[,2:14]

## 学級規模を中心化する
### 各学年での平均
cs.m.g1 <- mean(csnc$cs.g1)
cs.m.g2 <- mean(csnc$cs.g2)
cs.m.g3 <- mean(csnc$cs.g3)
cs.m.g4 <- mean(csnc$cs.g4)
cs.m.g5 <- mean(csnc$cs.g5)
cs.m.g6 <- mean(csnc$cs.g6)

### 各学年の平均の平均
csm <- matrix(c(cs.m.g1, cs.m.g2, cs.m.g3, cs.m.g4, cs.m.g5, cs.m.g6), nrow=6, ncol=1)

csnc$cs.c.g1 <- csnc$cs.g1 -  mean(csm)
csnc$cs.c.g2 <- csnc$cs.g2 -  mean(csm)
csnc$cs.c.g3 <- csnc$cs.g3 -  mean(csm)
csnc$cs.c.g4 <- csnc$cs.g4 -  mean(csm)
csnc$cs.c.g5 <- csnc$cs.g5 -  mean(csm)
csnc$cs.c.g6 <- csnc$cs.g6 -  mean(csm)

## 学級規模変動差分データ列作成
csnc$cs.d12 <- csnc$cs.g2 - csnc$cs.g1 
csnc$cs.d23 <- csnc$cs.g3 - csnc$cs.g2 
csnc$cs.d34 <- csnc$cs.g4 - csnc$cs.g3 
csnc$cs.d45 <- csnc$cs.g5 - csnc$cs.g4 
csnc$cs.d56 <- csnc$cs.g6 - csnc$cs.g5 

学級規模データと学校ごとの標準偏差データを結合する

# 2-3年生
cs.23 <- csnc[c("sid", "nc.g2", "cs.g2", "cs.c.g2", "cs.d12")]
sdr.23 <- g17.msd[c("sid", "avg.12", "avg.23", "sdr.23")]
cs.sdr.23<-na.omit(data.frame(dplyr::inner_join(cs.23, sdr.23, by = "sid")))

#3-4年生
cs.34 <- csnc[c("sid", "nc.g3", "cs.g3", "cs.c.g3", "cs.d23")]
sdr.34 <- g17.msd[c("sid", "avg.23", "avg.34", "sdr.34")]
cs.sdr.34<-na.omit(data.frame(dplyr::inner_join(cs.34, sdr.34, by = "sid")))

# 4-5年生
cs.45 <- csnc[c("sid", "nc.g4", "cs.g4", "cs.c.g4", "cs.d34")]
sdr.45 <- g17.msd[c("sid", "avg.34", "avg.45", "sdr.45")]
cs.sdr.45<-na.omit(data.frame(dplyr::inner_join(cs.45, sdr.45, by = "sid")))

# 5-6年生
cs.56 <- csnc[c("sid", "nc.g5", "cs.g5", "cs.c.g5", "cs.d45")]
sdr.56 <- g17.msd[c("sid", "avg.45", "avg.56", "sdr.56")]
cs.sdr.56<-na.omit(data.frame(dplyr::inner_join(cs.56, sdr.56, by = "sid")))

# 6-7年生
cs.67 <- csnc[c("sid", "nc.g6", "cs.g6", "cs.c.g6", "cs.d56")]
sdr.67 <- g17.msd[c("sid", "avg.56", "avg.67", "sdr.67")]
cs.sdr.67<-na.omit(data.frame(dplyr::inner_join(cs.67, sdr.67, by = "sid")))

学級規模と標準偏差比の散布図を描いてみる

#plot(cs.cvr.12$cs.g2, cs.cvr.12$cvr.12, xlim = c(0, 50), ylim = c(0,3), main = "cs.cvr.23")
plot(cs.sdr.23$cs.g2, cs.sdr.23$sdr.23, xlim = c(0, 50), ylim = c(0,3), main = "cs.sdr.23")

plot(cs.sdr.34$cs.g3, cs.sdr.34$sdr.34, xlim = c(0, 50), ylim = c(0,3), main = "cs.sdr.34")

plot(cs.sdr.45$cs.g4, cs.sdr.45$sdr.45, xlim = c(0, 50), ylim = c(0,3), main = "cs.sdr.45")

plot(cs.sdr.56$cs.g5, cs.sdr.56$sdr.56, xlim = c(0, 50), ylim = c(0,3), main = "cs.sdr.56")

plot(cs.sdr.67$cs.g6, cs.sdr.67$sdr.67, xlim = c(0, 50), ylim = c(0,3), main = "cs.sdr.67")

学級規模の変動と標準偏差比の散布図を描いてみる

plot(cs.sdr.23$cs.d12, cs.sdr.23$sdr.23, xlim = c(-15, 15), ylim = c(0,3), main = "cs_d.sdr.23")

plot(cs.sdr.34$cs.d23, cs.sdr.34$sdr.34, xlim = c(-15, 15), ylim = c(0,3), main = "cs_d.sdr.34")

plot(cs.sdr.45$cs.d34, cs.sdr.45$sdr.45, xlim = c(-15, 15), ylim = c(0,3), main = "cs_d.sdr.45")

plot(cs.sdr.56$cs.d45, cs.sdr.56$sdr.56, xlim = c(-15, 15), ylim = c(0,3), main = "cs_d.sdr.56")

plot(cs.sdr.67$cs.d56, cs.sdr.67$sdr.67, xlim = c(-15, 15), ylim = c(0,3), main = "cs_d.sdr.56")

以下のことを検討する

  1. 標準偏差比は学級規模で説明されるのか
  2. 標準偏差比は,prior achievementで説明されるのか
  3. 標準偏差比の大きさに対する(a)と(b)の交互作用は見られるか
# 学級規模の中心化
cs.sdr.23$cs.c.g2 <- cs.sdr.23$cs.g2 - mean(cs.sdr.23$cs.g2)
cs.sdr.34$cs.c.g3 <- cs.sdr.34$cs.g3 - mean(cs.sdr.34$cs.g3)
cs.sdr.45$cs.c.g4 <- cs.sdr.45$cs.g4 - mean(cs.sdr.45$cs.g4)
cs.sdr.56$cs.c.g5 <- cs.sdr.56$cs.g5 - mean(cs.sdr.56$cs.g5)
cs.sdr.67$cs.c.g6 <- cs.sdr.67$cs.g6 - mean(cs.sdr.67$cs.g6)

# Prior achievementの中心化
cs.sdr.23$avg.c.12 <- cs.sdr.23$avg.12 - mean(cs.sdr.23$avg.12)
cs.sdr.34$avg.c.23 <- cs.sdr.34$avg.23 - mean(cs.sdr.34$avg.23)
cs.sdr.45$avg.c.34 <- cs.sdr.45$avg.34 - mean(cs.sdr.45$avg.34)
cs.sdr.56$avg.c.45 <- cs.sdr.56$avg.45 - mean(cs.sdr.56$avg.45)
cs.sdr.67$avg.c.56 <- cs.sdr.67$avg.56 - mean(cs.sdr.67$avg.56)

head(cs.sdr.23)
##      sid nc.g2 cs.g2    cs.c.g2 cs.d12   avg.12   avg.23    sdr.23
## 34 18034     2  32.5 10.0368056      0 49.71429 51.42857 1.0038162
## 35 18035     1  23.0  0.5368056      0 50.31818 52.36364 0.8472441
## 36 18036     4  27.5  5.0368056      0 53.63636 52.81818 0.9290338
## 37 18037     1  18.0 -4.4631944      0 54.35714 53.85714 0.9225696
## 38 18050     3  26.0  3.5368056      0 51.43662 48.88732 0.9391956
## 39 18051     2  25.5  3.0368056      0 49.60417 52.66667 0.7812879
##      avg.c.12
## 34 -4.2219832
## 35 -3.6180871
## 36 -0.2999053
## 37  0.4208740
## 38 -2.4996492
## 39 -4.3321022

Prior achievementと標準偏差比の散布図を描いてみる

plot(cs.sdr.23$avg.c.12, cs.sdr.23$sdr.23, xlim = c(-15, 15), ylim = c(0,3), main = "Prior_1, sdr.23")

plot(cs.sdr.34$avg.c.23, cs.sdr.34$sdr.34, xlim = c(-15, 15), ylim = c(0,3), main = "Prior_2, sdr.34")

plot(cs.sdr.45$avg.c.34, cs.sdr.45$sdr.45, xlim = c(-15, 15), ylim = c(0,3), main = "Prior_3, sdr.45")

plot(cs.sdr.56$avg.c.45, cs.sdr.56$sdr.56, xlim = c(-15, 15), ylim = c(0,3), main = "Prior_4, sdr.56")

plot(cs.sdr.67$avg.c.56, cs.sdr.67$sdr.67, xlim = c(-15, 15), ylim = c(0,3), main = "Prior_5, sdr.56")

回帰分析をしてみる

# 2年生終了時
library(brms)
## Loading required package: Rcpp
## Loading required package: ggplot2
## 
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
## 
##     %+%, alpha
## Loading 'brms' package (version 2.7.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## Run theme_set(theme_default()) to use the default bayesplot theme.
## 
## Attaching package: 'brms'
## The following object is masked from 'package:psych':
## 
##     cs
res.23 <- brm(sdr.23 ~ cs.c.g2 + avg.c.12 + cs.c.g2:avg.c.12, 
                         data =cs.sdr.23,
               prior   = c(set_prior("normal(0,10)", class = "b")), 
               chains  = 4,
               iter    = 10000,
               warmup  = 3000
                         )
## Compiling the C++ model
## Start sampling
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 3.6e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.36 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 1: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 1: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.291242 seconds (Warm-up)
## Chain 1:                0.399749 seconds (Sampling)
## Chain 1:                0.690991 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 1.3e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 2: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 2: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.302848 seconds (Warm-up)
## Chain 2:                0.383131 seconds (Sampling)
## Chain 2:                0.685979 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 1.5e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 3: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 3: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.279913 seconds (Warm-up)
## Chain 3:                0.38354 seconds (Sampling)
## Chain 3:                0.663453 seconds (Total)
## Chain 3: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 4).
## Chain 4: 
## Chain 4: Gradient evaluation took 1.3e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4: 
## Chain 4: 
## Chain 4: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 4: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 4: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 4: 
## Chain 4:  Elapsed Time: 0.299395 seconds (Warm-up)
## Chain 4:                0.38392 seconds (Sampling)
## Chain 4:                0.683315 seconds (Total)
## Chain 4:
print(res.23, digits = 3)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sdr.23 ~ cs.c.g2 + avg.c.12 + cs.c.g2:avg.c.12 
##    Data: cs.sdr.23 (Number of observations: 120) 
## Samples: 4 chains, each with iter = 10000; warmup = 3000; thin = 1;
##          total post-warmup samples = 28000
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept           0.976     0.019    0.939    1.013      31735 1.000
## cs.c.g2             0.006     0.003    0.001    0.012      32639 1.000
## avg.c.12            0.031     0.007    0.018    0.044      32720 1.000
## cs.c.g2:avg.c.12   -0.002     0.001   -0.004    0.000      37856 1.000
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sigma    0.204     0.014    0.180    0.233      29314 1.000
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
# 3年生終了時
res.34 <- brm(sdr.34 ~ cs.c.g3 + avg.c.23 + cs.c.g3:avg.c.23, 
                         data =cs.sdr.34,
               prior   = c(set_prior("normal(0,10)", class = "b")), 
               chains  = 4,
               iter    = 10000,
               warmup  = 3000
                         )
## Compiling the C++ model
## recompiling to avoid crashing R session
## Start sampling
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 3.3e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.33 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 1: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 1: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.33196 seconds (Warm-up)
## Chain 1:                0.416522 seconds (Sampling)
## Chain 1:                0.748482 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 1.3e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 2: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 2: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.315032 seconds (Warm-up)
## Chain 2:                0.390247 seconds (Sampling)
## Chain 2:                0.705279 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 2.1e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 3: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 3: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.33769 seconds (Warm-up)
## Chain 3:                0.390538 seconds (Sampling)
## Chain 3:                0.728228 seconds (Total)
## Chain 3: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 4).
## Chain 4: 
## Chain 4: Gradient evaluation took 1.2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.12 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4: 
## Chain 4: 
## Chain 4: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 4: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 4: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 4: 
## Chain 4:  Elapsed Time: 0.323551 seconds (Warm-up)
## Chain 4:                0.391753 seconds (Sampling)
## Chain 4:                0.715304 seconds (Total)
## Chain 4:
print(res.34, digits = 3)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sdr.34 ~ cs.c.g3 + avg.c.23 + cs.c.g3:avg.c.23 
##    Data: cs.sdr.34 (Number of observations: 120) 
## Samples: 4 chains, each with iter = 10000; warmup = 3000; thin = 1;
##          total post-warmup samples = 28000
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept           1.191     0.016    1.159    1.222      29863 1.000
## cs.c.g3            -0.000     0.002   -0.005    0.004      35506 1.000
## avg.c.23            0.043     0.006    0.031    0.056      29353 1.000
## cs.c.g3:avg.c.23   -0.001     0.001   -0.003    0.001      35942 1.000
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sigma    0.172     0.012    0.151    0.197      26503 1.000
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
# 4年生終了時
res.45 <- brm(sdr.45 ~ cs.c.g4 + avg.c.34 + cs.c.g4:avg.c.34, 
                         data =cs.sdr.45,
               prior   = c(set_prior("normal(0,10)", class = "b")), 
               chains  = 4,
               iter    = 10000,
               warmup  = 3000
                         )
## Compiling the C++ model
## recompiling to avoid crashing R session
## Start sampling
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 3.4e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.34 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 1: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 1: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.393317 seconds (Warm-up)
## Chain 1:                0.551644 seconds (Sampling)
## Chain 1:                0.944961 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 3.1e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.31 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 2: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 2: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.414474 seconds (Warm-up)
## Chain 2:                0.502526 seconds (Sampling)
## Chain 2:                0.917 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 1.4e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 3: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 3: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.390548 seconds (Warm-up)
## Chain 3:                0.567001 seconds (Sampling)
## Chain 3:                0.957549 seconds (Total)
## Chain 3: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 4).
## Chain 4: 
## Chain 4: Gradient evaluation took 1.4e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4: 
## Chain 4: 
## Chain 4: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 4: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 4: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 4: 
## Chain 4:  Elapsed Time: 0.467362 seconds (Warm-up)
## Chain 4:                0.718661 seconds (Sampling)
## Chain 4:                1.18602 seconds (Total)
## Chain 4:
print(res.45, digits = 3)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sdr.45 ~ cs.c.g4 + avg.c.34 + cs.c.g4:avg.c.34 
##    Data: cs.sdr.45 (Number of observations: 120) 
## Samples: 4 chains, each with iter = 10000; warmup = 3000; thin = 1;
##          total post-warmup samples = 28000
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept           0.958     0.016    0.926    0.990      22015 1.000
## cs.c.g4            -0.001     0.002   -0.005    0.004      29249 1.000
## avg.c.34            0.009     0.005   -0.001    0.019      23749 1.000
## cs.c.g4:avg.c.34    0.000     0.001   -0.001    0.002      35218 1.000
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sigma    0.174     0.012    0.153    0.199      22084 1.000
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
# 5年生終了時
res.56 <- brm(sdr.56 ~ cs.c.g5 + avg.c.45 + cs.c.g5:avg.c.45, 
                         data =cs.sdr.56,
               prior   = c(set_prior("normal(0,10)", class = "b")), 
               chains  = 4,
               iter    = 10000,
               warmup  = 3000
                         )
## Compiling the C++ model
## recompiling to avoid crashing R session
## Start sampling
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 3.6e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.36 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 1: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 1: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.631606 seconds (Warm-up)
## Chain 1:                0.813184 seconds (Sampling)
## Chain 1:                1.44479 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 2.4e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.24 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 2: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 2: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.585714 seconds (Warm-up)
## Chain 2:                0.809884 seconds (Sampling)
## Chain 2:                1.3956 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 1.6e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.16 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 3: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 3: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.629614 seconds (Warm-up)
## Chain 3:                0.775245 seconds (Sampling)
## Chain 3:                1.40486 seconds (Total)
## Chain 3: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 4).
## Chain 4: 
## Chain 4: Gradient evaluation took 1.4e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.14 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4: 
## Chain 4: 
## Chain 4: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 4: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 4: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 4: 
## Chain 4:  Elapsed Time: 0.616447 seconds (Warm-up)
## Chain 4:                0.878856 seconds (Sampling)
## Chain 4:                1.4953 seconds (Total)
## Chain 4:
print(res.56, digits = 3)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sdr.56 ~ cs.c.g5 + avg.c.45 + cs.c.g5:avg.c.45 
##    Data: cs.sdr.56 (Number of observations: 170) 
## Samples: 4 chains, each with iter = 10000; warmup = 3000; thin = 1;
##          total post-warmup samples = 28000
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept           0.898     0.009    0.881    0.915      21474 1.000
## cs.c.g5            -0.001     0.001   -0.004    0.001      33082 1.000
## avg.c.45            0.003     0.003   -0.003    0.010      23171 1.000
## cs.c.g5:avg.c.45   -0.000     0.000   -0.001    0.001      30062 1.000
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sigma    0.113     0.006    0.101    0.126      20098 1.000
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).
# 6年生終了時
res.67 <- brm(sdr.67 ~ cs.c.g6 + avg.c.56 + cs.c.g6:avg.c.56, 
                         data =cs.sdr.67,
               prior   = c(set_prior("normal(0,10)", class = "b")), 
               chains  = 4,
               iter    = 10000,
               warmup  = 3000
                         )
## Compiling the C++ model
## recompiling to avoid crashing R session
## Start sampling
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 1).
## Chain 1: 
## Chain 1: Gradient evaluation took 2.9e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.29 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1: 
## Chain 1: 
## Chain 1: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 1: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 1: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 1: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 1: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 1: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 1: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 1: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 1: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 1: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 1: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 1: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 1: 
## Chain 1:  Elapsed Time: 0.412625 seconds (Warm-up)
## Chain 1:                0.728523 seconds (Sampling)
## Chain 1:                1.14115 seconds (Total)
## Chain 1: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 2).
## Chain 2: 
## Chain 2: Gradient evaluation took 1.5e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2: 
## Chain 2: 
## Chain 2: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 2: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 2: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 2: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 2: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 2: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 2: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 2: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 2: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 2: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 2: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 2: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 2: 
## Chain 2:  Elapsed Time: 0.450087 seconds (Warm-up)
## Chain 2:                0.662519 seconds (Sampling)
## Chain 2:                1.11261 seconds (Total)
## Chain 2: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 3).
## Chain 3: 
## Chain 3: Gradient evaluation took 1.5e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.15 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3: 
## Chain 3: 
## Chain 3: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 3: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 3: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 3: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 3: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 3: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 3: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 3: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 3: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 3: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 3: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 3: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 3: 
## Chain 3:  Elapsed Time: 0.449351 seconds (Warm-up)
## Chain 3:                0.613056 seconds (Sampling)
## Chain 3:                1.06241 seconds (Total)
## Chain 3: 
## 
## SAMPLING FOR MODEL 'd35359081d7733aebc9e00ac9119bde7' NOW (CHAIN 4).
## Chain 4: 
## Chain 4: Gradient evaluation took 1.3e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4: 
## Chain 4: 
## Chain 4: Iteration:    1 / 10000 [  0%]  (Warmup)
## Chain 4: Iteration: 1000 / 10000 [ 10%]  (Warmup)
## Chain 4: Iteration: 2000 / 10000 [ 20%]  (Warmup)
## Chain 4: Iteration: 3000 / 10000 [ 30%]  (Warmup)
## Chain 4: Iteration: 3001 / 10000 [ 30%]  (Sampling)
## Chain 4: Iteration: 4000 / 10000 [ 40%]  (Sampling)
## Chain 4: Iteration: 5000 / 10000 [ 50%]  (Sampling)
## Chain 4: Iteration: 6000 / 10000 [ 60%]  (Sampling)
## Chain 4: Iteration: 7000 / 10000 [ 70%]  (Sampling)
## Chain 4: Iteration: 8000 / 10000 [ 80%]  (Sampling)
## Chain 4: Iteration: 9000 / 10000 [ 90%]  (Sampling)
## Chain 4: Iteration: 10000 / 10000 [100%]  (Sampling)
## Chain 4: 
## Chain 4:  Elapsed Time: 0.451808 seconds (Warm-up)
## Chain 4:                0.462352 seconds (Sampling)
## Chain 4:                0.91416 seconds (Total)
## Chain 4:
print(res.67, digits = 3)
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: sdr.67 ~ cs.c.g6 + avg.c.56 + cs.c.g6:avg.c.56 
##    Data: cs.sdr.67 (Number of observations: 170) 
## Samples: 4 chains, each with iter = 10000; warmup = 3000; thin = 1;
##          total post-warmup samples = 28000
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## Intercept           1.218     0.014    1.191    1.245      24008 1.000
## cs.c.g6            -0.001     0.002   -0.005    0.002      32114 1.000
## avg.c.56            0.006     0.006   -0.005    0.018      24127 1.000
## cs.c.g6:avg.c.56   -0.000     0.001   -0.001    0.001      34979 1.000
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Eff.Sample  Rhat
## sigma    0.171     0.009    0.154    0.191      22950 1.000
## 
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample 
## is a crude measure of effective sample size, and Rhat is the potential 
## scale reduction factor on split chains (at convergence, Rhat = 1).