The analysis is to find which product have more revenues and which product have more sales in which country.
Load the data
head(product, 10)
## Continent Product Revenue
## 1 South America Product C 719.1
## 2 Asia Product C 833.6
## 3 South America Product A 468.5
## 4 Australia Product A 873.5
## 5 South America Product A 543.5
## 6 Europe Product A 941.5
## 7 Australia Product B 1277.0
## 8 Africa Product B 534.5
## 9 Asia Product C 789.0
## 10 South America Product B 412.9
str(product)
## 'data.frame': 1000 obs. of 3 variables:
## $ Continent: Factor w/ 6 levels "Africa","Asia",..: 6 2 6 3 6 4 3 1 2 6 ...
## $ Product : Factor w/ 3 levels "Product A","Product B",..: 3 3 1 1 1 1 2 2 3 2 ...
## $ Revenue : num 719 834 468 874 544 ...
summary(product)
## Continent Product Revenue
## Africa :167 Product A:401 Min. : 154
## Asia :186 Product B:396 1st Qu.: 525
## Australia :148 Product C:203 Median : 716
## Europe :173 Mean : 742
## North America:167 3rd Qu.: 937
## South America:159 Max. :1489
Check the boxplot
boxplot(Revenue ~ Continent + Product + Continent*Product, data = product)
We ran ANOVA
product_aov <- aov(Revenue ~ Continent + Product + Continent*Product, data = product)
summary(product_aov)
## Df Sum Sq Mean Sq F value Pr(>F)
## Continent 5 42654998 8531000 323.35 <2e-16 ***
## Product 2 55901 27950 1.06 0.35
## Continent:Product 9 85220 9469 0.36 0.95
## Residuals 983 25934805 26383
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Since the interaction between Continent and Product is not significant. We’ll stop the analysis here.