los packages

library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
package 'ggplot2' was built under R version 3.4.4package 'dplyr' was built under R version 3.4.2Conflicts with tidy packages ------------------------------------------------------------------------
filter(): dplyr, stats
lag():    dplyr, stats
library("tidyverse")
library("ggthemes")
library("forcats")

abro el df de .csv google

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vRO6wXeSyMjBwLr3lHUjXhjeAc8Bh-K-e1WfG4F_fKUlrVvZSXyHnQfeeUoE04kEWOtjTbx3c-zbbhk/pub?gid=149938304&single=true&output=csv")

summary

summary(df)
       Adenotonsilectomia    Rechina       Frecuencia_1         Edad           Sexo1      
 Post_Quirurgico:398      Min.   :0.000   Min.   :0.0000   Min.   : 2.00   Min.   :0.000  
 Pre_Quirurgico :398      1st Qu.:0.000   1st Qu.:0.0000   1st Qu.: 8.00   1st Qu.:1.000  
                          Median :1.000   Median :0.0000   Median : 9.50   Median :1.000  
                          Mean   :1.044   Mean   :0.5126   Mean   :10.21   Mean   :1.447  
                          3rd Qu.:2.000   3rd Qu.:1.0000   3rd Qu.:11.00   3rd Qu.:2.000  
                          Max.   :2.000   Max.   :3.0000   Max.   :51.00   Max.   :2.000  
 Rechinamiento                          Frecuencia      Sexo    
 No     :349   Cinco a siete veces por semana: 52   Hombre:436  
 No sabe:206   Dos a cuatro veces por semana : 66   Mujer :360  
 Si     :241   No aplica                     :558               
               Una vez por semana            :120               
                                                                
                                                                

Grafica

creo objetivo df1

grafico2

tabla adenotonsilectomia por rechinamiento

table(df$Adenotonsilectomia,df$Rechinamiento)
                 
                   No No sabe  Si
  Post_Quirurgico 264     101  33
  Pre_Quirurgico   85     105 208

Existe diferencia ???

chisq.test(table(df$Adenotonsilectomia,df$Rechinamiento))

    Pearson's Chi-squared test

data:  table(df$Adenotonsilectomia, df$Rechinamiento)
X-squared = 218.96, df = 2, p-value < 2.2e-16

Tabla sexo por rechinamiento

table(df$Sexo,df$Rechinamiento)
        
          No No sabe  Si
  Hombre 186     120 130
  Mujer  163      86 111

diferencias?

chisq.test(table(df$Sexo,df$Rechinamiento))

    Pearson's Chi-squared test

data:  table(df$Sexo, df$Rechinamiento)
X-squared = 1.3816, df = 2, p-value = 0.5012

Agrupo por frecuencia

Grafica

LS0tCnRpdGxlOiAiRXN0dWRpbyBKYXZpZXIgRHVyYW4iCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI2xvcyBwYWNrYWdlcwpgYGB7cn0KbGlicmFyeSgidGlkeXZlcnNlIikKbGlicmFyeSgiZ2d0aGVtZXMiKQpsaWJyYXJ5KCJmb3JjYXRzIikKYGBgCiNhYnJvIGVsIGRmIGRlIC5jc3YgZ29vZ2xlCmBgYHtyfQpkZiA8LSByZWFkLmNzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlJPNndYZVN5TWpCd0xyM2xIVWpYaGplQWM4QmgtSy1lMVdmRzRGX2ZLVWxyVnZaU1h5SG5RZmVlVW9FMDRrRVdPdGpUYngzYy16YmJoay9wdWI/Z2lkPTk1ODg3MTI4NyZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNzdW1tYXJ5CmBgYHtyfQpzdW1tYXJ5KGRmKQpgYGAKI0dyYWZpY2EKYGBge3J9CmRmICU+JSAKICBncm91cF9ieShBZGVub3RvbnNpbGVjdG9taWEsIFJlY2hpbmFtaWVudG8pICU+JSAKICBzdW1tYXJpc2UoTiA9IG4oKSkgJT4lIAogIGdncGxvdChhZXMoeD1BZGVub3RvbnNpbGVjdG9taWEsIHk9TiwgZmlsbD1SZWNoaW5hbWllbnRvKSkgKwogIGdlb21fY29sKCkrCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QoZGlyZWN0aW9uID0gLTEpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKCiNjcmVvIG9iamV0aXZvIGRmMQpgYGB7cn0KZGYgJT4lIApncm91cF9ieShBZGVub3RvbnNpbGVjdG9taWEsIFJlY2hpbmFtaWVudG8pICU+JSAKICBzdW1tYXJpc2UoTiA9IG4oKSkKYGBgCiNncmFmaWNvMgpgYGB7cn0KZGYxICU+JSAKICBnZ3Bsb3QoYWVzKHg9U2V4bywgeT1OLCBmaWxsPVJlY2hpbmFtaWVudG8pKSArCiAgZ2VvbV9jb2woKSsKICBzY2FsZV9maWxsX3ZpcmlkaXNfZChkaXJlY3Rpb24gPSAtMSkrCiAgdGhlbWVfY2xhc3NpYygpCmBgYAojdGFibGEgYWRlbm90b25zaWxlY3RvbWlhIHBvciByZWNoaW5hbWllbnRvCmBgYHtyfQp0YWJsZShkZiRBZGVub3RvbnNpbGVjdG9taWEsZGYkUmVjaGluYW1pZW50bykKYGBgCiNFeGlzdGUgZGlmZXJlbmNpYSA/Pz8gCmBgYHtyfQpjaGlzcS50ZXN0KHRhYmxlKGRmJEFkZW5vdG9uc2lsZWN0b21pYSxkZiRSZWNoaW5hbWllbnRvKSkjRXhpc3RlbiAKYGBgCiNUYWJsYSBzZXhvIHBvciByZWNoaW5hbWllbnRvCmBgYHtyfQp0YWJsZShkZiRTZXhvLGRmJFJlY2hpbmFtaWVudG8pCmBgYAojZGlmZXJlbmNpYXM/CmBgYHtyfQpjaGlzcS50ZXN0KHRhYmxlKGRmJFNleG8sZGYkUmVjaGluYW1pZW50bykpI05vIGV4aXN0ZW4gCmBgYAojQWdydXBvIHBvciBmcmVjdWVuY2lhCmBgYHtyfQpkZiAlPiUgCmdyb3VwX2J5KEFkZW5vdG9uc2lsZWN0b21pYSwgRnJlY3VlbmNpYSkgJT4lIAogIHN1bW1hcmlzZShOID0gbigpKQpgYGAKI0dyYWZpY2EKYGBge3J9CmRmICU+JSAKZ3JvdXBfYnkoQWRlbm90b25zaWxlY3RvbWlhLCBGcmVjdWVuY2lhKSAlPiUgCiAgc3VtbWFyaXNlKE4gPSBuKCkpICU+JSAKICBnZ3Bsb3QoYWVzKHg9QWRlbm90b25zaWxlY3RvbWlhLCB5PU4sIGZpbGw9RnJlY3VlbmNpYSkpICsKICBnZW9tX2NvbCgpKwogIHNjYWxlX2ZpbGxfdmlyaWRpc19kKGRpcmVjdGlvbiA9IC0xKSsKICB0aGVtZV9jbGFzc2ljKCkKYGBgCgpgYGB7cn0KZGYgJT4lIApncm91cF9ieShBZGVub3RvbnNpbGVjdG9taWEsIEZyZWN1ZW5jaWEpICU+JSAKICBzdW1tYXJpc2UoTiA9IG4oKSkgJT4lIAogIGdncGxvdChhZXMoeD1GcmVjdWVuY2lhLCB5PU4sIGZpbGw9QWRlbm90b25zaWxlY3RvbWlhKSkgKwogIGdlb21fY29sKCkrCiAgc2NhbGVfZmlsbF92aXJpZGlzX2QoZGlyZWN0aW9uID0gLTEpKwogIHRoZW1lX2NsYXNzaWMoKSsKICBjb29yZF9mbGlwKCkKYGBgCgoKCgoKCgoKCg==