GC np

# In control
# equivalência entre lambda e p0
lamb_x_in=0.8
lamb_x_out=1.4
n=105
d=3  #até 3 não conformidades é boa
p0=1-sum(dpois(0:d, lamb_x_in)); "p0";p0
[1] "p0"
[1] 0.009079858
LSC_np=n*p0 + 3*sqrt(n*p0*(1-p0)); LSC_np=round(LSC_np,0)
alfa_np = 1-(sum(dbinom(0:LSC_np,n,p0))); "alfa_np"; round(alfa_np,4)
[1] "alfa_np"
[1] 0.0028
ARLo_np=1/(alfa_np); "ARLo_np"; ARLo_np
[1] "ARLo_np"
[1] 355.5593
# Out of control
# equivalência entre lambda e p1
p1=1-sum(dpois(0:d, lamb_x_out)); "p1";p1
[1] "p1"
[1] 0.05372525
beta_np = sum(dbinom(0:LSC_np,n,p1))
poder_np=1-beta_np; "poder_np"; round(poder_np,4)
[1] "poder_np"
[1] 0.6708
ARL1_np=1/(1-beta_np); "ARL1_np"; ARL1_np
[1] "ARL1_np"
[1] 1.490653

GC C

#in control
n=5
lamb_x_in <- n*0.80 # valor de c
LSC_c=lamb_x_in + 3*sqrt(lamb_x_in) ;  "LSC_c"; LSC_c  
[1] "LSC_c"
[1] 10
alfa_c = 1-(sum(dpois(0:LSC_c, lamb_x_in))); "alfa_c"; round(alfa_c,4)
[1] "alfa_c"
[1] 0.0028
ARLo_c=1/(alfa_c); "ARLo_c"; ARLo_c
[1] "ARLo_c"
[1] 352.1417
# Out of control
lamb_x_out <-  n*1.4 # valor de c com shift
beta_c = sum(dpois(0:LSC_c, lamb_x_out))
poder_c=(1-beta_c); "Poder_c"; round(poder_c,4)
[1] "Poder_c"
[1] 0.0985
ARL1_c=1/(1-beta_c); "ARL1_c"; ARL1_c
[1] "ARL1_c"
[1] 10.15014

comparação

"ARLo_np"; ARLo_np
[1] "ARLo_np"
[1] 355.5593
"ARLo_c";ARLo_c
[1] "ARLo_c"
[1] 352.1417
"ARL1_np";ARL1_np
[1] "ARL1_np"
[1] 1.490653
"ARL1_c";ARL1_c
[1] "ARL1_c"
[1] 10.15014
LS0tDQp0aXRsZTogIlBvZGVyIGRvcyBHQyBucCBlIGMgLSBNb3phcnQgVU5FU1AiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyBHQyBucA0KYGBge3J9DQojIEluIGNvbnRyb2wNCiMgZXF1aXZhbMOqbmNpYSBlbnRyZSBsYW1iZGEgZSBwMA0KbGFtYl94X2luPTAuOA0KbGFtYl94X291dD0xLjQNCm49MTA1DQpkPTMgICNhdMOpIDMgbsOjbyBjb25mb3JtaWRhZGVzIMOpIGJvYQ0KcDA9MS1zdW0oZHBvaXMoMDpkLCBsYW1iX3hfaW4pKTsgInAwIjtwMA0KTFNDX25wPW4qcDAgKyAzKnNxcnQobipwMCooMS1wMCkpOyBMU0NfbnA9cm91bmQoTFNDX25wLDApDQphbGZhX25wID0gMS0oc3VtKGRiaW5vbSgwOkxTQ19ucCxuLHAwKSkpOyAiYWxmYV9ucCI7IHJvdW5kKGFsZmFfbnAsNCkNCkFSTG9fbnA9MS8oYWxmYV9ucCk7ICJBUkxvX25wIjsgQVJMb19ucA0KDQojIE91dCBvZiBjb250cm9sDQojIGVxdWl2YWzDqm5jaWEgZW50cmUgbGFtYmRhIGUgcDENCnAxPTEtc3VtKGRwb2lzKDA6ZCwgbGFtYl94X291dCkpOyAicDEiO3AxDQpiZXRhX25wID0gc3VtKGRiaW5vbSgwOkxTQ19ucCxuLHAxKSkNCnBvZGVyX25wPTEtYmV0YV9ucDsgInBvZGVyX25wIjsgcm91bmQocG9kZXJfbnAsNCkNCkFSTDFfbnA9MS8oMS1iZXRhX25wKTsgIkFSTDFfbnAiOyBBUkwxX25wDQpgYGANCiMgR0MgQw0KDQpgYGB7cn0NCiNpbiBjb250cm9sDQpuPTUNCmxhbWJfeF9pbiA8LSBuKjAuODAgIyB2YWxvciBkZSBjDQpMU0NfYz1sYW1iX3hfaW4gKyAzKnNxcnQobGFtYl94X2luKSA7ICAiTFNDX2MiOyBMU0NfYyAgDQphbGZhX2MgPSAxLShzdW0oZHBvaXMoMDpMU0NfYywgbGFtYl94X2luKSkpOyAiYWxmYV9jIjsgcm91bmQoYWxmYV9jLDQpDQpBUkxvX2M9MS8oYWxmYV9jKTsgIkFSTG9fYyI7IEFSTG9fYw0KDQojIE91dCBvZiBjb250cm9sDQpsYW1iX3hfb3V0IDwtICBuKjEuNCAjIHZhbG9yIGRlIGMgY29tIHNoaWZ0DQpiZXRhX2MgPSBzdW0oZHBvaXMoMDpMU0NfYywgbGFtYl94X291dCkpDQpwb2Rlcl9jPSgxLWJldGFfYyk7ICJQb2Rlcl9jIjsgcm91bmQocG9kZXJfYyw0KQ0KQVJMMV9jPTEvKDEtYmV0YV9jKTsgIkFSTDFfYyI7IEFSTDFfYw0KDQoNCmBgYA0KIyBjb21wYXJhw6fDo28NCg0KYGBge3J9DQoiQVJMb19ucCI7IEFSTG9fbnANCiJBUkxvX2MiO0FSTG9fYw0KYGBgDQpgYGB7cn0NCiJBUkwxX25wIjtBUkwxX25wDQoiQVJMMV9jIjtBUkwxX2MNCmBgYA0KDQoNCg0K