“Liquidity is oxygen for a financial system.”

Introduction

The article presented by Amihud and Mendelson (2008) which offers an extensive look into the relationship between liquidity costs, as proxied by the bid-ask spread, and the excess monthly stock return, prompted a further look into the subject of corporate liquidity. The authors define liquidity costs as the costs incurred by investors when they partake in the trading of less liquid securities. Although this piece of literature may have been the initial catalyst spurring the birth of this research proposal, Amihud and Mendelson (1986) which offers a model of this liquidity effect on asset pricing, proves to be among one of the seminal works which initiated a vast body of empirical evidence on the subject.

Researchers have invariably reached the same conclusion: the lower the liquidity of a security—after controlling for risk and other relevant characteristics—the higher its expected return or, alternatively, the lower its price or firm value (Amihud & Mendelson, 2008; Amihud, Mendleson, & Pedersen, 2005; Dalvi & Baghi, 2014; Du , Wu , & Liang, 2016; Nguyen, Singh, & Duong, 2014; Noe & Fang, 2009; Sidhu, 2016).

After reviewing the research conducted by the above academics as well as the research listed in the literature review below, it is evident that the relationship between liquidity, as proxied by the bid-ask spread, and firm value, as proxied by Tobin’s Q, has not been researched extensively in a South African context; therefore a gap exists for academic research to be conducted further in this realm.

Aim

This R report aims to run various stationarity tests in order to determine the nature of the raw data gathered from the Bloomberg Terminal. The following steps outline the process followed in order to acheive this goal.

This research aims to investigate the relationship between liquidity, as proxied by both the cash ratioand the bid-ask spread, and firm market value, as proxied by Tobin’s Q. A sample of firms listed on the Johannesburg Stock Exchange (JSE) will be employed, of which monthly time series data will be analysed. This research will be conducted by running stationarity testsas well as a Vector Error Correlation model, VECM, in order to determine the relationship between liquidity and firm market value. In addition. a Granger Causality test will be conducted in order to investigate the causality between liquidity and firm market value in a time series.

Research Objectives

The main research objective outlined in this paper is to determine the relationship between liquidity, as proxied by the bid-ask spread, and firm value, as proxied by Tobin’s Q. Furthermore, the research seeks to:

H0: There is no relationship shared between liquidity and firm value

H1: There is a relationship shares between liquidity and firm value.

Methodology

Sampling and Data Collection

The standard approach for time series data analysis will be used. Data will be obtained from the Bloomberg Global Database (BGD). The cash ratios, bid-ask spreads and Tobin’s Q ratio values have been obtained on firms listed on the JSE Top 40 index. Monthly data was collected over the period 2002-2018. A longer sample period could not be used as the necessary data was not available on the BGD.

STEP 1: Firstly, the necessary packages were installed. I hashed out the packages after the intial installation, and called the packages to memory using the library() function. The raw data contained in an excel document was then inputted.This data was collected from the Bloomberg Terminal and contains information on 15 equities from the JSE Top 40 Index. I was unable to find more equities within this index that contained all the necessary data, leaving me with a smaller pool than I’d initially hoped to use. Lastly, I fortified the data into a timeseries dataframe.

Data Summary Statistics Output

STEP 2: I created a data summary using the summary() function. The summary data output has been surpressed as its relevance is minimal in the context of this assignment.

Initial Plots

STEP 3: I created a few plots to visualise the data, just to see if there was any sort of initial relationship between the variables.

Description Of Overall Research Design

The methodology of choice has been used throughout the body of research on this topic, dating back from the Amihud and Mendelson (1986) paper up until the recent paper by Ha and Vihn (2017). Firstly, stationarity testing will be conducted in order to assess the characteristics of the sample. Secondly, a VECM will be employed. Finally, a Granger Causality test will be run in order to determine the causal relationship between liquidity and firm market value.

Stationarity Testing

Stationarity of the data employed in the study is required and as such the following tests of stationarity will be run in order to avoid the possibility of a spurious regression, as well as to ensure the reliability of results. An augmented Dickey Fuller test examines the null hypothesis that a unit root is present in a time series sample (Carrion-i-Silvestre, & Sansó, 2006).

The second test that will be used in the testing for stationarity is the Phillips-Perron unit root test (Carrion-i-Silvestre, & Sansó, 2006). Similarly to the above augmented Dickey Fuller test, the Phillips-Perron test examines time series data to test the null hypothesis that a time series is integrated of order one.

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test examines if a time series is stationary around a mean or linear trend or is non-stationary due to a unit root (Carrion-i-Silvestre, & Sansó, 2006). The null hypothesis for the test is that the data is stationary.

STEP 4: I ran various stationarity tests using various packages. Most of the functions used below are from the tseries package. I also made use of the tidy and kable packages to easily manipulate the results into neat tables.

ANH Cash Ratio Stationarity Test Results
statistic p.value parameter method alternative
-2.78015 0.2718556 3 Augmented Dickey-Fuller Test stationary
statistic p.value parameter method alternative
-31.73876 0.01 2 Phillips-Perron Unit Root Test stationary
statistic p.value parameter method
0.4206299 0.068263 3 KPSS Test for Level Stationarity
ANH Bid-Ask Spread Stationarity Test Results
statistic p.value parameter method alternative
-2.804316 0.2625325 3 Augmented Dickey-Fuller Test stationary
statistic p.value parameter method alternative
-30.81761 0.01 2 Phillips-Perron Unit Root Test stationary
statistic p.value parameter method
0.5988933 0.022737 3 KPSS Test for Level Stationarity
ANH Tobin’s Q Stationarity Test Results
statistic p.value parameter method alternative
-1.753631 0.6678892 3 Augmented Dickey-Fuller Test stationary
statistic p.value parameter method alternative
-12.09974 0.3480851 2 Phillips-Perron Unit Root Test stationary
statistic p.value parameter method
0.1838134 0.1 3 KPSS Test for Level Stationarity

STEP 5: Normality tests were run using the tseries package. These were also transposed into tables for ease of viewing. ##### ANH Cash Ratio Normality Test Results

x
4.210245
x
21.62827
statistic p.value parameter method
557.2226 0 2 Jarque Bera Test
ANH Bid-Ask Spread Normality Test Results
x
3.544539
x
16.67535
statistic p.value parameter method
316.3604 0 2 Jarque Bera Test
ANH Tobin’s Q Normality Test Results
x
0.3248102
x
2.347
statistic p.value parameter method
1.131221 0.5680134 2 Jarque Bera Test

STEP 6: GARCH and ARMA tests were conducted making use of the tseries package. The results were manipulated into tables as with the abovementioned tests. ##### ANH GARCH Results


 ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 

     I     INITIAL X(I)        D(I)

     1     7.468033e-02     1.000e+00
     2     5.000000e-02     1.000e+00
     3     5.000000e-02     1.000e+00

    IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
     0    1 -5.310e+00
     1    4 -8.603e+00  3.83e-01  6.09e+00  6.1e-01  9.6e+02  2.3e-01  2.92e+03
     2    6 -8.890e+00  3.22e-02  2.49e-02  1.8e-02  3.1e+00  1.2e-02  2.02e+00
     3    9 -1.086e+01  1.81e-01  1.70e-01  1.7e-01  1.9e+00  9.3e-02  1.16e+00
     4   11 -1.110e+01  2.16e-02  2.41e-02  4.4e-02  9.7e+00  1.9e-02  1.40e+00
     5   12 -1.122e+01  1.08e-02  1.99e-02  9.6e-02  2.2e+00  3.7e-02  6.34e-01
     6   14 -1.125e+01  2.45e-03  2.53e-03  1.1e-02  6.5e+00  3.7e-03  5.47e-01
     7   16 -1.130e+01  5.15e-03  4.66e-03  3.5e-02  2.0e+00  1.5e-02  5.54e-01
     8   18 -1.132e+01  9.48e-04  9.61e-04  8.5e-03  2.2e+01  3.0e-03  5.26e-01
     9   20 -1.134e+01  1.77e-03  1.79e-03  1.8e-02  4.7e+00  6.1e-03  2.58e-01
    10   22 -1.134e+01  3.39e-04  3.40e-04  3.5e-03  1.2e+02  1.2e-03  9.94e-02
    11   24 -1.134e+01  6.70e-05  6.69e-05  7.0e-04  2.7e+02  2.4e-04  1.32e-02
    12   27 -1.135e+01  5.26e-04  5.25e-04  5.6e-03  8.9e+00  1.9e-03  1.21e-02
    13   31 -1.135e+01  1.03e-06  1.03e-06  1.1e-05  1.4e+04  3.9e-06  1.02e-02
    14   33 -1.135e+01  2.06e-06  2.06e-06  2.2e-05  1.6e+03  7.8e-06  9.15e-03
    15   35 -1.135e+01  4.13e-06  4.12e-06  4.5e-05  7.9e+02  1.6e-05  9.14e-03
    16   38 -1.135e+01  8.25e-08  8.23e-08  9.0e-07  1.6e+05  3.1e-07  9.13e-03
    17   40 -1.135e+01  1.65e-07  1.65e-07  1.8e-06  2.0e+04  6.2e-07  9.12e-03
    18   42 -1.135e+01  3.30e-08  3.29e-08  3.6e-07  4.0e+05  1.2e-07  9.12e-03
    19   44 -1.135e+01  6.60e-08  6.59e-08  7.2e-07  4.9e+04  2.5e-07  9.12e-03
    20   46 -1.135e+01  1.32e-08  1.32e-08  1.4e-07  9.9e+05  5.0e-08  9.12e-03
    21   48 -1.135e+01  2.64e-08  2.63e-08  2.9e-07  1.2e+05  9.9e-08  9.12e-03
    22   50 -1.135e+01  5.28e-09  5.27e-09  5.8e-08  2.5e+06  2.0e-08  9.12e-03
    23   52 -1.135e+01  1.06e-08  1.05e-08  1.2e-07  3.1e+05  4.0e-08  9.12e-03
    24   54 -1.135e+01  2.11e-08  2.11e-08  2.3e-07  1.5e+05  7.9e-08  9.12e-03
    25   57 -1.135e+01  4.23e-10  4.22e-10  4.6e-09  3.1e+07  1.6e-09  9.12e-03
    26   59 -1.135e+01  8.45e-10  8.43e-10  9.2e-09  3.9e+06  3.2e-09  9.12e-03
    27   61 -1.135e+01  1.69e-10  1.69e-10  1.8e-09  7.7e+07  6.3e-10  9.12e-03
    28   63 -1.135e+01  3.38e-10  3.37e-10  3.7e-09  9.7e+06  1.3e-09  9.12e-03
    29   65 -1.135e+01  6.76e-11  6.74e-11  7.4e-10  1.9e+08  2.5e-10  9.12e-03
    30   67 -1.135e+01  1.35e-10  1.35e-10  1.5e-09  2.4e+07  5.1e-10  9.12e-03
    31   69 -1.135e+01  2.70e-11  2.70e-11  2.9e-10  4.8e+08  1.0e-10  9.12e-03
    32   71 -1.135e+01  5.41e-12  5.40e-12  5.9e-11  2.4e+09  2.0e-11  9.12e-03
    33   73 -1.135e+01  1.08e-11  1.08e-11  1.2e-10  3.0e+08  4.1e-11  9.12e-03
    34   75 -1.135e+01  2.16e-12  2.16e-12  2.4e-11  6.0e+09  8.1e-12  9.12e-03
    35   77 -1.135e+01  4.33e-12  4.32e-12  4.7e-11  7.5e+08  1.6e-11  9.12e-03
    36   79 -1.135e+01  8.65e-12  8.63e-12  9.4e-11  3.8e+08  3.3e-11  9.12e-03
    37   82 -1.135e+01  1.73e-13  1.73e-13  1.9e-12  7.5e+10  6.5e-13  9.12e-03
    38   84 -1.135e+01  3.43e-14  3.45e-14  3.8e-13  3.8e+11  1.3e-13  9.12e-03
    39   86 -1.135e+01  7.20e-15  6.91e-15  7.5e-14  1.9e+12  2.6e-14  9.12e-03
    40   88 -1.135e+01  1.57e-15  1.38e-15  1.5e-14  9.4e+12  5.2e-15  9.16e-03
    41   90 -1.135e+01  3.13e-16  2.76e-16  3.0e-15  4.7e+13  1.0e-15  9.20e-03
    42   91 -1.135e+01 -8.81e+08  5.53e-16  6.0e-15  2.4e+13  2.1e-15  1.08e-02

 ***** FALSE CONVERGENCE *****

 FUNCTION    -1.134612e+01   RELDX        6.039e-15
 FUNC. EVALS      91         GRAD. EVALS      42
 PRELDF       5.525e-16      NPRELDF      1.077e-02

     I      FINAL X(I)        D(I)          G(I)

     1    1.714025e-01     1.000e+00    -2.870e-01
     2    2.636656e-16     1.000e+00     2.999e+00
     3    2.818011e-02     1.000e+00    -7.533e-02
term estimate std.error statistic p.value
a0 0.1714025 7.4333675 0.0230585 0.9816036
a1 0.0000000 0.3966769 0.0000000 1.0000000
b1 0.0281801 42.1574572 0.0006684 0.9994667

 ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 

     I     INITIAL X(I)        D(I)

     1     7.696813e+04     1.000e+00
     2     5.000000e-02     1.000e+00
     3     5.000000e-02     1.000e+00

    IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
     0    1  2.133e+02
     1    2  2.072e+02  2.88e-02  2.71e-01  6.0e-06  5.9e+01  1.0e+00  7.99e+00
     2    4  2.057e+02  7.01e-03  7.26e-03  6.3e-07  5.1e+00  1.0e-01  3.21e-01
     3    5  2.039e+02  8.87e-03  7.24e-03  1.3e-06  2.3e+00  2.0e-01  7.80e-03
     4    7  2.037e+02  6.34e-04  6.25e-04  1.3e-07  1.3e+01  2.0e-02  9.92e-03
     5    9  2.035e+02  1.18e-03  1.17e-03  2.6e-07  3.3e+00  4.0e-02  2.69e-02
     6   11  2.031e+02  2.15e-03  2.06e-03  5.2e-07  2.4e+00  8.0e-02  3.84e-02
     7   14  2.031e+02  4.23e-05  4.23e-05  1.0e-08  1.6e+03  1.6e-03  1.85e-01
     8   16  2.030e+02  8.42e-05  8.43e-05  2.0e-08  7.0e+01  3.2e-03  6.83e-02
     9   18  2.030e+02  1.66e-04  1.67e-04  4.1e-08  2.5e+01  6.4e-03  3.70e-02
    10   21  2.030e+02  3.29e-06  3.29e-06  8.1e-10  2.5e+03  1.3e-04  1.37e-02
    11   23  2.030e+02  6.57e-06  6.57e-06  1.6e-09  2.1e+02  2.6e-04  8.36e-03
    12   25  2.030e+02  1.31e-06  1.31e-06  3.3e-10  4.1e+03  5.1e-05  8.12e-03
    13   28  2.030e+02  1.05e-05  1.05e-05  2.6e-09  1.3e+02  4.1e-04  7.94e-03
    14   33  2.030e+02  2.10e-09  2.10e-09  5.2e-13  2.4e+06  8.2e-08  7.66e-03
    15   35  2.030e+02  4.20e-09  4.20e-09  1.0e-12  3.0e+05  1.6e-07  7.44e-03
    16   37  2.030e+02  8.39e-10  8.39e-10  2.1e-13  5.9e+06  3.3e-08  7.44e-03
    17   39  2.030e+02  1.68e-09  1.68e-09  4.2e-13  7.4e+05  6.6e-08  7.44e-03
    18   41  2.030e+02  3.36e-10  3.36e-10  8.3e-14  1.5e+07  1.3e-08  7.44e-03
    19   43  2.030e+02  6.71e-10  6.71e-10  1.7e-13  1.9e+06  2.6e-08  7.44e-03
    20   45  2.030e+02  1.34e-09  1.34e-09  3.3e-13  9.3e+05  5.2e-08  7.44e-03
    21   48  2.030e+02  2.69e-11  2.69e-11  6.7e-15  1.9e+08  1.0e-09  7.44e-03
    22   50  2.030e+02  5.37e-11  5.37e-11  1.3e-14  2.3e+07  2.1e-09  7.44e-03
    23   52  2.030e+02  1.07e-11  1.07e-11  2.7e-15  4.6e+08  4.2e-10  7.44e-03
    24   53  2.030e+02 -4.93e+07  2.15e-11  5.3e-15  2.3e+08  8.4e-10  7.44e-03

 ***** FALSE CONVERGENCE *****

 FUNCTION     2.030047e+02   RELDX        5.325e-15
 FUNC. EVALS      53         GRAD. EVALS      24
 PRELDF       2.148e-11      NPRELDF      7.438e-03

     I      FINAL X(I)        D(I)          G(I)

     1    7.696813e+04     1.000e+00     1.732e-05
     2    8.874647e-01     1.000e+00    -1.104e+00
     3    4.156519e-10     1.000e+00     5.080e+00
term estimate std.error statistic p.value
a0 7.696813e+04 1.445565e+05 0.5324431 0.5944191
a1 8.874647e-01 8.691116e-01 1.0211171 0.3071990
b1 0.000000e+00 2.515097e-01 0.0000000 1.0000000

 ***** ESTIMATION WITH ANALYTICAL GRADIENT ***** 

     I     INITIAL X(I)        D(I)

     1     6.031197e-02     1.000e+00
     2     5.000000e-02     1.000e+00
     3     5.000000e-02     1.000e+00

    IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
     0    1  1.750e+02
     1    2  3.101e+01  8.23e-01  1.53e+01  9.0e-01  2.7e+03  1.0e+00  2.04e+04
     2    4  3.082e+01  6.02e-03  6.44e-03  2.6e-02  1.9e+00  5.0e-02  2.61e-01
     3    6  3.078e+01  1.36e-03  1.16e-03  3.9e-03  3.9e+00  1.0e-02  8.65e-03
     4    8  3.055e+01  7.46e-03  7.56e-03  3.2e-02  2.8e+00  8.0e-02  9.53e-03
     5   10  3.053e+01  4.94e-04  4.97e-04  3.8e-03  6.6e+00  1.0e-02  1.64e-03
     6   12  3.053e+01  8.65e-05  8.65e-05  7.5e-04  2.3e+01  2.0e-03  1.09e-03
     7   14  3.053e+01  1.61e-04  1.61e-04  1.5e-03  3.6e+00  4.0e-03  1.00e-03
     8   16  3.052e+01  2.71e-04  2.72e-04  3.1e-03  2.2e+00  8.0e-03  8.37e-04
     9   18  3.052e+01  4.63e-05  4.63e-05  6.4e-04  1.9e+01  1.6e-03  5.61e-04
    10   20  3.052e+01  8.93e-06  8.93e-06  1.3e-04  8.5e+01  3.2e-04  5.16e-04
    11   22  3.052e+01  1.77e-06  1.77e-06  2.6e-05  4.2e+02  6.4e-05  5.08e-04
    12   24  3.052e+01  3.53e-06  3.53e-06  5.2e-05  5.3e+01  1.3e-04  5.06e-04
    13   26  3.052e+01  7.02e-06  7.02e-06  1.0e-04  2.7e+01  2.6e-04  5.03e-04
    14   29  3.052e+01  1.40e-07  1.40e-07  2.1e-06  5.1e+03  5.1e-06  4.96e-04
    15   31  3.052e+01  2.79e-07  2.79e-07  4.2e-06  6.4e+02  1.0e-05  4.96e-04
    16   33  3.052e+01  5.58e-08  5.58e-08  8.4e-07  1.3e+04  2.0e-06  4.95e-04
    17   35  3.052e+01  1.12e-08  1.12e-08  1.7e-07  6.4e+04  4.1e-07  4.95e-04
    18   37  3.052e+01  2.23e-08  2.23e-08  3.4e-07  8.0e+03  8.2e-07  4.95e-04
    19   39  3.052e+01  4.47e-09  4.47e-09  6.7e-08  1.6e+05  1.6e-07  4.95e-04
    20   41  3.052e+01  8.93e-09  8.93e-09  1.3e-07  2.0e+04  3.3e-07  4.95e-04
    21   43  3.052e+01  1.79e-09  1.79e-09  2.7e-08  4.0e+05  6.6e-08  4.95e-04
    22   45  3.052e+01  3.57e-10  3.57e-10  5.4e-09  2.0e+06  1.3e-08  4.95e-04
    23   47  3.052e+01  7.15e-10  7.15e-10  1.1e-08  2.5e+05  2.6e-08  4.95e-04
    24   49  3.052e+01  1.43e-09  1.43e-09  2.1e-08  1.2e+05  5.2e-08  4.95e-04
    25   51  3.052e+01  2.86e-10  2.86e-10  4.3e-09  2.5e+06  1.0e-08  4.95e-04
    26   54  3.052e+01  5.72e-12  5.72e-12  8.6e-11  1.2e+08  2.1e-10  4.95e-04
    27   56  3.052e+01  1.14e-12  1.14e-12  1.7e-11  6.2e+08  4.2e-11  4.95e-04
    28   59  3.052e+01  9.15e-12  9.15e-12  1.4e-10  1.9e+07  3.4e-10  4.95e-04
    29   62  3.052e+01  1.83e-13  1.83e-13  2.7e-12  3.9e+09  6.7e-12  4.95e-04
    30   64  3.052e+01  3.66e-13  3.66e-13  5.5e-12  4.9e+08  1.3e-11  4.95e-04
    31   66  3.052e+01  7.32e-14  7.32e-14  1.1e-12  9.7e+09  2.7e-12  4.95e-04
    32   68  3.052e+01  1.46e-13  1.46e-13  2.2e-12  1.2e+09  5.4e-12  4.95e-04
    33   70  3.052e+01  2.90e-14  2.93e-14  4.4e-13  2.4e+10  1.1e-12  4.95e-04
    34   72  3.052e+01  5.89e-14  5.85e-14  8.8e-13  3.0e+09  2.1e-12  4.95e-04
    35   74  3.052e+01  1.15e-14  1.17e-14  1.8e-13  6.1e+10  4.3e-13  4.95e-04
    36   76  3.052e+01  2.21e-15  2.34e-15  3.5e-14  3.0e+11  8.6e-14  4.95e-04
    37   78  3.052e+01  4.77e-15  4.68e-15  7.0e-14  3.8e+10  1.7e-13  4.95e-04
    38   80  3.052e+01  9.31e-16  9.37e-16  1.4e-14  7.6e+11  3.4e-14  4.95e-04
    39   82  3.052e+01  1.63e-15  1.87e-15  2.8e-14  9.9e+10  6.9e-14  4.95e-04
    40   84  3.052e+01  6.99e-16  3.75e-16  5.6e-15  1.9e+12  1.4e-14  4.95e-04
    41   86  3.052e+01  6.99e-16  7.49e-16  1.1e-14  2.4e+11  2.8e-14  4.95e-04
    42   88  3.052e+01  1.51e-15  1.50e-15  2.3e-14  1.2e+11  5.5e-14  4.95e-04
    43   90  3.052e+01 -3.28e+08  3.00e-16  4.5e-15  2.4e+12  1.1e-14  4.95e-04

 ***** FALSE CONVERGENCE *****

 FUNCTION     3.051616e+01   RELDX        4.531e-15
 FUNC. EVALS      90         GRAD. EVALS      43
 PRELDF       2.997e-16      NPRELDF      4.950e-04

     I      FINAL X(I)        D(I)          G(I)

     1    3.979787e-01     1.000e+00     1.603e-01
     2    9.066644e-01     1.000e+00     6.165e-01
     3    1.927955e-15     1.000e+00     5.339e-01
term estimate std.error statistic p.value
a0 0.3979787 21.237439 0.0187395 0.9850489
a1 0.9066644 7.961838 0.1138763 0.9093359
b1 0.0000000 9.934228 0.0000000 1.0000000
ANH ARMA Results

Call:
arma(x = CRR$`ANH SJ Equity`)

Coefficient(s):
      ar1        ma1  intercept  
 0.985697  -1.429753  -0.001061  

Call:
arma(x = BASR$`ANH SJ Equity`)

Coefficient(s):
      ar1        ma1  intercept  
    1.086     -1.345    -16.324  

Call:
arma(x = TQR$`ANH SJ Equity`)

Coefficient(s):
      ar1        ma1  intercept  
  0.61586   -0.01218    0.61909  

Pearson Correlation Matrix

The Pearson correlation matrix measures the linear correlation between two variables, in order to test for multicollinearity (Carrion-i-Silvestre, & Sansó, 2006). It is important to ensure that the data in this study does not illustrate any autocorrelation or multicollinearity between the variables; the correlation between variables will diminish the quality of the relationship between liquidity and firm value that this study aims to investigate.

STEP 7: Correlation tests were run. In addition to the Pearson test, the Spearman and Kendall tests were conducted in order to ensure a robust set of results were found. ##### Correlation Test Results

estimate statistic p.value parameter conf.low conf.high method alternative
-0.0802309 -1.759779 0.0790849 478 -0.1685213 0.0093366 Pearson’s product-moment correlation two.sided
estimate statistic p.value method alternative
-0.1102179 20463447 0.0156998 Spearman’s rank correlation rho two.sided
estimate statistic p.value method alternative
-0.0698372 -2.286609 0.0222187 Kendall’s rank correlation tau two.sided
estimate statistic p.value parameter conf.low conf.high method alternative
-0.0316522 -0.6923666 0.4890433 478 -0.1208105 0.0580126 Pearson’s product-moment correlation two.sided
estimate statistic p.value method alternative
0.1921445 14890328 2.25e-05 Spearman’s rank correlation rho two.sided
estimate statistic p.value method alternative
0.1272635 4.166769 3.09e-05 Kendall’s rank correlation tau two.sided

STEP 8: The unit roots of the data were plotted. ##### ACF, PACF and Unit Root Plots

lag acf
0 1.0000000
1 0.0726341
2 0.0474427
3 0.0878762
4 0.0491821
5 0.0363731
6 0.0061307
7 0.2716310
8 -0.0574859
9 -0.0209035
10 -0.0228550
11 -0.0216141
12 -0.0246261
13 -0.0514566
14 0.0411613
15 -0.1165288

lag acf
1 0.0726341
2 0.0423906
3 0.0820770
4 0.0361712
5 0.0241174
6 -0.0082290
7 0.2666546
8 -0.1071792
9 -0.0305288
10 -0.0612913
11 -0.0183737
12 -0.0274555
13 -0.0317830
14 -0.0205516
15 -0.0722298

lag acf
0 1.0000000
1 0.2223909
2 0.1525661
3 0.1023416
4 0.2048958
5 0.1975029
6 0.2780695
7 0.0742906
8 0.0234894
9 -0.0530754
10 -0.0503504
11 -0.0601418
12 -0.0408967
13 -0.0243932
14 -0.0791361
15 -0.0930621

lag acf
1 0.2223909
2 0.1084733
3 0.0510660
4 0.1695047
5 0.1218971
6 0.1997947
7 -0.0547493
8 -0.0716960
9 -0.1326891
10 -0.1379943
11 -0.1085995
12 -0.0631955
13 0.0472229
14 0.0087513
15 0.0362437

lag acf
0 1.0000000
1 0.5757199
2 0.3308634
3 0.1925086
4 0.0026801
5 -0.0647363
6 -0.2499209
7 -0.2531007
8 -0.1803171
9 -0.2064241
10 -0.1381732
11 -0.0949936
12 -0.1153724
13 -0.1197062
14 -0.0498270
15 0.1260122

lag acf
1 0.5757199
2 -0.0008827
3 0.0035360
4 -0.1635195
5 -0.0058898
6 -0.2690919
7 0.0392478
8 0.0141052
9 -0.0903555
10 -0.0048107
11 -0.0147481
12 -0.1386196
13 -0.0971943
14 0.0997774
15 0.1931402
Series: CRR$`ANH SJ Equity` 
ARIMA(0,1,1) 

Coefficients:
          ma1
      -0.8604
s.e.   0.0985

sigma^2 estimated as 0.08699:  log likelihood=-6.3
AIC=16.61   AICc=17.03   BIC=19.47

Training set error measures:
                     ME      RMSE       MAE       MPE     MAPE      MASE
Training set 0.04716468 0.2855799 0.1292126 -3.395246 32.40907 0.7714182
                    ACF1
Training set -0.08216305

Series: BASR$`ANH SJ Equity` 
ARIMA(0,1,1) 

Coefficients:
          ma1
      -0.8007
s.e.   0.0970

sigma^2 estimated as 80133:  log likelihood=-219.01
AIC=442.02   AICc=442.45   BIC=444.89

Training set error measures:
                    ME     RMSE      MAE       MPE     MAPE    MASE
Training set -48.67193 274.0892 155.5461 -32.88887 42.10253 1.12912
                    ACF1
Training set -0.06832392

Series: TQR$`ANH SJ Equity` 
ARIMA(1,0,0) with non-zero mean 

Coefficients:
         ar1    mean
      0.6036  1.5876
s.e.  0.1421  0.0879

sigma^2 estimated as 0.04438:  log likelihood=5.24
AIC=-4.48   AICc=-3.62   BIC=-0.08

Training set error measures:
                      ME      RMSE       MAE       MPE     MAPE      MASE
Training set 0.004678813 0.2039689 0.1433988 -1.432472 9.347842 0.9511649
                     ACF1
Training set -0.005562654

VECM And Cointegration

A vector error correction model (VECM) is designed for use with nonstationary series that are known to be cointegrated. The cointegration term is known as the error correction term since the deviation from long-run equilibrium is corrected gradually through a series of partial short-run adjustments (Carrion-i-Silvestre, & Sansó, 2006). Cointegration is a possible characteristic of time series data. It is defined through concepts of stationarity and the order of integration of the series (Carrion-i-Silvestre, & Sansó, 2006). A stationary series is one with a mean value which will not vary with the sampling period. The study conducted by Andrei & Andrei (2015) which investigates the use of VECM in explaining the association of some macroeconomic variables in Romania provides the grounds for the use of a similar methodology in this research proposal based on the nature of the time series data.

The regression equation form for VECM is as follows:

STEP 9: In this step, a Vector Error Correlation model was run using the tsDyn package. I was able to create a multivariate model by adding an exogen to the existing function.I have supressed the unncessary results in order to avoid clutter.

.rownames ECT ANH.SJ.Equity..1 BTI.SJ.Equity..1 BIL.SJ.Equity..1 AGL.SJ.Equity..1 SOL.SJ.Equity..1 MTN.SJ.Equity..1 AMS.SJ.Equity..1 SHP.SJ.Equity..1 REM.SJ.Equity..1 APN.SJ.Equity..1 HMN.SJ.Equity..1 BVT.SJ.Equity..1 EXX.SJ.Equity..1 MRP.SJ.Equity..1 TBS.SJ.Equity..1 ANH.SJ.Equity BTI.SJ.Equity BIL.SJ.Equity AGL.SJ.Equity SOL.SJ.Equity MTN.SJ.Equity AMS.SJ.Equity SHP.SJ.Equity REM.SJ.Equity APN.SJ.Equity HMN.SJ.Equity BVT.SJ.Equity EXX.SJ.Equity MRP.SJ.Equity TBS.SJ.Equity
Equation ANH SJ Equity -0.4052249 0.1229058 -4.1801791 -1.0326822 -1.4398304 0.0815695 0.7566044 -0.1304156 1.5336859 0.4447693 -0.7985915 -0.1643748 -1.4071576 0.5825052 0.4164346 -0.3108212 0.9937676 0.1760452 1.1905617 0.0602651 -0.2720087 -0.4505315 -0.1130371 -0.4719674 -0.7184080 -0.1048291 -0.3966720 -0.6169612 -0.1295535 0.2342045 NA
Equation BTI SJ Equity -0.3983218 0.2486507 -0.3348103 -0.0766260 0.1772351 0.3955999 0.4845295 -0.2325224 -0.2463932 0.0454104 0.4437431 0.0035350 -1.0157467 -0.0729026 -0.1770201 0.7624818 -0.3908449 -0.1126649 -0.3491817 -0.0849927 -0.0757887 0.0185435 0.1493602 0.2072877 0.1564022 0.0769002 0.8142849 -0.0110941 -0.0049395 -0.0372125 NA
Equation BIL SJ Equity 1.4874451 -0.7193952 -3.6563369 0.0793882 -0.3677164 -0.0790798 1.9200706 1.4259607 0.2542709 0.1644179 -0.6856143 -0.2689126 1.7926290 0.1551274 0.4225425 -4.8147092 1.2678693 -0.0513354 -0.2669480 3.6906374 0.2025448 -0.2996937 -1.0836180 -0.0814204 -0.5871900 0.4320762 -1.2114447 -1.1860701 -0.1602979 0.0358390 NA
Equation AGL SJ Equity 2.0256538 -1.0930418 -1.2550391 -0.2345288 -0.2361108 -0.7882497 0.1848288 -0.1955028 -1.4071324 0.0691648 -0.5398583 -0.2189960 0.4718024 0.3255354 0.8037323 -3.0506729 1.8277107 0.1071886 0.2266992 2.4749255 0.1954684 0.0079032 -0.8340208 -0.3663705 -1.0022395 0.0927071 -2.8175725 -0.6001668 0.0258008 0.0992404 NA
Equation SOL SJ Equity 0.6765990 -0.2457572 -1.8677060 0.1421278 -0.1436696 -0.4510320 -0.4450746 0.5903587 0.6397572 -0.0472818 -0.4063075 0.2041698 1.3349853 0.0768505 0.5192745 -2.0579839 0.7881348 0.0298352 0.4722966 1.0675951 0.2577873 0.0534467 -0.5361462 -0.2560360 -0.1576891 0.0832451 -0.7485608 -0.9892982 -0.1360658 0.0675299 NA
Equation MTN SJ Equity -0.5636063 0.2905883 1.1461887 0.0283225 -0.5259213 -0.5335222 -1.2395731 -0.3099667 0.5905656 -0.1611738 0.1962580 0.2832931 -0.6176549 0.0547217 -0.2547463 1.0828640 -0.9772048 0.1962426 0.5722639 -2.3792676 -0.2059706 0.0589620 0.5742339 -0.2053874 0.1407970 -0.3346257 2.2176697 0.0520508 0.2497157 0.0841483 NA
Equation AMS SJ Equity 0.2274757 -0.3958430 1.6025912 -0.3098226 -0.1415458 -0.7392660 -1.5161634 -0.4136796 -0.0287127 -0.2130149 0.3918843 -0.0458854 -0.5758425 -0.0813013 0.5552273 0.1879445 -0.4293671 0.0801643 0.2950362 -1.7663143 -0.2642968 -0.0984432 0.4381800 -0.0755666 0.7274741 -0.1721960 1.9462421 -0.3705784 0.1482447 -0.0150780 NA
Equation SHP SJ Equity 0.0314963 -0.0019206 1.0460572 -0.0186836 0.2160850 -0.2386482 -0.5797201 -0.2146995 -0.2957457 -0.0926439 0.1515897 0.0315730 0.3270204 0.0283563 -0.3252641 -0.1922357 -0.1736254 -0.0280712 -0.1165820 -0.3639312 0.1391172 0.0747349 0.0902985 0.0237961 0.0492551 -0.0090863 0.1560114 0.0907528 0.0822318 -0.0134073 NA
Equation REM SJ Equity 4.3388363 -1.6947495 -5.9980432 0.2937686 3.1246819 3.9484078 9.6137733 1.4083670 -6.8299883 0.8225464 -0.7638989 -2.1240272 5.2073279 -0.2067918 -1.5581712 -3.7082721 5.2297905 -1.1519210 -3.9949263 15.6764992 -0.7277470 -0.3299400 -3.4758297 1.9690685 -1.1835149 2.5617655 -12.0961691 -0.2430921 -1.1358685 -0.7137157 NA
Equation APN SJ Equity 1.0108531 -0.8021747 -1.1228313 -0.0598106 -0.0687053 -0.0804569 -0.0415420 0.2104401 -0.9304158 -0.0295320 -0.4678796 -0.1694266 2.6510309 -0.0550074 0.4266262 -1.7575106 0.8481297 -0.0581615 0.0299425 1.3524669 -0.1429029 0.2891769 -0.3705963 -0.1651890 -0.3965815 0.1195218 -1.5192783 -0.3686884 -0.0488914 0.0621003 NA
Equation HMN SJ Equity 0.0168782 0.2403457 1.9556083 0.2190245 -0.4522659 -1.0550149 -2.2390136 -0.8430211 0.7303309 -0.2386160 0.7627374 -0.6130764 -3.4679510 -0.1760158 0.8669952 2.2209441 -0.7324933 0.3046148 0.5093607 -3.7707727 0.1994667 0.4622786 1.1602618 -0.2785891 0.3294438 -0.4746963 -0.8757857 1.0667190 -0.0225972 0.1062419 NA
Equation BVT SJ Equity 0.0659428 -0.0300407 0.1292939 0.0832035 0.0267789 0.0284542 -0.0173571 0.0036477 -0.1108080 0.0028014 -0.0981654 -0.0338014 0.1970985 -0.0050701 -0.1541749 0.0149744 0.0192827 -0.0271167 -0.0515263 0.0765975 0.0275791 -0.0162725 -0.0052597 0.0552600 -0.0492486 0.0620008 -0.2109945 0.0042548 0.0058517 0.0000236 NA
Equation EXX SJ Equity -2.0411040 0.5712018 -0.6026311 0.1308808 0.6647914 0.2367492 3.2441437 -0.2983767 -1.5532361 0.1518935 0.9157265 0.7236558 -4.1718520 -0.6908567 0.2173068 -1.5515928 0.3193881 -0.5690627 -1.7389834 2.0064253 -0.7465877 -0.0255698 -0.0376370 0.8197337 0.7458135 0.3737626 5.9582611 -2.6974674 -0.0859404 -0.3017540 NA
Equation MRP SJ Equity 0.1842184 -0.0407605 -2.8859605 0.3112275 -0.1673364 -0.3889045 0.7679044 0.2301186 -0.2620571 0.1588129 -0.2415573 -0.1233284 -0.5741355 0.1428169 -0.0091471 -0.8584024 0.4622870 -0.1137717 0.1981825 0.9569518 0.0064048 0.0443110 -0.2459301 -0.0058251 -0.6137048 0.2918279 -0.6475989 -0.5984463 -0.2004693 0.1078852 NA
Equation TBS SJ Equity 0.0083015 -0.0687735 -0.1325696 0.4244121 0.0784701 -0.2187727 -0.1943810 -0.0875062 -0.2851813 -0.0465362 -0.2416106 -0.0501124 0.7968921 0.0014539 0.1268197 -0.5331418 0.0968575 0.0424854 0.1257097 0.4952858 -0.0729363 0.0770738 -0.2262501 -0.0848231 -0.0381074 0.0427321 -0.6187643 -0.0734940 0.0493105 0.0255314 NA

A table illustrating the coefficient results from the VECM for the Cash Ratio v Tobin’s Q

.rownames ECT ANH.SJ.Equity..1 BTI.SJ.Equity..1 BIL.SJ.Equity..1 AGL.SJ.Equity..1 SOL.SJ.Equity..1 MTN.SJ.Equity..1 AMS.SJ.Equity..1 SHP.SJ.Equity..1 REM.SJ.Equity..1 APN.SJ.Equity..1 HMN.SJ.Equity..1 BVT.SJ.Equity..1 EXX.SJ.Equity..1 MRP.SJ.Equity..1 TBS.SJ.Equity..1 ANH.SJ.Equity BTI.SJ.Equity BIL.SJ.Equity AGL.SJ.Equity SOL.SJ.Equity MTN.SJ.Equity AMS.SJ.Equity SHP.SJ.Equity REM.SJ.Equity APN.SJ.Equity HMN.SJ.Equity BVT.SJ.Equity EXX.SJ.Equity MRP.SJ.Equity TBS.SJ.Equity
Equation ANH SJ Equity -1.2410702 -1.0130552 -26.3351610 -36.3144286 57.9397310 -94.1910400 253.6215460 32.9716073 -3.6555753 -61.7231418 66.5394144 -42.9180812 -65.3346553 70.7455467 31.6272990 -62.8151056 4323.341900 -245.6696572 -1075.703896 -2102.439585 -3557.026641 -2491.65070 960.880506 282.7240099 913.3773867 -826.521566 6465.78802 -37.639488 2262.816168 -587.905383 NA
Equation BTI SJ Equity 0.0053604 0.0056474 -0.6645171 -1.6579861 1.4944329 2.8248776 -3.3942490 -0.6589235 -0.9740275 1.2018210 1.0423021 0.9157130 1.5566120 -1.9815415 -1.1288160 1.3000963 -79.870730 14.9213325 52.593243 23.900979 27.992905 59.56779 -18.478038 -7.8486242 0.7704192 17.208225 -128.65748 -18.748676 -54.773926 10.897830 NA
Equation BIL SJ Equity -0.0078200 0.0156527 0.0879107 0.7405203 -1.0538685 3.5689437 -6.3498228 -0.9617235 0.0496973 2.3968815 -0.3106742 1.3313581 1.9754730 -2.2860241 -2.3844867 2.4702463 -126.278241 13.7921708 62.705782 15.402309 98.280467 96.38761 -17.074519 -22.0920203 -43.7807048 17.107481 -244.21314 21.098544 -81.775314 23.142111 NA
Equation AGL SJ Equity 0.0077989 0.0053500 0.1527813 1.8499344 -1.3635861 4.0996556 -9.0191809 -1.1802737 0.2587916 2.6684119 0.0265694 1.5765532 2.3027895 -2.6186540 -2.8493787 2.8957294 -137.687960 14.8445262 69.713138 6.876573 113.884943 103.80123 -16.101498 -13.0194377 -34.7136223 26.099868 -284.57651 16.706424 -101.847374 20.998918 NA
Equation SOL SJ Equity 0.0509539 -0.0527168 0.5173119 -4.6941426 6.5710532 5.5622943 -16.5052349 -1.4263187 0.5935473 4.7485949 1.3035691 1.6631089 0.6666199 -4.5383852 -2.8865636 5.4098416 -135.681993 20.7032796 205.965978 -356.756466 183.971769 136.80124 44.908914 -37.2815737 52.9053171 -42.262372 -617.49918 173.293008 -129.533648 25.091679 NA
Equation MTN SJ Equity 0.0161623 -0.0098875 0.0705109 -1.2470683 1.1797895 1.1129517 -1.6901645 -0.3590143 0.2075649 0.7084654 -0.1602889 0.3484274 -0.0036626 -0.8181294 -0.6311084 0.3844268 -27.278443 1.7407870 14.622573 -16.367183 33.493839 23.51526 2.527015 -1.7380782 -18.6676030 6.106541 -76.68476 18.839148 -26.167685 4.335295 NA
Equation AMS SJ Equity -0.1044494 -0.0069450 0.0968780 -0.2463887 -2.3016780 -8.0725369 12.2823596 2.0109582 0.0787183 -3.1506996 1.6742993 -2.9515592 -2.3323223 5.4833422 4.6916995 -2.3036424 236.156721 -17.3491609 3.915339 -206.548869 -207.026647 -148.99257 33.277311 -12.6070201 210.4170132 -86.775349 149.80123 41.678853 190.964243 -23.399259 NA
Equation SHP SJ Equity 0.0855220 -0.0496926 0.4298545 0.3217464 1.4611487 3.4289882 -10.2698213 -0.9125026 0.7925174 2.4210151 0.8170858 1.0535317 -1.8805858 -2.4469135 -3.6395827 3.1913292 -74.420232 6.5038172 94.218774 -212.239439 144.566508 60.55478 32.932900 -11.8341412 -2.0807932 -10.136781 -290.46403 82.731288 -79.481848 11.902245 NA
Equation REM SJ Equity 0.0250998 -0.0106059 0.3945689 0.6815910 0.0274151 1.4584217 -4.8699742 -0.6237844 0.8197341 0.9487098 -0.6035871 0.5949950 0.2636251 -1.0606038 -1.3906942 1.8434159 -77.003958 12.4630772 39.932949 -103.097991 89.984537 33.59797 16.618565 -9.6865622 -7.8669795 -5.152983 -137.64285 57.836853 -43.739226 8.048343 NA
Equation APN SJ Equity 0.0635414 -0.0107111 0.7235047 1.9843208 0.3988019 11.2030569 -23.9027010 -3.2690054 1.0173928 6.8204202 -1.2127856 4.1252991 5.5202476 -7.4862508 -6.9948165 7.3161916 -349.269880 30.6109405 174.643777 -59.724050 304.456422 258.17421 -14.074495 -26.2952221 -87.5792256 58.130124 -664.94002 51.420033 -264.543520 50.342035 NA
Equation HMN SJ Equity 0.6177372 -0.2057768 3.4401954 12.8124872 2.0175386 28.8834399 -77.3566097 -9.8696110 7.6830285 18.8246328 -0.2287179 10.2223770 -4.3879774 -20.8806810 -25.2395480 18.5805248 -610.134047 32.3323598 304.481578 -261.655837 1247.391892 503.00466 -33.417297 2.8524751 -403.5097118 136.680404 -1878.74494 300.324124 -747.142160 70.329602 NA
Equation BVT SJ Equity 0.0028854 -0.0047146 0.0298779 -0.1726473 0.1264721 0.3973835 -0.3944312 -0.0455105 0.2352354 0.2146615 -0.0284287 0.0812563 0.3719518 -0.2182014 -0.1919699 0.3774745 -17.102197 -0.6005839 10.138113 -31.029320 5.581135 11.12675 6.631848 -0.9241802 9.6637850 -3.571127 -15.31457 5.756468 -4.500436 1.961240 NA
Equation EXX SJ Equity 0.0116127 -0.0327181 -0.2344702 -1.3618512 2.4858607 1.2505071 -1.7523956 -0.0788883 -0.2082720 0.2989272 0.7994839 0.1605242 0.7977216 -1.1193253 -0.7780495 0.7825198 8.797957 4.9391178 62.347667 -109.673728 11.398932 22.75965 19.860442 -14.1026501 9.3524002 -20.964679 -119.68527 33.960679 -19.804979 5.648005 NA
Equation MRP SJ Equity 0.0459531 -0.0288486 0.4280670 -3.8205093 4.5576968 5.2255847 -10.2875695 -1.4432104 0.2324267 3.3645361 -0.3989785 1.6980533 2.0827838 -3.6844447 -2.9092672 3.1184972 -146.463636 16.4278298 105.791568 -143.343554 146.702771 114.64977 16.567526 -22.8287626 -26.0637350 3.139600 -356.32397 78.113737 -108.356494 23.568255 NA
Equation TBS SJ Equity 0.0580951 -0.0660414 -0.1995845 -7.2266640 8.8988401 0.7237750 -4.3272486 -0.2505620 -0.4522267 0.8675406 1.7336549 -0.2473028 -2.5720523 -0.8733291 1.5585554 -0.5451133 48.272696 3.0302939 42.792523 -215.301147 15.454860 -15.67361 49.444731 8.9435056 36.6036438 -16.793489 -169.37759 107.425101 -14.093556 -11.573369 NA

A table illustrating the coefficient results from the VECM for the Bid-Ask Spread v Tobin’s Q

Granger Causality Test

Granger causality is a way to investigate causality between two variables in a time series (Engel & Granger, 1987). The method is a probabilistic account of causality; it uses empirical data sets to find patterns of correlation. With regards to this research, the causal relationship between the variables of liquidity and firm market value will be tested for causality.

STEP 10: The final step involves a test of causality between the liquidity and firm market value of each firm. The Granger Causality test was run using the zoo and lmtest packages. This is the ultimate step of this research project, and so we end here.

res.df df statistic p.value
28 NA NA NA
29 -1 0.9417632 0.3401338
res.df df statistic p.value
28 NA NA NA
29 -1 1.602337 0.2160038