Overview
This study aims to explore the patterns in occupancy and abundance of bees (Hymenoptera) occurring during the spring and early summer months in the mid-Atlantic United States. Mapping of observed spatial distributions, mean abundance, and building predictive habitat-based models (of occupancy and abundance) can help improve our understanding of bee ecology (including both native and non-native pollinators). Key interests are on little-studied forest specialist species.
Methods
Projet steps:
- Formatting data, getting land cover covariates clipped and added to count data
- Get weather covariates for 2014 and 2015.
- Write methods on occupancy and abundance estimation methods.
- Fit occupancy and abundance models using ‘unmarked’ package in R.
- Get county-level predicted abundance estimates for each species.
- Get county-level probability of occupancy estimates for each species.
Bee data
Data was collected in Delaware, Washington, D.C., Maryland, and Virginia at randomized sampling locations (n = 127) during the spring and early summer months of 2014 and 2015 (Fig. 1). Citizen scientists located in 127 mid-Atlantic counties set out bee bowls weekly to sample hymenopterans (citation). Hymenopterans collected in bowls were dried, categorized by species or higher taxonomic classification, where possible (e.g., subspecies), and were tallied per week at each site.
Figure 1. Map of study area showing sampling locations (n = 127) in mid-Atlantic U.S..
Daily weather data
Daily precipitation (cm), temperature oC, wind speed (m/sec), and humidity (%) were compiled for each site from the closest weather station using the ‘geonames’ (Rowlingson and Rowlingson 2015) and ‘weatherData’ (Narasimhan 2017) packages in R, and then averaged over each sampling week to be included in modeling the detection process in both occupancy and abundance models.
Land cover data
We used 2011 National Land Cover Data [Homer et al. (2015); see Fig. 2], and clipped polygons to study area boundaries. These data comprised of 15 land cover classes, were used to extract relative proportions of each land cover class around each of the sampling locations at 3 spatial scales: 200 m, 500 m, and 1000 m buffer lengths (radius) in R (Team 2016). Land cover data was also used to create predictive habitat-based species occupancy and abundance maps for the mid-Atlantic region.
Elevation data We extracted elevation (m) for each of the sampling locations to be used in occupancy and abundance models.
Figure 2. U.S. Geological Survey 2011 National Land Cover Data used to extract land cover classes.
Figure 3. U.S. Geologial Survey 2011 National Land Cover Data clipped to study area counties featuring 15 land cover classes.
Estimating probability of species occupancy
We analyzed bee count data using R, the open-source statistical computing language (Team 2016). Using the R package ‘unmarked’, we estimated the probability of occupancy for each species using the ‘occu’ function (Fiske et al. 2011). This model is designed for single-season, single-species occupancy estimates that assume population closure during the sampling period. The hierarchical design of the model allows us to account for variables that potentially affect detection probability using a Bernoulli distribution, and is shown in the nested design: \(Zi \sim Bernoulli (ψi)\) where \(Zi\) is the unobserved occupancy state (i.e., present or absent) at site \(i\), and \(ψi\) is the probability of occupancy at site i. This function of a Bernoulli distribution that describes site occupancy driven by species presence or absence at a given location is nested within the model for the detection process: \(yij | Zi \sim Bernoulli (Zi • pij)\) where \(yij\) is the estimated occupancy at site \(i\) and survey \(j\), \(Zi\) is the unobserved true occupancy state (from the function above), and \(pij\) is the detection probability at site \(i\) and survey \(j\) (MacKenzie et al. 2002, Royle and Dorazio 2008).
Estimating species abundance
We estimated species abundance using hierarchical N-mixture models in the package ‘unmarked’ with the function ‘pcount’ (Fiske et al. 2011). Abundance estimates based on raw counts of individuals that do not account for detection probabilities of the individuals counted, can lead to biased population estimates (Royle 2004), and can potentially underestimate population sizes (Royle et al. 2007, Kéry 2008). Hence, we used data from 12 repeated weekly visits to sampling locations to estimate species abundance while accounting for detection probability, and the influence of observation-level covariates (e.g., week, mean precipitation, mean temperature) on detection (Fiske et al. 2011). We used N-mixture models described in Royle (2004) and Kéry et al. (2005) to estimate abundance, which are hierarchical in how the function describing true unobserved species abundance within a given area (e.g., county) is nested within, and in turn influences, the model describing the detection process (i.e., the raw observations). This model assumes closure of the sampled population during the survey period. The model for true unobserved abundance is: \(Nit \sim Poisson (λit)\) Where \(Nit\) is the unobserved true abundance at site \(i\) at time \(t\), which is a function of the Poisson distribution, in which the mean is equal to the variance, with a mean of \(λ\) at site \(i\) at time \(t\). The above model is then nested within and influences the model describing the detection process: \(yijt \sim Binomial (Nit, pijt)\) where \(yijt\) is the observed abundance at site \(i\) during visit \(j\) at time \(t\), which is a function of a binomial random variable with the parameters \(Nit\) (true abundance at at site \(i\) at time \(t\)) and \(pijt\) (detection probability at site \(i\) during visit \(j\) at time \(t\)) (Royle 2004, Kéry et al. 2005).
AIC model selection
We used Akaike’s information criterion (Akaike 1981) to compare \(a priori\) determined models of occupancy and abundance for each species. Models were developed to test for relationships between species probability of site occupancy and abundance and land cover class types: forest, grassland, and developed at varying spatial scales (i.e., 200 m, 500 m, and 1000 m) around each sampling location. Top performing models were then used to estimate predicted values and plotted.
Results
Explore raw data
We detected 158 unique taxa of bees including all sub-species, and those with uncertain identification (Table 1). Here we show examples of species which were detected in a large proportion of sites with both higher and lower raw abundances, as well as some species that occurred in relatively fewer sites with both high and low raw abundances (Fig. 4). To first explore species raw abundances from count data and seasonal phenology, we calculated weekly mean, variance, SD, and SE of raw count data by year for each species (Fig. 5).
Estimated county-level abundance
Using the ‘unmarked’ package (Fiske et al. 2011), we fit preliminary abundance models with the pcount() function for each species to estimate the mean abundance by county using the model: \(model = pcount(\sim week + temp \sim County, data=umf, mixture="P")\) where \(week\) and \(temp\) are observation-level covariates for the detection process and \(county\) is a site-level covariate to subset the data by when estimating abundance. We then visualized these results in chloropleth maps (Fig. 6).
Table 1. List of unique species detected and associated summaries of detections
Species | n | mean | var | SD | SE | CV | lwr | upr |
---|---|---|---|---|---|---|---|---|
Agapostemon texanus | 149 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Agapostemon virescens | 547 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena (Trachandrena) | 5045 | 2.775818 | 18.4451724 | 4.2947843 | 0.0604659 | 1.5472141 | 2.657304 | 2.894331 |
Andrena arabis | 393 | 1.519084 | 1.2910890 | 1.1362610 | 0.0573168 | 0.7479909 | 1.406743 | 1.631425 |
Andrena arabis algida | 33 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena atlantica | 21 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena banksi | 692 | 1.252890 | 0.1892102 | 0.4349829 | 0.0165356 | 0.3471836 | 1.220481 | 1.285300 |
Andrena barbara | 6773 | 1.585708 | 1.0560391 | 1.0276376 | 0.0124868 | 0.6480623 | 1.561234 | 1.610182 |
Andrena bradleyi | 92 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena brevipalpis | 885 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena carlini | 31046 | 5.338465 | 88.4946821 | 9.4071612 | 0.0533895 | 1.7621470 | 5.233822 | 5.443109 |
Andrena carolina | 88 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena commoda | 107 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena confederata | 144 | 1.673611 | 0.2213967 | 0.4705281 | 0.0392107 | 0.2811454 | 1.596758 | 1.750464 |
Andrena cornelli | 602 | 1.066445 | 0.0621334 | 0.2492658 | 0.0101593 | 0.2337352 | 1.046533 | 1.086357 |
Andrena cressonii | 4050 | 1.303210 | 0.5402959 | 0.7350483 | 0.0115502 | 0.5640291 | 1.280571 | 1.325848 |
Andrena dunningi | 365 | 1.191781 | 0.1554268 | 0.3942420 | 0.0206356 | 0.3308008 | 1.151335 | 1.232226 |
Andrena erigeniae | 14584 | 3.124246 | 19.9490411 | 4.4664349 | 0.0369847 | 1.4296042 | 3.051756 | 3.196736 |
Andrena erythronii | 464 | 1.560345 | 0.2468906 | 0.4968809 | 0.0230671 | 0.3184430 | 1.515133 | 1.605556 |
Andrena fenningeri | 32 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena forbesii | 1100 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena heraclei | 487 | 1.065708 | 0.0615171 | 0.2480265 | 0.0112392 | 0.2327339 | 1.043680 | 1.087737 |
Andrena hilaris | 139 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena ilicis | 95 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena illini | 2337 | 1.998288 | 4.1643806 | 2.0406814 | 0.0422130 | 1.0212147 | 1.915551 | 2.081026 |
Andrena imitatrix | 133 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena imitatrix morrisonella | 3177 | 1.260623 | 0.2796612 | 0.5288300 | 0.0093823 | 0.4194989 | 1.242234 | 1.279013 |
Andrena macra | 41 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena mandibularis | 1735 | 1.242075 | 0.4557835 | 0.6751174 | 0.0162080 | 0.5435400 | 1.210307 | 1.273843 |
Andrena miserabilis | 1419 | 1.133897 | 0.1160505 | 0.3406618 | 0.0090434 | 0.3004345 | 1.116172 | 1.151622 |
Andrena morrisonella | 322 | 1.267081 | 0.1963584 | 0.4431235 | 0.0246943 | 0.3497200 | 1.218680 | 1.315482 |
Andrena nasonii | 11716 | 2.611045 | 8.4217269 | 2.9020212 | 0.0268109 | 1.1114406 | 2.558495 | 2.663594 |
Andrena nida | 69 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena nivalis | 51 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena nuda | 267 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena perplexa | 14653 | 4.778544 | 66.0073965 | 8.1244936 | 0.0671171 | 1.7002029 | 4.646994 | 4.910093 |
Andrena personata | 1036 | 1.111969 | 0.0995281 | 0.3154807 | 0.0098015 | 0.2837136 | 1.092758 | 1.131180 |
Andrena pruni | 6832 | 3.133636 | 49.9152380 | 7.0650717 | 0.0854757 | 2.2545925 | 2.966104 | 3.301168 |
Andrena rufosignata | 1279 | 1.412041 | 0.6102148 | 0.7811625 | 0.0218427 | 0.5532153 | 1.369229 | 1.454852 |
Andrena rugosa | 1808 | 1.031527 | 0.0305495 | 0.1747842 | 0.0041106 | 0.1694423 | 1.023470 | 1.039583 |
Andrena sayi | 122 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena species | 933 | 1.257235 | 0.9638022 | 0.9817343 | 0.0321405 | 0.7808679 | 1.194239 | 1.320230 |
Andrena tridens | 3136 | 3.229273 | 37.4954235 | 6.1233507 | 0.1093455 | 1.8962010 | 3.014956 | 3.443590 |
Andrena vicina | 2633 | 1.176605 | 0.2222184 | 0.4714005 | 0.0091868 | 0.4006448 | 1.158599 | 1.194611 |
Andrena violae | 2730 | 1.304396 | 0.6676611 | 0.8171053 | 0.0156386 | 0.6264245 | 1.273744 | 1.335047 |
Andrena wilkella | 104 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Andrena ziziaeformis | 130 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Anthophora plumipes | 620 | 1.200000 | 0.3605816 | 0.6004845 | 0.0241160 | 0.5004037 | 1.152733 | 1.247267 |
Apis mellifera | 2982 | 2.007042 | 5.4326911 | 2.3308134 | 0.0426829 | 1.1613176 | 1.923384 | 2.090701 |
Augochlora pura | 6265 | 1.403512 | 0.6759136 | 0.8221396 | 0.0103869 | 0.5857733 | 1.383153 | 1.423870 |
Augochlorella aurata | 1491 | 1.262240 | 0.2889021 | 0.5374961 | 0.0139199 | 0.4258272 | 1.234957 | 1.289523 |
Augochloropsis metallica | 187 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Bombus bimaculatus | 614 | 1.091205 | 0.1417496 | 0.3764965 | 0.0151942 | 0.3450281 | 1.061425 | 1.120986 |
Bombus citrinus | 130 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Bombus fervidus | 227 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Bombus griseocollis | 611 | 1.168576 | 0.1403880 | 0.3746838 | 0.0151581 | 0.3206328 | 1.138866 | 1.198286 |
Bombus impatiens | 1513 | 1.688037 | 7.2941491 | 2.7007682 | 0.0694333 | 1.5999461 | 1.551948 | 1.824126 |
Bombus pensylvanicus | 32 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Bombus perplexus | 365 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Bombus sandersoni | 499 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Bombus vagans | 74 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Calliopsis andreniformis | 66 | 2.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 2.000000 | 2.000000 |
Ceratina calcarata | 8938 | 3.415417 | 39.4341004 | 6.2796577 | 0.0664226 | 1.8386209 | 3.285229 | 3.545606 |
Ceratina dupla | 641 | 3.786271 | 35.0401862 | 5.9194752 | 0.2338052 | 1.5634049 | 3.328013 | 4.244530 |
Ceratina mikmaqi | 314 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Ceratina species | 319 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Ceratina strenua | 1126 | 1.531972 | 2.1265325 | 1.4582635 | 0.0434577 | 0.9518868 | 1.446794 | 1.617149 |
Colletes inaequalis | 780 | 1.191026 | 0.5398423 | 0.7347396 | 0.0263079 | 0.6168966 | 1.139462 | 1.242589 |
Colletes thoracicus | 57 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Colletes validus | 15 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Eucera atriventris | 130 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Eucera hamata | 57 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Eucera rosae | 96 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Habropoda laboriosa | 962 | 1.360707 | 0.5679862 | 0.7536486 | 0.0242986 | 0.5538655 | 1.313082 | 1.408332 |
Halictus confusus | 1251 | 1.047162 | 0.0449739 | 0.2120706 | 0.0059959 | 0.2025193 | 1.035410 | 1.058914 |
Halictus parallelus | 165 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Halictus poeyiligatus | 273 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Halictus rubicundus | 1678 | 1.240167 | 0.1825956 | 0.4273120 | 0.0104316 | 0.3445601 | 1.219721 | 1.260613 |
Hoplitis producta | 60 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Hylaeus affinis modestus | 66 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Hylaeus annulatus | 74 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum abanci | 1860 | 1.496237 | 2.9268282 | 1.7107975 | 0.0396682 | 1.1434004 | 1.418487 | 1.573986 |
Lasioglossum acuminatum | 208 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum admirandum | 255 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum birkmanni | 414 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum bruneri | 143 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum callidum | 27 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum cattellae | 925 | 1.046487 | 0.0443735 | 0.2106501 | 0.0069261 | 0.2012927 | 1.032911 | 1.060062 |
Lasioglossum coeruleum | 2654 | 1.314996 | 0.3892436 | 0.6238939 | 0.0121104 | 0.4744454 | 1.291260 | 1.338733 |
Lasioglossum comagenense | 130 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum coreopsis | 48 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum coriaceum | 1341 | 1.218494 | 0.2440159 | 0.4939797 | 0.0134895 | 0.4054019 | 1.192054 | 1.244933 |
Lasioglossum cressonii | 4709 | 1.263538 | 0.3202951 | 0.5659462 | 0.0082473 | 0.4479060 | 1.247373 | 1.279703 |
Lasioglossum ephialtum | 144 | 1.430556 | 0.2468920 | 0.4968823 | 0.0414069 | 0.3473352 | 1.349398 | 1.511713 |
Lasioglossum floridanum | 31 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum foxii | 422 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum fuscipenne | 854 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum gotham | 4861 | 2.167455 | 6.9612534 | 2.6384187 | 0.0378426 | 1.2172887 | 2.093284 | 2.241627 |
Lasioglossum heterognathum | 130 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum hitchensi | 879 | 1.275313 | 0.3341393 | 0.5780478 | 0.0194971 | 0.4532596 | 1.237099 | 1.313527 |
Lasioglossum illinoense | 111 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum imitatum | 1697 | 1.351208 | 0.5062972 | 0.7115456 | 0.0172728 | 0.5265996 | 1.317353 | 1.385063 |
Lasioglossum leucozonium | 130 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum lineatulum | 130 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum macoupinense | 97 | 2.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 2.000000 | 2.000000 |
Lasioglossum nelumbonis | 47 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum nigroviride | 100 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum nymphaearum | 66 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum oblongum | 405 | 1.202469 | 0.3648454 | 0.6040243 | 0.0300142 | 0.5023200 | 1.143641 | 1.261297 |
Lasioglossum obscurum | 57 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum pectorale | 126 | 1.333333 | 0.2240000 | 0.4732864 | 0.0421637 | 0.3549648 | 1.250692 | 1.415974 |
Lasioglossum perplexa | 29 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum platyparium | 182 | 1.280220 | 0.2028110 | 0.4503454 | 0.0333818 | 0.3517720 | 1.214791 | 1.345648 |
Lasioglossum quebecense | 7702 | 3.894703 | 55.6335026 | 7.4587869 | 0.0849897 | 1.9151107 | 3.728123 | 4.061282 |
Lasioglossum smilacinae | 470 | 1.131915 | 0.1147575 | 0.3387588 | 0.0156258 | 0.2992794 | 1.101288 | 1.162541 |
Lasioglossum species | 1224 | 1.097222 | 0.0878418 | 0.2963812 | 0.0084715 | 0.2701196 | 1.080618 | 1.113826 |
Lasioglossum subviridatum | 3515 | 1.970697 | 5.2783101 | 2.2974573 | 0.0387512 | 1.1658095 | 1.894745 | 2.046649 |
Lasioglossum tegulare | 347 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum trigeminum | 16 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Lasioglossum versans | 1892 | 2.468816 | 4.2607933 | 2.0641689 | 0.0474553 | 0.8360967 | 2.375804 | 2.561828 |
Lasioglossum versatum | 243 | 1.271605 | 0.1986532 | 0.4457053 | 0.0285920 | 0.3505061 | 1.215565 | 1.327645 |
Lasioglossum weemsi | 611 | 1.037643 | 0.0362856 | 0.1904878 | 0.0077063 | 0.1835773 | 1.022539 | 1.052748 |
Lasioglossum zephyrum | 216 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Nomada annulata | 115 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Nomada armatella | 80 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Nomada articulata | 6 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Nomada australis | 14 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Nomada bidentate group | 10492 | 1.759722 | 3.0631263 | 1.7501789 | 0.0170865 | 0.9945771 | 1.726232 | 1.793211 |
Nomada composita | 1566 | 4.745211 | 43.1407917 | 6.5681650 | 0.1659771 | 1.3841672 | 4.419896 | 5.070526 |
Nomada cressonii | 614 | 1.076547 | 0.0708031 | 0.2660885 | 0.0107385 | 0.2471684 | 1.055500 | 1.097595 |
Nomada denticulata | 1748 | 1.432494 | 1.2106665 | 1.1003029 | 0.0263173 | 0.7681028 | 1.380912 | 1.484076 |
Nomada depressa | 1538 | 1.838752 | 1.7436632 | 1.3204784 | 0.0336708 | 0.7181385 | 1.772757 | 1.904746 |
Nomada fragariae | 97 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Nomada gracilis | 806 | 1.258064 | 0.4500902 | 0.6708876 | 0.0236310 | 0.5332696 | 1.211748 | 1.304381 |
Nomada imbricata | 9101 | 2.267004 | 14.1407891 | 3.7604241 | 0.0394178 | 1.6587640 | 2.189745 | 2.344263 |
Nomada interesting | 412 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Nomada lehighensis | 752 | 2.101064 | 2.3120095 | 1.5205294 | 0.0554480 | 0.7236950 | 1.992386 | 2.209742 |
Nomada luteola | 868 | 1.081797 | 0.0751931 | 0.2742136 | 0.0093074 | 0.2534796 | 1.063555 | 1.100040 |
Nomada luteoloides | 14339 | 2.615315 | 8.2637799 | 2.8746791 | 0.0240066 | 1.0991713 | 2.568262 | 2.662368 |
Nomada maculata | 4810 | 1.415593 | 0.8825599 | 0.9394466 | 0.0135456 | 0.6636420 | 1.389043 | 1.442142 |
Nomada perplexa | 30 | 2.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 2.000000 | 2.000000 |
Nomada pygmaea | 9949 | 2.697457 | 14.7558651 | 3.8413364 | 0.0385117 | 1.4240584 | 2.621974 | 2.772940 |
Nomada sayiillinoensis | 1620 | 1.308025 | 0.4652845 | 0.6821177 | 0.0169474 | 0.5214869 | 1.274808 | 1.341241 |
Nomada species | 1148 | 1.080139 | 0.0737813 | 0.2716272 | 0.0080168 | 0.2514742 | 1.064426 | 1.095852 |
Nomada sulphurata | 2016 | 1.322421 | 0.4885492 | 0.6989629 | 0.0155671 | 0.5285481 | 1.291909 | 1.352932 |
Osmia atriventris | 3380 | 1.337574 | 0.6457023 | 0.8035560 | 0.0138216 | 0.6007563 | 1.310484 | 1.364664 |
Osmia bucephala | 768 | 1.404948 | 1.1017747 | 1.0496546 | 0.0378761 | 0.7471128 | 1.330711 | 1.479185 |
Osmia collinsiae | 726 | 1.056474 | 0.0533580 | 0.2309936 | 0.0085730 | 0.2186458 | 1.039671 | 1.073277 |
Osmia cornifrons | 6763 | 4.158362 | 46.1433592 | 6.7928903 | 0.0826009 | 1.6335497 | 3.996464 | 4.320259 |
Osmia georgica | 1180 | 1.261864 | 0.7057539 | 0.8400916 | 0.0244560 | 0.6657543 | 1.213931 | 1.309798 |
Osmia inspergens | 28 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Osmia lignaria | 425 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Osmia pumila | 6130 | 1.315334 | 0.6574414 | 0.8108276 | 0.0103561 | 0.6164422 | 1.295036 | 1.335633 |
Osmia species | 372 | 1.088710 | 0.0810582 | 0.2847072 | 0.0147614 | 0.2615088 | 1.059777 | 1.117642 |
Osmia taurus | 14322 | 3.150817 | 21.2585878 | 4.6107036 | 0.0385270 | 1.4633359 | 3.075304 | 3.226330 |
Osmia virga | 228 | 1.280702 | 0.2027977 | 0.4503307 | 0.0298239 | 0.3516281 | 1.222247 | 1.339157 |
Sphecodes species | 888 | 1.065315 | 0.0611181 | 0.2472207 | 0.0082962 | 0.2320634 | 1.049055 | 1.081576 |
Xylocopa virginica | 164 | 1.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.000000 | 1.000000 |
Figure 4. Site-level averages of raw counts (mean \(\pm\) SE) for 7 selected species. Sites are sorted from higher to lower counts.
Figure 5. Weekly averages for 7 selected species (mean \(\pm\) SE) of raw count data by year. Shown with non-linear model fitted predicted values for each year.
Figure 6. Chloropleth map showing estimated county-level abundance for 7 selected species.
Table 2. Example AIC table for 7 selected species showing model comparisons.
[1] “Andrena erigeniae”
model | formula | nPars | AIC | delta | AICwt | cumltvWt |
---|---|---|---|---|---|---|
grassland1000 | ~week + temp ~ grassland_1000 | 5 | 1607.691 | 0.000000 | 0.1849859 | 0.1849859 |
sex | ~week + temp ~ sex | 5 | 1608.928 | 1.237721 | 0.0996256 | 0.2846115 |
null | ~week + temp ~ 1 | 4 | 1609.005 | 1.314459 | 0.0958754 | 0.3804870 |
year | ~week + temp ~ year | 5 | 1609.206 | 1.514938 | 0.0867309 | 0.4672179 |
grassland500 | ~week + temp ~ grassland_500 | 5 | 1609.584 | 1.893617 | 0.0717703 | 0.5389882 |
developed1000 | ~week + temp ~ developed_1000 | 5 | 1609.867 | 2.176221 | 0.0623129 | 0.6013012 |
forest1000 | ~week + temp ~ forest_1000 | 5 | 1610.150 | 2.459455 | 0.0540847 | 0.6553859 |
elevation | ~week + temp ~ elevation_m | 5 | 1610.512 | 2.821749 | 0.0451236 | 0.7005095 |
forest500 | ~week + temp ~ forest_500 | 5 | 1610.770 | 3.079359 | 0.0396702 | 0.7401797 |
developed200 | ~week + temp ~ developed_200 | 5 | 1610.788 | 3.097443 | 0.0393131 | 0.7794928 |
forest200 | ~week + temp ~ forest_200 | 5 | 1610.846 | 3.155520 | 0.0381879 | 0.8176807 |
wetland500 | ~week + temp ~ wetland_500 | 5 | 1610.899 | 3.208446 | 0.0371906 | 0.8548714 |
developed500 | ~week + temp ~ developed_500 | 5 | 1610.906 | 3.214959 | 0.0370697 | 0.8919411 |
grassland200 | ~week + temp ~ grassland_200 | 5 | 1610.981 | 3.290703 | 0.0356920 | 0.9276331 |
wetland1000 | ~week + temp ~ wetland_1000 | 5 | 1611.002 | 3.310985 | 0.0353319 | 0.9629651 |
wetland200 | ~week + temp ~ wetland_200 | 5 | 1611.002 | 3.311818 | 0.0353172 | 0.9982823 |
global | ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 | 19 | 1617.049 | 9.358556 | 0.0017177 | 1.0000000 |
[1] |
“Andrena carlini” |
model | formula | nPars | AIC | delta | AICwt | cumltvWt |
---|---|---|---|---|---|---|
elevation | ~week + temp ~ elevation_m | 5 | 2711.771 | 0.000000 | 0.2831172 | 0.2831172 |
grassland1000 | ~week + temp ~ grassland_1000 | 5 | 2712.858 | 1.086798 | 0.1644262 | 0.4475433 |
null | ~week + temp ~ 1 | 4 | 2714.234 | 2.462875 | 0.0826342 | 0.5301775 |
grassland500 | ~week + temp ~ grassland_500 | 5 | 2715.228 | 3.456952 | 0.0502688 | 0.5804463 |
forest1000 | ~week + temp ~ forest_1000 | 5 | 2715.608 | 3.836549 | 0.0415786 | 0.6220249 |
developed200 | ~week + temp ~ developed_200 | 5 | 2715.609 | 3.837999 | 0.0415485 | 0.6635734 |
forest500 | ~week + temp ~ forest_500 | 5 | 2715.803 | 4.032125 | 0.0377052 | 0.7012786 |
wetland1000 | ~week + temp ~ wetland_1000 | 5 | 2715.877 | 4.105870 | 0.0363403 | 0.7376189 |
developed1000 | ~week + temp ~ developed_1000 | 5 | 2715.877 | 4.106262 | 0.0363331 | 0.7739520 |
wetland200 | ~week + temp ~ wetland_200 | 5 | 2715.916 | 4.145534 | 0.0356266 | 0.8095787 |
wetland500 | ~week + temp ~ wetland_500 | 5 | 2716.023 | 4.252419 | 0.0337726 | 0.8433513 |
year | ~week + temp ~ year | 5 | 2716.101 | 4.330357 | 0.0324819 | 0.8758332 |
developed500 | ~week + temp ~ developed_500 | 5 | 2716.124 | 4.353418 | 0.0321095 | 0.9079427 |
grassland200 | ~week + temp ~ grassland_200 | 5 | 2716.223 | 4.452107 | 0.0305635 | 0.9385062 |
sex | ~week + temp ~ sex | 5 | 2716.227 | 4.456483 | 0.0304967 | 0.9690029 |
forest200 | ~week + temp ~ forest_200 | 5 | 2716.233 | 4.462365 | 0.0304072 | 0.9994101 |
global | ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 | 19 | 2724.118 | 12.347349 | 0.0005899 | 1.0000000 |
[1] |
“Nomada luteoloides” |
model | formula | nPars | AIC | delta | AICwt | cumltvWt |
---|---|---|---|---|---|---|
null | ~week + temp ~ 1 | 4 | 1572.196 | 0.000000 | 0.1405333 | 0.1405333 |
wetland500 | ~week + temp ~ wetland_500 | 5 | 1573.357 | 1.160847 | 0.0786511 | 0.2191844 |
elevation | ~week + temp ~ elevation_m | 5 | 1573.562 | 1.365729 | 0.0709929 | 0.2901773 |
forest500 | ~week + temp ~ forest_500 | 5 | 1573.658 | 1.461567 | 0.0676712 | 0.3578485 |
developed1000 | ~week + temp ~ developed_1000 | 5 | 1573.984 | 1.788118 | 0.0574771 | 0.4153256 |
year | ~week + temp ~ year | 5 | 1574.015 | 1.818751 | 0.0566034 | 0.4719290 |
developed200 | ~week + temp ~ developed_200 | 5 | 1574.021 | 1.825038 | 0.0564258 | 0.5283548 |
wetland200 | ~week + temp ~ wetland_200 | 5 | 1574.107 | 1.910281 | 0.0540713 | 0.5824261 |
sex | ~week + temp ~ sex | 5 | 1574.137 | 1.940958 | 0.0532483 | 0.6356744 |
forest1000 | ~week + temp ~ forest_1000 | 5 | 1574.161 | 1.965089 | 0.0526097 | 0.6882841 |
grassland500 | ~week + temp ~ grassland_500 | 5 | 1574.171 | 1.974687 | 0.0523578 | 0.7406419 |
grassland1000 | ~week + temp ~ grassland_1000 | 5 | 1574.176 | 1.979431 | 0.0522338 | 0.7928757 |
forest200 | ~week + temp ~ forest_200 | 5 | 1574.191 | 1.994354 | 0.0518455 | 0.8447212 |
wetland1000 | ~week + temp ~ wetland_1000 | 5 | 1574.193 | 1.996414 | 0.0517921 | 0.8965133 |
developed500 | ~week + temp ~ developed_500 | 5 | 1574.194 | 1.998168 | 0.0517467 | 0.9482600 |
grassland200 | ~week + temp ~ grassland_200 | 5 | 1574.196 | 1.999518 | 0.0517118 | 0.9999718 |
global | ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 | 19 | 1589.222 | 17.026166 | 0.0000282 | 1.0000000 |
[1] |
“Andrena rufosignata” |
model | formula | nPars | AIC | delta | AICwt | cumltvWt |
---|---|---|---|---|---|---|
forest1000 | ~week + temp ~ forest_1000 | 5 | 189.1471 | 0.0000000 | 0.1328567 | 0.1328567 |
wetland200 | ~week + temp ~ wetland_200 | 5 | 189.9126 | 0.7655527 | 0.0906037 | 0.2234604 |
wetland500 | ~week + temp ~ wetland_500 | 5 | 189.9672 | 0.8201246 | 0.0881649 | 0.3116253 |
developed1000 | ~week + temp ~ developed_1000 | 5 | 190.1731 | 1.0259881 | 0.0795414 | 0.3911667 |
wetland1000 | ~week + temp ~ wetland_1000 | 5 | 190.2064 | 1.0593137 | 0.0782270 | 0.4693937 |
null | ~week + temp ~ 1 | 4 | 190.3769 | 1.2297839 | 0.0718355 | 0.5412292 |
grassland1000 | ~week + temp ~ grassland_1000 | 5 | 190.4322 | 1.2851277 | 0.0698750 | 0.6111042 |
elevation | ~week + temp ~ elevation_m | 5 | 190.5750 | 1.4278737 | 0.0650616 | 0.6761658 |
forest500 | ~week + temp ~ forest_500 | 5 | 190.5954 | 1.4483554 | 0.0643987 | 0.7405645 |
grassland500 | ~week + temp ~ grassland_500 | 5 | 190.8854 | 1.7383372 | 0.0557068 | 0.7962713 |
forest200 | ~week + temp ~ forest_200 | 5 | 191.4244 | 2.2772919 | 0.0425477 | 0.8388190 |
developed500 | ~week + temp ~ developed_500 | 5 | 191.6233 | 2.4762672 | 0.0385185 | 0.8773375 |
grassland200 | ~week + temp ~ grassland_200 | 5 | 191.7738 | 2.6267389 | 0.0357268 | 0.9130643 |
year | ~week + temp ~ year | 5 | 192.0931 | 2.9460222 | 0.0304553 | 0.9435196 |
developed200 | ~week + temp ~ developed_200 | 5 | 192.2624 | 3.1153694 | 0.0279827 | 0.9715023 |
sex | ~week + temp ~ sex | 5 | 192.2851 | 3.1380246 | 0.0276675 | 0.9991698 |
global | ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 | 19 | 199.2978 | 10.1507573 | 0.0008302 | 1.0000000 |
[1] |
“Lasioglossum coeruleum” |
model | formula | nPars | AIC | delta | AICwt | cumltvWt |
---|---|---|---|---|---|---|
forest500 | ~week + temp ~ forest_500 | 5 | 554.5876 | 0.0000000 | 0.1443542 | 0.1443542 |
wetland500 | ~week + temp ~ wetland_500 | 5 | 555.3334 | 0.7457401 | 0.0994246 | 0.2437788 |
wetland200 | ~week + temp ~ wetland_200 | 5 | 555.4145 | 0.8268297 | 0.0954741 | 0.3392529 |
forest1000 | ~week + temp ~ forest_1000 | 5 | 555.5552 | 0.9675577 | 0.0889871 | 0.4282399 |
grassland1000 | ~week + temp ~ grassland_1000 | 5 | 555.7051 | 1.1174473 | 0.0825617 | 0.5108016 |
forest200 | ~week + temp ~ forest_200 | 5 | 555.8552 | 1.2675300 | 0.0765929 | 0.5873946 |
null | ~week + temp ~ 1 | 4 | 556.2897 | 1.7020994 | 0.0616344 | 0.6490290 |
developed1000 | ~week + temp ~ developed_1000 | 5 | 556.4013 | 1.8136874 | 0.0582897 | 0.7073187 |
wetland1000 | ~week + temp ~ wetland_1000 | 5 | 556.5927 | 2.0050269 | 0.0529716 | 0.7602903 |
developed500 | ~week + temp ~ developed_500 | 5 | 556.6417 | 2.0541212 | 0.0516871 | 0.8119775 |
grassland500 | ~week + temp ~ grassland_500 | 5 | 556.8478 | 2.2601619 | 0.0466274 | 0.8586049 |
year | ~week + temp ~ year | 5 | 557.5784 | 2.9907434 | 0.0323592 | 0.8909641 |
elevation | ~week + temp ~ elevation_m | 5 | 557.7192 | 3.1316099 | 0.0301584 | 0.9211225 |
developed200 | ~week + temp ~ developed_200 | 5 | 557.7373 | 3.1496275 | 0.0298880 | 0.9510105 |
grassland200 | ~week + temp ~ grassland_200 | 5 | 558.0757 | 3.4880714 | 0.0252351 | 0.9762456 |
sex | ~week + temp ~ sex | 5 | 558.1968 | 3.6091494 | 0.0237527 | 0.9999982 |
global | ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 | 19 | 577.1994 | 22.6117360 | 0.0000018 | 1.0000000 |
[1] |
“Osmia taurus” |
model | formula | nPars | AIC | delta | AICwt | cumltvWt |
---|---|---|---|---|---|---|
grassland1000 | ~week + temp ~ grassland_1000 | 5 | 2002.640 | 0.0000000 | 0.1323216 | 0.1323216 |
null | ~week + temp ~ 1 | 4 | 2003.017 | 0.3763787 | 0.1096228 | 0.2419444 |
grassland500 | ~week + temp ~ grassland_500 | 5 | 2003.065 | 0.4247464 | 0.1070035 | 0.3489479 |
forest1000 | ~week + temp ~ forest_1000 | 5 | 2003.421 | 0.7808707 | 0.0895502 | 0.4384981 |
year | ~week + temp ~ year | 5 | 2003.916 | 1.2755941 | 0.0699260 | 0.5084241 |
grassland200 | ~week + temp ~ grassland_200 | 5 | 2004.286 | 1.6458425 | 0.0581086 | 0.5665328 |
forest500 | ~week + temp ~ forest_500 | 5 | 2004.581 | 1.9405539 | 0.0501470 | 0.6166797 |
wetland200 | ~week + temp ~ wetland_200 | 5 | 2004.696 | 2.0560849 | 0.0473323 | 0.6640120 |
sex | ~week + temp ~ sex | 5 | 2004.749 | 2.1090868 | 0.0460944 | 0.7101064 |
wetland500 | ~week + temp ~ wetland_500 | 5 | 2004.775 | 2.1346657 | 0.0455086 | 0.7556150 |
developed1000 | ~week + temp ~ developed_1000 | 5 | 2004.933 | 2.2922607 | 0.0420603 | 0.7976754 |
developed200 | ~week + temp ~ developed_200 | 5 | 2004.986 | 2.3455849 | 0.0409537 | 0.8386291 |
forest200 | ~week + temp ~ forest_200 | 5 | 2005.009 | 2.3686808 | 0.0404835 | 0.8791126 |
developed500 | ~week + temp ~ developed_500 | 5 | 2005.014 | 2.3737534 | 0.0403810 | 0.9194935 |
wetland1000 | ~week + temp ~ wetland_1000 | 5 | 2005.016 | 2.3760523 | 0.0403346 | 0.9598281 |
elevation | ~week + temp ~ elevation_m | 5 | 2005.025 | 2.3842307 | 0.0401700 | 0.9999981 |
global | ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 | 19 | 2024.896 | 22.2561148 | 0.0000019 | 1.0000000 |
[1] |
“Osmia atriventris” |
model | formula | nPars | AIC | delta | AICwt | cumltvWt |
---|---|---|---|---|---|---|
null | ~week + temp ~ 1 | 4 | 653.1619 | 0.0000000 | 0.1229539 | 0.1229539 |
forest200 | ~week + temp ~ forest_200 | 5 | 654.0686 | 0.9067496 | 0.0781347 | 0.2010887 |
forest500 | ~week + temp ~ forest_500 | 5 | 654.2024 | 1.0405474 | 0.0730786 | 0.2741673 |
forest1000 | ~week + temp ~ forest_1000 | 5 | 654.4356 | 1.2736885 | 0.0650376 | 0.3392049 |
grassland500 | ~week + temp ~ grassland_500 | 5 | 654.4821 | 1.3201570 | 0.0635439 | 0.4027488 |
wetland500 | ~week + temp ~ wetland_500 | 5 | 654.4825 | 1.3206193 | 0.0635292 | 0.4662780 |
wetland200 | ~week + temp ~ wetland_200 | 5 | 654.5176 | 1.3556678 | 0.0624256 | 0.5287036 |
wetland1000 | ~week + temp ~ wetland_1000 | 5 | 654.5225 | 1.3606397 | 0.0622706 | 0.5909743 |
developed500 | ~week + temp ~ developed_500 | 5 | 654.6060 | 1.4441040 | 0.0597254 | 0.6506997 |
year | ~week + temp ~ year | 5 | 654.7485 | 1.5866489 | 0.0556168 | 0.7063165 |
grassland1000 | ~week + temp ~ grassland_1000 | 5 | 654.9707 | 1.8088103 | 0.0497696 | 0.7560861 |
developed1000 | ~week + temp ~ developed_1000 | 5 | 654.9894 | 1.8274679 | 0.0493075 | 0.8053935 |
grassland200 | ~week + temp ~ grassland_200 | 5 | 655.0957 | 1.9338353 | 0.0467536 | 0.8521472 |
sex | ~week + temp ~ sex | 5 | 655.1218 | 1.9598834 | 0.0461487 | 0.8982958 |
developed200 | ~week + temp ~ developed_200 | 5 | 655.1558 | 1.9939060 | 0.0453703 | 0.9436661 |
elevation | ~week + temp ~ elevation_m | 5 | 655.1653 | 2.0033599 | 0.0451563 | 0.9888224 |
global | ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 | 19 | 657.9577 | 4.7957938 | 0.0111776 | 1.0000000 |
Figure 7. Plot showing relationship between probability of occurence and elevation for 7 selected species.
Figure 8. Predictive map showing probability of occurrence for 7 selected species as a function of elevation (m).
Call: occu(formula = ~week + temp ~ elevation_m, data = umf)
Occupancy: Estimate SE z P(>|z|) (Intercept) 1.23597 0.174731 7.07 1.51e-12 elevation_m -0.00199 0.000962 -2.07 3.89e-02
Detection: Estimate SE z P(>|z|) (Intercept) -0.457 0.1594 -2.87 4.13e-03 week -0.402 0.0408 -9.85 7.04e-23 temp 0.116 0.0251 4.62 3.80e-06
AIC: 2711.771
References
Akaike, H. 1981. Likelihood of a model and information criteria. Journal of econometrics 16:3–14.
Fiske, I., R. Chandler, and others. 2011. Unmarked: An r package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43:1–23.
Homer, C. G., J. A. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. D. Herold, J. Wickham, and K. Megown. 2015. Completion of the 2011 national land cover database for the conterminous united states-representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81:345–354.
Kéry, M. 2008. Estimating abundance from bird counts: Binomial mixture models uncover complex covariate relationships. The Auk 125:336–345.
Kéry, M., J. A. Royle, and H. Schmid. 2005. Modeling avian abundance from replicated counts using binomial mixture models. Ecological applications 15:1450–1461.
MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255.
Narasimhan, R. 2017. WeatherData: Get weather data from the web.
Rowlingson, B., and M. B. Rowlingson. 2015. Package “geonames”.
Royle, J. A. 2004. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115.
Royle, J. A., and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities. Academic Press.
Royle, J. A., M. Kéry, R. Gautier, and H. Schmid. 2007. Hierarchical spatial models of abundance and occurrence from imperfect survey data. Ecological Monographs 77:465–481.
Team, R. C. 2016. R: A language and environment for statistical computing. r development core team, vienna.