Overview

This study aims to explore the patterns in occupancy and abundance of bees (Hymenoptera) occurring during the spring and early summer months in the mid-Atlantic United States. Mapping of observed spatial distributions, mean abundance, and building predictive habitat-based models (of occupancy and abundance) can help improve our understanding of bee ecology (including both native and non-native pollinators). Key interests are on little-studied forest specialist species.

Methods

Projet steps:

  1. Formatting data, getting land cover covariates clipped and added to count data
  2. Get weather covariates for 2014 and 2015.
  3. Write methods on occupancy and abundance estimation methods.
  4. Fit occupancy and abundance models using ‘unmarked’ package in R.
  5. Get county-level predicted abundance estimates for each species.
  6. Get county-level probability of occupancy estimates for each species.


Bee data
Data was collected in Delaware, Washington, D.C., Maryland, and Virginia at randomized sampling locations (n = 127) during the spring and early summer months of 2014 and 2015 (Fig. 1). Citizen scientists located in 127 mid-Atlantic counties set out bee bowls weekly to sample hymenopterans (citation). Hymenopterans collected in bowls were dried, categorized by species or higher taxonomic classification, where possible (e.g., subspecies), and were tallied per week at each site.


Figure 1. Map of study area showing sampling locations (n = 127) in mid-Atlantic U.S..


Daily weather data
Daily precipitation (cm), temperature oC, wind speed (m/sec), and humidity (%) were compiled for each site from the closest weather station using the ‘geonames’ (Rowlingson and Rowlingson 2015) and ‘weatherData’ (Narasimhan 2017) packages in R, and then averaged over each sampling week to be included in modeling the detection process in both occupancy and abundance models.

Land cover data
We used 2011 National Land Cover Data [Homer et al. (2015); see Fig. 2], and clipped polygons to study area boundaries. These data comprised of 15 land cover classes, were used to extract relative proportions of each land cover class around each of the sampling locations at 3 spatial scales: 200 m, 500 m, and 1000 m buffer lengths (radius) in R (Team 2016). Land cover data was also used to create predictive habitat-based species occupancy and abundance maps for the mid-Atlantic region.

Elevation data We extracted elevation (m) for each of the sampling locations to be used in occupancy and abundance models.

Figure 2. U.S. Geological Survey 2011 National Land Cover Data used to extract land cover classes.


Figure 3. U.S. Geologial Survey 2011 National Land Cover Data clipped to study area counties featuring 15 land cover classes.


Estimating probability of species occupancy

We analyzed bee count data using R, the open-source statistical computing language (Team 2016). Using the R package ‘unmarked’, we estimated the probability of occupancy for each species using the ‘occu’ function (Fiske et al. 2011). This model is designed for single-season, single-species occupancy estimates that assume population closure during the sampling period. The hierarchical design of the model allows us to account for variables that potentially affect detection probability using a Bernoulli distribution, and is shown in the nested design: \(Zi \sim Bernoulli (ψi)\) where \(Zi\) is the unobserved occupancy state (i.e., present or absent) at site \(i\), and \(ψi\) is the probability of occupancy at site i. This function of a Bernoulli distribution that describes site occupancy driven by species presence or absence at a given location is nested within the model for the detection process: \(yij | Zi \sim Bernoulli (Zi • pij)\) where \(yij\) is the estimated occupancy at site \(i\) and survey \(j\), \(Zi\) is the unobserved true occupancy state (from the function above), and \(pij\) is the detection probability at site \(i\) and survey \(j\) (MacKenzie et al. 2002, Royle and Dorazio 2008).

Estimating species abundance

We estimated species abundance using hierarchical N-mixture models in the package ‘unmarked’ with the function ‘pcount’ (Fiske et al. 2011). Abundance estimates based on raw counts of individuals that do not account for detection probabilities of the individuals counted, can lead to biased population estimates (Royle 2004), and can potentially underestimate population sizes (Royle et al. 2007, Kéry 2008). Hence, we used data from 12 repeated weekly visits to sampling locations to estimate species abundance while accounting for detection probability, and the influence of observation-level covariates (e.g., week, mean precipitation, mean temperature) on detection (Fiske et al. 2011). We used N-mixture models described in Royle (2004) and Kéry et al. (2005) to estimate abundance, which are hierarchical in how the function describing true unobserved species abundance within a given area (e.g., county) is nested within, and in turn influences, the model describing the detection process (i.e., the raw observations). This model assumes closure of the sampled population during the survey period. The model for true unobserved abundance is: \(Nit \sim Poisson (λit)\) Where \(Nit\) is the unobserved true abundance at site \(i\) at time \(t\), which is a function of the Poisson distribution, in which the mean is equal to the variance, with a mean of \(λ\) at site \(i\) at time \(t\). The above model is then nested within and influences the model describing the detection process: \(yijt \sim Binomial (Nit, pijt)\) where \(yijt\) is the observed abundance at site \(i\) during visit \(j\) at time \(t\), which is a function of a binomial random variable with the parameters \(Nit\) (true abundance at at site \(i\) at time \(t\)) and \(pijt\) (detection probability at site \(i\) during visit \(j\) at time \(t\)) (Royle 2004, Kéry et al. 2005).

AIC model selection

We used Akaike’s information criterion (Akaike 1981) to compare \(a priori\) determined models of occupancy and abundance for each species. Models were developed to test for relationships between species probability of site occupancy and abundance and land cover class types: forest, grassland, and developed at varying spatial scales (i.e., 200 m, 500 m, and 1000 m) around each sampling location. Top performing models were then used to estimate predicted values and plotted.

Results

Explore raw data

We detected 158 unique taxa of bees including all sub-species, and those with uncertain identification (Table 1). Here we show examples of species which were detected in a large proportion of sites with both higher and lower raw abundances, as well as some species that occurred in relatively fewer sites with both high and low raw abundances (Fig. 4). To first explore species raw abundances from count data and seasonal phenology, we calculated weekly mean, variance, SD, and SE of raw count data by year for each species (Fig. 5).

Estimated county-level abundance

Using the ‘unmarked’ package (Fiske et al. 2011), we fit preliminary abundance models with the pcount() function for each species to estimate the mean abundance by county using the model: \(model = pcount(\sim week + temp \sim County, data=umf, mixture="P")\) where \(week\) and \(temp\) are observation-level covariates for the detection process and \(county\) is a site-level covariate to subset the data by when estimating abundance. We then visualized these results in chloropleth maps (Fig. 6).

Table 1. List of unique species detected and associated summaries of detections

Species n mean var SD SE CV lwr upr
Agapostemon texanus 149 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Agapostemon virescens 547 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena (Trachandrena) 5045 2.775818 18.4451724 4.2947843 0.0604659 1.5472141 2.657304 2.894331
Andrena arabis 393 1.519084 1.2910890 1.1362610 0.0573168 0.7479909 1.406743 1.631425
Andrena arabis algida 33 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena atlantica 21 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena banksi 692 1.252890 0.1892102 0.4349829 0.0165356 0.3471836 1.220481 1.285300
Andrena barbara 6773 1.585708 1.0560391 1.0276376 0.0124868 0.6480623 1.561234 1.610182
Andrena bradleyi 92 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena brevipalpis 885 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena carlini 31046 5.338465 88.4946821 9.4071612 0.0533895 1.7621470 5.233822 5.443109
Andrena carolina 88 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena commoda 107 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena confederata 144 1.673611 0.2213967 0.4705281 0.0392107 0.2811454 1.596758 1.750464
Andrena cornelli 602 1.066445 0.0621334 0.2492658 0.0101593 0.2337352 1.046533 1.086357
Andrena cressonii 4050 1.303210 0.5402959 0.7350483 0.0115502 0.5640291 1.280571 1.325848
Andrena dunningi 365 1.191781 0.1554268 0.3942420 0.0206356 0.3308008 1.151335 1.232226
Andrena erigeniae 14584 3.124246 19.9490411 4.4664349 0.0369847 1.4296042 3.051756 3.196736
Andrena erythronii 464 1.560345 0.2468906 0.4968809 0.0230671 0.3184430 1.515133 1.605556
Andrena fenningeri 32 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena forbesii 1100 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena heraclei 487 1.065708 0.0615171 0.2480265 0.0112392 0.2327339 1.043680 1.087737
Andrena hilaris 139 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena ilicis 95 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena illini 2337 1.998288 4.1643806 2.0406814 0.0422130 1.0212147 1.915551 2.081026
Andrena imitatrix 133 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena imitatrix morrisonella 3177 1.260623 0.2796612 0.5288300 0.0093823 0.4194989 1.242234 1.279013
Andrena macra 41 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena mandibularis 1735 1.242075 0.4557835 0.6751174 0.0162080 0.5435400 1.210307 1.273843
Andrena miserabilis 1419 1.133897 0.1160505 0.3406618 0.0090434 0.3004345 1.116172 1.151622
Andrena morrisonella 322 1.267081 0.1963584 0.4431235 0.0246943 0.3497200 1.218680 1.315482
Andrena nasonii 11716 2.611045 8.4217269 2.9020212 0.0268109 1.1114406 2.558495 2.663594
Andrena nida 69 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena nivalis 51 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena nuda 267 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena perplexa 14653 4.778544 66.0073965 8.1244936 0.0671171 1.7002029 4.646994 4.910093
Andrena personata 1036 1.111969 0.0995281 0.3154807 0.0098015 0.2837136 1.092758 1.131180
Andrena pruni 6832 3.133636 49.9152380 7.0650717 0.0854757 2.2545925 2.966104 3.301168
Andrena rufosignata 1279 1.412041 0.6102148 0.7811625 0.0218427 0.5532153 1.369229 1.454852
Andrena rugosa 1808 1.031527 0.0305495 0.1747842 0.0041106 0.1694423 1.023470 1.039583
Andrena sayi 122 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena species 933 1.257235 0.9638022 0.9817343 0.0321405 0.7808679 1.194239 1.320230
Andrena tridens 3136 3.229273 37.4954235 6.1233507 0.1093455 1.8962010 3.014956 3.443590
Andrena vicina 2633 1.176605 0.2222184 0.4714005 0.0091868 0.4006448 1.158599 1.194611
Andrena violae 2730 1.304396 0.6676611 0.8171053 0.0156386 0.6264245 1.273744 1.335047
Andrena wilkella 104 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Andrena ziziaeformis 130 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Anthophora plumipes 620 1.200000 0.3605816 0.6004845 0.0241160 0.5004037 1.152733 1.247267
Apis mellifera 2982 2.007042 5.4326911 2.3308134 0.0426829 1.1613176 1.923384 2.090701
Augochlora pura 6265 1.403512 0.6759136 0.8221396 0.0103869 0.5857733 1.383153 1.423870
Augochlorella aurata 1491 1.262240 0.2889021 0.5374961 0.0139199 0.4258272 1.234957 1.289523
Augochloropsis metallica 187 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Bombus bimaculatus 614 1.091205 0.1417496 0.3764965 0.0151942 0.3450281 1.061425 1.120986
Bombus citrinus 130 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Bombus fervidus 227 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Bombus griseocollis 611 1.168576 0.1403880 0.3746838 0.0151581 0.3206328 1.138866 1.198286
Bombus impatiens 1513 1.688037 7.2941491 2.7007682 0.0694333 1.5999461 1.551948 1.824126
Bombus pensylvanicus 32 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Bombus perplexus 365 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Bombus sandersoni 499 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Bombus vagans 74 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Calliopsis andreniformis 66 2.000000 0.0000000 0.0000000 0.0000000 0.0000000 2.000000 2.000000
Ceratina calcarata 8938 3.415417 39.4341004 6.2796577 0.0664226 1.8386209 3.285229 3.545606
Ceratina dupla 641 3.786271 35.0401862 5.9194752 0.2338052 1.5634049 3.328013 4.244530
Ceratina mikmaqi 314 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Ceratina species 319 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Ceratina strenua 1126 1.531972 2.1265325 1.4582635 0.0434577 0.9518868 1.446794 1.617149
Colletes inaequalis 780 1.191026 0.5398423 0.7347396 0.0263079 0.6168966 1.139462 1.242589
Colletes thoracicus 57 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Colletes validus 15 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Eucera atriventris 130 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Eucera hamata 57 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Eucera rosae 96 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Habropoda laboriosa 962 1.360707 0.5679862 0.7536486 0.0242986 0.5538655 1.313082 1.408332
Halictus confusus 1251 1.047162 0.0449739 0.2120706 0.0059959 0.2025193 1.035410 1.058914
Halictus parallelus 165 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Halictus poeyiligatus 273 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Halictus rubicundus 1678 1.240167 0.1825956 0.4273120 0.0104316 0.3445601 1.219721 1.260613
Hoplitis producta 60 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Hylaeus affinis modestus 66 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Hylaeus annulatus 74 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum abanci 1860 1.496237 2.9268282 1.7107975 0.0396682 1.1434004 1.418487 1.573986
Lasioglossum acuminatum 208 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum admirandum 255 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum birkmanni 414 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum bruneri 143 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum callidum 27 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum cattellae 925 1.046487 0.0443735 0.2106501 0.0069261 0.2012927 1.032911 1.060062
Lasioglossum coeruleum 2654 1.314996 0.3892436 0.6238939 0.0121104 0.4744454 1.291260 1.338733
Lasioglossum comagenense 130 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum coreopsis 48 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum coriaceum 1341 1.218494 0.2440159 0.4939797 0.0134895 0.4054019 1.192054 1.244933
Lasioglossum cressonii 4709 1.263538 0.3202951 0.5659462 0.0082473 0.4479060 1.247373 1.279703
Lasioglossum ephialtum 144 1.430556 0.2468920 0.4968823 0.0414069 0.3473352 1.349398 1.511713
Lasioglossum floridanum 31 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum foxii 422 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum fuscipenne 854 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum gotham 4861 2.167455 6.9612534 2.6384187 0.0378426 1.2172887 2.093284 2.241627
Lasioglossum heterognathum 130 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum hitchensi 879 1.275313 0.3341393 0.5780478 0.0194971 0.4532596 1.237099 1.313527
Lasioglossum illinoense 111 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum imitatum 1697 1.351208 0.5062972 0.7115456 0.0172728 0.5265996 1.317353 1.385063
Lasioglossum leucozonium 130 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum lineatulum 130 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum macoupinense 97 2.000000 0.0000000 0.0000000 0.0000000 0.0000000 2.000000 2.000000
Lasioglossum nelumbonis 47 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum nigroviride 100 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum nymphaearum 66 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum oblongum 405 1.202469 0.3648454 0.6040243 0.0300142 0.5023200 1.143641 1.261297
Lasioglossum obscurum 57 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum pectorale 126 1.333333 0.2240000 0.4732864 0.0421637 0.3549648 1.250692 1.415974
Lasioglossum perplexa 29 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum platyparium 182 1.280220 0.2028110 0.4503454 0.0333818 0.3517720 1.214791 1.345648
Lasioglossum quebecense 7702 3.894703 55.6335026 7.4587869 0.0849897 1.9151107 3.728123 4.061282
Lasioglossum smilacinae 470 1.131915 0.1147575 0.3387588 0.0156258 0.2992794 1.101288 1.162541
Lasioglossum species 1224 1.097222 0.0878418 0.2963812 0.0084715 0.2701196 1.080618 1.113826
Lasioglossum subviridatum 3515 1.970697 5.2783101 2.2974573 0.0387512 1.1658095 1.894745 2.046649
Lasioglossum tegulare 347 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum trigeminum 16 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Lasioglossum versans 1892 2.468816 4.2607933 2.0641689 0.0474553 0.8360967 2.375804 2.561828
Lasioglossum versatum 243 1.271605 0.1986532 0.4457053 0.0285920 0.3505061 1.215565 1.327645
Lasioglossum weemsi 611 1.037643 0.0362856 0.1904878 0.0077063 0.1835773 1.022539 1.052748
Lasioglossum zephyrum 216 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Nomada annulata 115 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Nomada armatella 80 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Nomada articulata 6 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Nomada australis 14 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Nomada bidentate group 10492 1.759722 3.0631263 1.7501789 0.0170865 0.9945771 1.726232 1.793211
Nomada composita 1566 4.745211 43.1407917 6.5681650 0.1659771 1.3841672 4.419896 5.070526
Nomada cressonii 614 1.076547 0.0708031 0.2660885 0.0107385 0.2471684 1.055500 1.097595
Nomada denticulata 1748 1.432494 1.2106665 1.1003029 0.0263173 0.7681028 1.380912 1.484076
Nomada depressa 1538 1.838752 1.7436632 1.3204784 0.0336708 0.7181385 1.772757 1.904746
Nomada fragariae 97 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Nomada gracilis 806 1.258064 0.4500902 0.6708876 0.0236310 0.5332696 1.211748 1.304381
Nomada imbricata 9101 2.267004 14.1407891 3.7604241 0.0394178 1.6587640 2.189745 2.344263
Nomada interesting 412 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Nomada lehighensis 752 2.101064 2.3120095 1.5205294 0.0554480 0.7236950 1.992386 2.209742
Nomada luteola 868 1.081797 0.0751931 0.2742136 0.0093074 0.2534796 1.063555 1.100040
Nomada luteoloides 14339 2.615315 8.2637799 2.8746791 0.0240066 1.0991713 2.568262 2.662368
Nomada maculata 4810 1.415593 0.8825599 0.9394466 0.0135456 0.6636420 1.389043 1.442142
Nomada perplexa 30 2.000000 0.0000000 0.0000000 0.0000000 0.0000000 2.000000 2.000000
Nomada pygmaea 9949 2.697457 14.7558651 3.8413364 0.0385117 1.4240584 2.621974 2.772940
Nomada sayiillinoensis 1620 1.308025 0.4652845 0.6821177 0.0169474 0.5214869 1.274808 1.341241
Nomada species 1148 1.080139 0.0737813 0.2716272 0.0080168 0.2514742 1.064426 1.095852
Nomada sulphurata 2016 1.322421 0.4885492 0.6989629 0.0155671 0.5285481 1.291909 1.352932
Osmia atriventris 3380 1.337574 0.6457023 0.8035560 0.0138216 0.6007563 1.310484 1.364664
Osmia bucephala 768 1.404948 1.1017747 1.0496546 0.0378761 0.7471128 1.330711 1.479185
Osmia collinsiae 726 1.056474 0.0533580 0.2309936 0.0085730 0.2186458 1.039671 1.073277
Osmia cornifrons 6763 4.158362 46.1433592 6.7928903 0.0826009 1.6335497 3.996464 4.320259
Osmia georgica 1180 1.261864 0.7057539 0.8400916 0.0244560 0.6657543 1.213931 1.309798
Osmia inspergens 28 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Osmia lignaria 425 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000
Osmia pumila 6130 1.315334 0.6574414 0.8108276 0.0103561 0.6164422 1.295036 1.335633
Osmia species 372 1.088710 0.0810582 0.2847072 0.0147614 0.2615088 1.059777 1.117642
Osmia taurus 14322 3.150817 21.2585878 4.6107036 0.0385270 1.4633359 3.075304 3.226330
Osmia virga 228 1.280702 0.2027977 0.4503307 0.0298239 0.3516281 1.222247 1.339157
Sphecodes species 888 1.065315 0.0611181 0.2472207 0.0082962 0.2320634 1.049055 1.081576
Xylocopa virginica 164 1.000000 0.0000000 0.0000000 0.0000000 0.0000000 1.000000 1.000000


Figure 4. Site-level averages of raw counts (mean \(\pm\) SE) for 7 selected species. Sites are sorted from higher to lower counts.






















Figure 5. Weekly averages for 7 selected species (mean \(\pm\) SE) of raw count data by year. Shown with non-linear model fitted predicted values for each year.























Figure 6. Chloropleth map showing estimated county-level abundance for 7 selected species.























Table 2. Example AIC table for 7 selected species showing model comparisons.

[1] “Andrena erigeniae”

model formula nPars AIC delta AICwt cumltvWt
grassland1000 ~week + temp ~ grassland_1000 5 1607.691 0.000000 0.1849859 0.1849859
sex ~week + temp ~ sex 5 1608.928 1.237721 0.0996256 0.2846115
null ~week + temp ~ 1 4 1609.005 1.314459 0.0958754 0.3804870
year ~week + temp ~ year 5 1609.206 1.514938 0.0867309 0.4672179
grassland500 ~week + temp ~ grassland_500 5 1609.584 1.893617 0.0717703 0.5389882
developed1000 ~week + temp ~ developed_1000 5 1609.867 2.176221 0.0623129 0.6013012
forest1000 ~week + temp ~ forest_1000 5 1610.150 2.459455 0.0540847 0.6553859
elevation ~week + temp ~ elevation_m 5 1610.512 2.821749 0.0451236 0.7005095
forest500 ~week + temp ~ forest_500 5 1610.770 3.079359 0.0396702 0.7401797
developed200 ~week + temp ~ developed_200 5 1610.788 3.097443 0.0393131 0.7794928
forest200 ~week + temp ~ forest_200 5 1610.846 3.155520 0.0381879 0.8176807
wetland500 ~week + temp ~ wetland_500 5 1610.899 3.208446 0.0371906 0.8548714
developed500 ~week + temp ~ developed_500 5 1610.906 3.214959 0.0370697 0.8919411
grassland200 ~week + temp ~ grassland_200 5 1610.981 3.290703 0.0356920 0.9276331
wetland1000 ~week + temp ~ wetland_1000 5 1611.002 3.310985 0.0353319 0.9629651
wetland200 ~week + temp ~ wetland_200 5 1611.002 3.311818 0.0353172 0.9982823
global ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 19 1617.049 9.358556 0.0017177 1.0000000



[1]
“Andrena carlini”
model formula nPars AIC delta AICwt cumltvWt
elevation ~week + temp ~ elevation_m 5 2711.771 0.000000 0.2831172 0.2831172
grassland1000 ~week + temp ~ grassland_1000 5 2712.858 1.086798 0.1644262 0.4475433
null ~week + temp ~ 1 4 2714.234 2.462875 0.0826342 0.5301775
grassland500 ~week + temp ~ grassland_500 5 2715.228 3.456952 0.0502688 0.5804463
forest1000 ~week + temp ~ forest_1000 5 2715.608 3.836549 0.0415786 0.6220249
developed200 ~week + temp ~ developed_200 5 2715.609 3.837999 0.0415485 0.6635734
forest500 ~week + temp ~ forest_500 5 2715.803 4.032125 0.0377052 0.7012786
wetland1000 ~week + temp ~ wetland_1000 5 2715.877 4.105870 0.0363403 0.7376189
developed1000 ~week + temp ~ developed_1000 5 2715.877 4.106262 0.0363331 0.7739520
wetland200 ~week + temp ~ wetland_200 5 2715.916 4.145534 0.0356266 0.8095787
wetland500 ~week + temp ~ wetland_500 5 2716.023 4.252419 0.0337726 0.8433513
year ~week + temp ~ year 5 2716.101 4.330357 0.0324819 0.8758332
developed500 ~week + temp ~ developed_500 5 2716.124 4.353418 0.0321095 0.9079427
grassland200 ~week + temp ~ grassland_200 5 2716.223 4.452107 0.0305635 0.9385062
sex ~week + temp ~ sex 5 2716.227 4.456483 0.0304967 0.9690029
forest200 ~week + temp ~ forest_200 5 2716.233 4.462365 0.0304072 0.9994101
global ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 19 2724.118 12.347349 0.0005899 1.0000000



[1]
“Nomada luteoloides”
model formula nPars AIC delta AICwt cumltvWt
null ~week + temp ~ 1 4 1572.196 0.000000 0.1405333 0.1405333
wetland500 ~week + temp ~ wetland_500 5 1573.357 1.160847 0.0786511 0.2191844
elevation ~week + temp ~ elevation_m 5 1573.562 1.365729 0.0709929 0.2901773
forest500 ~week + temp ~ forest_500 5 1573.658 1.461567 0.0676712 0.3578485
developed1000 ~week + temp ~ developed_1000 5 1573.984 1.788118 0.0574771 0.4153256
year ~week + temp ~ year 5 1574.015 1.818751 0.0566034 0.4719290
developed200 ~week + temp ~ developed_200 5 1574.021 1.825038 0.0564258 0.5283548
wetland200 ~week + temp ~ wetland_200 5 1574.107 1.910281 0.0540713 0.5824261
sex ~week + temp ~ sex 5 1574.137 1.940958 0.0532483 0.6356744
forest1000 ~week + temp ~ forest_1000 5 1574.161 1.965089 0.0526097 0.6882841
grassland500 ~week + temp ~ grassland_500 5 1574.171 1.974687 0.0523578 0.7406419
grassland1000 ~week + temp ~ grassland_1000 5 1574.176 1.979431 0.0522338 0.7928757
forest200 ~week + temp ~ forest_200 5 1574.191 1.994354 0.0518455 0.8447212
wetland1000 ~week + temp ~ wetland_1000 5 1574.193 1.996414 0.0517921 0.8965133
developed500 ~week + temp ~ developed_500 5 1574.194 1.998168 0.0517467 0.9482600
grassland200 ~week + temp ~ grassland_200 5 1574.196 1.999518 0.0517118 0.9999718
global ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 19 1589.222 17.026166 0.0000282 1.0000000



[1]
“Andrena rufosignata”
model formula nPars AIC delta AICwt cumltvWt
forest1000 ~week + temp ~ forest_1000 5 189.1471 0.0000000 0.1328567 0.1328567
wetland200 ~week + temp ~ wetland_200 5 189.9126 0.7655527 0.0906037 0.2234604
wetland500 ~week + temp ~ wetland_500 5 189.9672 0.8201246 0.0881649 0.3116253
developed1000 ~week + temp ~ developed_1000 5 190.1731 1.0259881 0.0795414 0.3911667
wetland1000 ~week + temp ~ wetland_1000 5 190.2064 1.0593137 0.0782270 0.4693937
null ~week + temp ~ 1 4 190.3769 1.2297839 0.0718355 0.5412292
grassland1000 ~week + temp ~ grassland_1000 5 190.4322 1.2851277 0.0698750 0.6111042
elevation ~week + temp ~ elevation_m 5 190.5750 1.4278737 0.0650616 0.6761658
forest500 ~week + temp ~ forest_500 5 190.5954 1.4483554 0.0643987 0.7405645
grassland500 ~week + temp ~ grassland_500 5 190.8854 1.7383372 0.0557068 0.7962713
forest200 ~week + temp ~ forest_200 5 191.4244 2.2772919 0.0425477 0.8388190
developed500 ~week + temp ~ developed_500 5 191.6233 2.4762672 0.0385185 0.8773375
grassland200 ~week + temp ~ grassland_200 5 191.7738 2.6267389 0.0357268 0.9130643
year ~week + temp ~ year 5 192.0931 2.9460222 0.0304553 0.9435196
developed200 ~week + temp ~ developed_200 5 192.2624 3.1153694 0.0279827 0.9715023
sex ~week + temp ~ sex 5 192.2851 3.1380246 0.0276675 0.9991698
global ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 19 199.2978 10.1507573 0.0008302 1.0000000



[1]
“Lasioglossum coeruleum”
model formula nPars AIC delta AICwt cumltvWt
forest500 ~week + temp ~ forest_500 5 554.5876 0.0000000 0.1443542 0.1443542
wetland500 ~week + temp ~ wetland_500 5 555.3334 0.7457401 0.0994246 0.2437788
wetland200 ~week + temp ~ wetland_200 5 555.4145 0.8268297 0.0954741 0.3392529
forest1000 ~week + temp ~ forest_1000 5 555.5552 0.9675577 0.0889871 0.4282399
grassland1000 ~week + temp ~ grassland_1000 5 555.7051 1.1174473 0.0825617 0.5108016
forest200 ~week + temp ~ forest_200 5 555.8552 1.2675300 0.0765929 0.5873946
null ~week + temp ~ 1 4 556.2897 1.7020994 0.0616344 0.6490290
developed1000 ~week + temp ~ developed_1000 5 556.4013 1.8136874 0.0582897 0.7073187
wetland1000 ~week + temp ~ wetland_1000 5 556.5927 2.0050269 0.0529716 0.7602903
developed500 ~week + temp ~ developed_500 5 556.6417 2.0541212 0.0516871 0.8119775
grassland500 ~week + temp ~ grassland_500 5 556.8478 2.2601619 0.0466274 0.8586049
year ~week + temp ~ year 5 557.5784 2.9907434 0.0323592 0.8909641
elevation ~week + temp ~ elevation_m 5 557.7192 3.1316099 0.0301584 0.9211225
developed200 ~week + temp ~ developed_200 5 557.7373 3.1496275 0.0298880 0.9510105
grassland200 ~week + temp ~ grassland_200 5 558.0757 3.4880714 0.0252351 0.9762456
sex ~week + temp ~ sex 5 558.1968 3.6091494 0.0237527 0.9999982
global ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 19 577.1994 22.6117360 0.0000018 1.0000000



[1]
“Osmia taurus”
model formula nPars AIC delta AICwt cumltvWt
grassland1000 ~week + temp ~ grassland_1000 5 2002.640 0.0000000 0.1323216 0.1323216
null ~week + temp ~ 1 4 2003.017 0.3763787 0.1096228 0.2419444
grassland500 ~week + temp ~ grassland_500 5 2003.065 0.4247464 0.1070035 0.3489479
forest1000 ~week + temp ~ forest_1000 5 2003.421 0.7808707 0.0895502 0.4384981
year ~week + temp ~ year 5 2003.916 1.2755941 0.0699260 0.5084241
grassland200 ~week + temp ~ grassland_200 5 2004.286 1.6458425 0.0581086 0.5665328
forest500 ~week + temp ~ forest_500 5 2004.581 1.9405539 0.0501470 0.6166797
wetland200 ~week + temp ~ wetland_200 5 2004.696 2.0560849 0.0473323 0.6640120
sex ~week + temp ~ sex 5 2004.749 2.1090868 0.0460944 0.7101064
wetland500 ~week + temp ~ wetland_500 5 2004.775 2.1346657 0.0455086 0.7556150
developed1000 ~week + temp ~ developed_1000 5 2004.933 2.2922607 0.0420603 0.7976754
developed200 ~week + temp ~ developed_200 5 2004.986 2.3455849 0.0409537 0.8386291
forest200 ~week + temp ~ forest_200 5 2005.009 2.3686808 0.0404835 0.8791126
developed500 ~week + temp ~ developed_500 5 2005.014 2.3737534 0.0403810 0.9194935
wetland1000 ~week + temp ~ wetland_1000 5 2005.016 2.3760523 0.0403346 0.9598281
elevation ~week + temp ~ elevation_m 5 2005.025 2.3842307 0.0401700 0.9999981
global ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 19 2024.896 22.2561148 0.0000019 1.0000000



[1]
“Osmia atriventris”
model formula nPars AIC delta AICwt cumltvWt
null ~week + temp ~ 1 4 653.1619 0.0000000 0.1229539 0.1229539
forest200 ~week + temp ~ forest_200 5 654.0686 0.9067496 0.0781347 0.2010887
forest500 ~week + temp ~ forest_500 5 654.2024 1.0405474 0.0730786 0.2741673
forest1000 ~week + temp ~ forest_1000 5 654.4356 1.2736885 0.0650376 0.3392049
grassland500 ~week + temp ~ grassland_500 5 654.4821 1.3201570 0.0635439 0.4027488
wetland500 ~week + temp ~ wetland_500 5 654.4825 1.3206193 0.0635292 0.4662780
wetland200 ~week + temp ~ wetland_200 5 654.5176 1.3556678 0.0624256 0.5287036
wetland1000 ~week + temp ~ wetland_1000 5 654.5225 1.3606397 0.0622706 0.5909743
developed500 ~week + temp ~ developed_500 5 654.6060 1.4441040 0.0597254 0.6506997
year ~week + temp ~ year 5 654.7485 1.5866489 0.0556168 0.7063165
grassland1000 ~week + temp ~ grassland_1000 5 654.9707 1.8088103 0.0497696 0.7560861
developed1000 ~week + temp ~ developed_1000 5 654.9894 1.8274679 0.0493075 0.8053935
grassland200 ~week + temp ~ grassland_200 5 655.0957 1.9338353 0.0467536 0.8521472
sex ~week + temp ~ sex 5 655.1218 1.9598834 0.0461487 0.8982958
developed200 ~week + temp ~ developed_200 5 655.1558 1.9939060 0.0453703 0.9436661
elevation ~week + temp ~ elevation_m 5 655.1653 2.0033599 0.0451563 0.9888224
global ~week + temp ~ year + sex + elevation_m + forest_200 + forest_500 + forest_1000 + grassland_200 + grassland_500 + grassland_1000 + developed_200 + developed_500 + developed_1000 + wetland_200 + wetland_500 + wetland_1000 19 657.9577 4.7957938 0.0111776 1.0000000




Figure 7. Plot showing relationship between probability of occurence and elevation for 7 selected species.























Figure 8. Predictive map showing probability of occurrence for 7 selected species as a function of elevation (m).

Call: occu(formula = ~week + temp ~ elevation_m, data = umf)

Occupancy: Estimate SE z P(>|z|) (Intercept) 1.23597 0.174731 7.07 1.51e-12 elevation_m -0.00199 0.000962 -2.07 3.89e-02

Detection: Estimate SE z P(>|z|) (Intercept) -0.457 0.1594 -2.87 4.13e-03 week -0.402 0.0408 -9.85 7.04e-23 temp 0.116 0.0251 4.62 3.80e-06

AIC: 2711.771























References

Akaike, H. 1981. Likelihood of a model and information criteria. Journal of econometrics 16:3–14.

Fiske, I., R. Chandler, and others. 2011. Unmarked: An r package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43:1–23.

Homer, C. G., J. A. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. D. Herold, J. Wickham, and K. Megown. 2015. Completion of the 2011 national land cover database for the conterminous united states-representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81:345–354.

Kéry, M. 2008. Estimating abundance from bird counts: Binomial mixture models uncover complex covariate relationships. The Auk 125:336–345.

Kéry, M., J. A. Royle, and H. Schmid. 2005. Modeling avian abundance from replicated counts using binomial mixture models. Ecological applications 15:1450–1461.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255.

Narasimhan, R. 2017. WeatherData: Get weather data from the web.

Rowlingson, B., and M. B. Rowlingson. 2015. Package “geonames”.

Royle, J. A. 2004. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60:108–115.

Royle, J. A., and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities. Academic Press.

Royle, J. A., M. Kéry, R. Gautier, and H. Schmid. 2007. Hierarchical spatial models of abundance and occurrence from imperfect survey data. Ecological Monographs 77:465–481.

Team, R. C. 2016. R: A language and environment for statistical computing. r development core team, vienna.