iGEM_measurement <- read_csv("~/Desktop/iGEM /iGEM_measurement.csv")
## Parsed with column specification:
## cols(
##   Team = col_character(),
##   OT2 = col_logical(),
##   F_uM = col_double(),
##   a.u. = col_double()
## )
transform(iGEM_measurement, iGEM_measurement$F_uM <- as.numeric(iGEM_measurement$F_uM))
## # A tibble: 624 x 4
##    Team  OT2    F_uM  a.u.
##    <chr> <lgl> <dbl> <dbl>
##  1 LND   TRUE   10   47466
##  2 LND   TRUE   10   47277
##  3 LND   TRUE   10   48460
##  4 LND   TRUE   10   49357
##  5 LND   TRUE    5   30369
##  6 LND   TRUE    5   30109
##  7 LND   TRUE    5   30363
##  8 LND   TRUE    5   28209
##  9 LND   TRUE    2.5 16490
## 10 LND   TRUE    2.5 15915
## # … with 614 more rows
transform(iGEM_measurement, iGEM_measurement$a.u. <- as.numeric(iGEM_measurement$a.u.))
## # A tibble: 624 x 4
##    Team  OT2    F_uM  a.u.
##    <chr> <lgl> <dbl> <dbl>
##  1 LND   TRUE   10   47466
##  2 LND   TRUE   10   47277
##  3 LND   TRUE   10   48460
##  4 LND   TRUE   10   49357
##  5 LND   TRUE    5   30369
##  6 LND   TRUE    5   30109
##  7 LND   TRUE    5   30363
##  8 LND   TRUE    5   28209
##  9 LND   TRUE    2.5 16490
## 10 LND   TRUE    2.5 15915
## # … with 614 more rows
head(iGEM_measurement)
## # A tibble: 6 x 4
##   Team  OT2    F_uM  a.u.
##   <chr> <lgl> <dbl> <dbl>
## 1 LND   TRUE     10 47466
## 2 LND   TRUE     10 47277
## 3 LND   TRUE     10 48460
## 4 LND   TRUE     10 49357
## 5 LND   TRUE      5 30369
## 6 LND   TRUE      5 30109
OT2 <- iGEM_measurement %>% filter(., iGEM_measurement$OT2 == T)
head(OT2)
## # A tibble: 6 x 4
##   Team  OT2    F_uM  a.u.
##   <chr> <lgl> <dbl> <dbl>
## 1 LND   TRUE     10 47466
## 2 LND   TRUE     10 47277
## 3 LND   TRUE     10 48460
## 4 LND   TRUE     10 49357
## 5 LND   TRUE      5 30369
## 6 LND   TRUE      5 30109
Human <- iGEM_measurement %>% filter(., iGEM_measurement$OT2 == F)
head(Human)
## # A tibble: 6 x 4
##   Team  OT2    F_uM  a.u.
##   <chr> <lgl> <dbl> <dbl>
## 1 LND   FALSE    10 37492
## 2 LND   FALSE    10 36369
## 3 LND   FALSE    10 36378
## 4 LND   FALSE    10 35796
## 5 LND   FALSE     5 20719
## 6 LND   FALSE     5 21004
LDN <- iGEM_measurement %>% filter(., iGEM_measurement$Team =="LND" )
head(LDN)
## # A tibble: 6 x 4
##   Team  OT2    F_uM  a.u.
##   <chr> <lgl> <dbl> <dbl>
## 1 LND   TRUE     10 47466
## 2 LND   TRUE     10 47277
## 3 LND   TRUE     10 48460
## 4 LND   TRUE     10 49357
## 5 LND   TRUE      5 30369
## 6 LND   TRUE      5 30109
UCD<- iGEM_measurement %>% filter(., iGEM_measurement$Team =="UCD" )
head(UCD)
## # A tibble: 6 x 4
##   Team  OT2    F_uM  a.u.
##   <chr> <lgl> <dbl> <dbl>
## 1 UCD   TRUE     10 41521
## 2 UCD   TRUE     10 42351
## 3 UCD   TRUE     10 42437
## 4 UCD   TRUE     10 42216
## 5 UCD   TRUE     10 43352
## 6 UCD   TRUE     10 44204
STB <- iGEM_measurement %>% filter(., iGEM_measurement$Team =="STB" )
head(STB)
## # A tibble: 6 x 4
##   Team  OT2    F_uM     a.u.
##   <chr> <lgl> <dbl>    <dbl>
## 1 STB   TRUE     10 97000000
## 2 STB   TRUE     10 95000000
## 3 STB   TRUE     10 90000000
## 4 STB   TRUE     10 92000000
## 5 STB   TRUE      5 54000000
## 6 STB   TRUE      5 54000000
MEFL <- (6.0221409*10^23)*(0.0001)/(10^6)

UCD <- iGEM_measurement %>% filter(., .$Team == "UCD") 
mean_UCD <- mean(UCD$a.u.)
UCD_au <- 10/mean_UCD
UCD_au_scale <- MEFL*UCD_au
UCD_au_scale
## [1] 73818612961
LND <- iGEM_measurement %>% filter(., .$Team == "LND") 
mean_LND <- mean(LND$a.u.)
LND_au <- 10/mean_LND
LND_au_scale <- MEFL*LND_au
LND_au_scale
## [1] 66854771974
STB <- iGEM_measurement %>% filter(., .$Team == "STB") 
mean_STB <- mean(STB$a.u.)
STB_au <- 10/mean_STB
STB_au_scale <- MEFL*STB_au
STB_au_scale
## [1] 32556788
## [1] 1.291667
## [1] 40.6
## [1] 31875
adj <- 1 
i   <- 1

iGEM_measurement$adj_au <- iGEM_measurement$a.u.

for( i in seq(1,624)){

  if(iGEM_measurement$Team[i] == "LND"){
    adj = LND_au_scale
    iGEM_measurement$adj_au[i] <- iGEM_measurement$a.u.[i]*adj
    next

  }
  if(iGEM_measurement$Team[i] == "UCD"){
    adj = UCD_au_scale
    #measurement <- iGEM_measurement$a.u.[i]/adj
    #mutate(iGEM_measurement, iGEM_measurement$adj_au.[i], measurement)
    iGEM_measurement$adj_au[i] <- iGEM_measurement$a.u.[i]*adj
    next

    } 
  if(iGEM_measurement$Team[i] == "STB"){
    adj = STB_au_scale
    #measurement <- iGEM_measurement$a.u.[i]/adj
    #mutate(iGEM_measurement, iGEM_measurement$adj_au[i], measurement)
    iGEM_measurement$adj_au[i] <- iGEM_measurement$a.u.[i]*adj
    next

  }
  

}
UCD_ot2 <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == T & Team == "UCD" ))
#summary(UCD_ot2)
"UCD OT2:"
## [1] "UCD OT2:"
summary(UCD_ot2)$r.squared
## [1] 0.9405259
UCD_hs <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == F & Team == "UCD" ))
#summary(UCD_hs)
"UCD Team Member:"
## [1] "UCD Team Member:"
summary(UCD_hs)$r.squared
## [1] 0.9938576
LDN_ot2 <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == T & Team == "LND" ))
#summary(LDN_ot2)
"Liden OT2:"
## [1] "Liden OT2:"
summary(LDN_ot2)$r.squared
## [1] 0.9818086
LDN_hs <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == F & Team == "LND" ))
#summary(LDN_hs)
"Liden Team Member:"
## [1] "Liden Team Member:"
summary(LDN_hs)$r.squared
## [1] 0.9526302
STB_ot2 <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == T & Team == "STB" ))
#summary(STB_ot2)
"Stony Brook OT2:"
## [1] "Stony Brook OT2:"
summary(STB_ot2)$r.squared
## [1] 0.9943175
STB_hs <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == F & Team == "STB" ))
#summary(STB_hs)
"Stony Brook Team Member:"
## [1] "Stony Brook Team Member:"
summary(STB_hs)$r.squared
## [1] 0.9981491
Human <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == F ))
#summary(Human)
summary(Human)$r.squared
## [1] 0.9656537
OT2 <- lm(F_uM ~ adj_au, data = iGEM_measurement, subset = ( OT2 == T ))
#summary(OT2)
summary(OT2)$r.squared
## [1] 0.963528
iGEM_measurement %>% 
  filter(., Team == "UCD") %>%
  ggplot(aes(x= F_uM, y = adj_au)) +
  #geom_boxplot(aes(color = Team)) +
  geom_point(aes(color = Team, alpha = .5)) +
  geom_smooth(method = lm, color = "black") +
  xlab("uM Fluorescein") + 
  ylab("Absorbance") + 
  #labs(color = "Population") +
  facet_wrap(~ OT2) #+

  #scale_y_continuous(trans='log10') 


iGEM_measurement %>% 
  filter(., Team == "LND") %>%
  ggplot(aes(x= F_uM, y = adj_au)) +
  #geom_boxplot(aes(color = Team)) +
  geom_point(aes(color = Team, alpha = .5)) +
  geom_smooth(method = lm, color = "black") +
  xlab("uM Fluorescein") + 
  ylab("Absorbance") + 
  #labs(color = "Population") +
  facet_wrap(~ OT2) #+

  #scale_y_continuous(trans='log10')
  


iGEM_measurement %>% 
  filter(., Team == "STB") %>%
  ggplot(aes(x= F_uM, y = adj_au)) +
  #geom_boxplot(aes(color = Team)) +
  geom_point(aes(color = Team, alpha = .5)) +
  geom_smooth(method = lm, color = "black") +
  xlab("uM Fluorescein") + 
  ylab("Absorbance") + 
  #labs(color = "Population") +
  facet_wrap(~ OT2)  #+

#  scale_y_continuous(trans='log10') 
# ALL in one graph 
iGEM_measurement %>% 
  #filter(., Team == "UCD") %>%
  ggplot(aes(x= F_uM, y = adj_au)) +
  #geom_boxplot(aes(color = Team)) +
  geom_point(aes(color = Team, alpha = .5 )) +
  geom_smooth(method = lm, color = "black") +
  xlab("uM Fluorescein") + 
  ylab("Absorbance") + 
  #labs(color = "Population") +
  facet_grid(~ OT2 + Team, labeller = label_context)

#Humans vs Robots  
iGEM_measurement %>% 
  ggplot(aes(x= F_uM, y = adj_au)) +
  geom_point(aes(color = Team, alpha = .5 )) +
  geom_smooth(method = lm, color = "black") +
  xlab("uM Fluorescein") + 
  ylab("Absorbance") + 
  #labs(color = "Population") +
  facet_grid(~ OT2, labeller = label_context)

#Humans vs Robots log 
iGEM_measurement %>% 
  ggplot(aes(x= F_uM, y = adj_au)) +
  geom_point(aes(color = Team, alpha = .5 )) +
  geom_smooth(method = lm, color = "black") +
  xlab("uM Fluorescein") + 
  ylab("Absorbance") + 
  #labs(color = "Population") +
  facet_grid(~ OT2, labeller = label_context) + 
  scale_y_continuous(trans='log10') +
  scale_x_continuous(trans='log10') 
## Warning: Transformation introduced infinite values in continuous x-axis

## Warning: Transformation introduced infinite values in continuous x-axis
## Warning: Removed 52 rows containing non-finite values (stat_smooth).