A Transmission Network Model for Renewable European Electricity System : Inverse Distance Weighted (IDW) interpolation for solar_layouts_COSMO and wind_layouts_COSMO

1 Objectives :

  • To create interactive map of Inverse Distance Weighted (IDW) interpolation predication for solar_layouts_COSMO and wind_layouts_COSMO
  • The transmission network model is based on Jensen and Pinson (2017)
  • The dataset is downloaded from https://zenodo.org/record/35177#.XVZqicszabI

4 Create spatial object

## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"
## class      : Extent 
## xmin       : -9.0545 
## xmax       : 28.607 
## ymin       : 36.1828 
## ymax       : 57.0736
## class       : SpatialPointsDataFrame 
## features    : 969 
## extent      : -9.0545, 28.607, 36.1828, 57.0736  (xmin, xmax, ymin, ymax)
## coord. ref. : +init=epsg:4124 +proj=longlat +ellps=bessel +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs 
## variables   : 13
## # A tibble: 969 x 13
##       ID name  country origin status primaryfuel secondaryfuel capacity
##    <int> <fct> <fct>    <int> <fct>  <fct>       <fct>            <dbl>
##  1  2069 Alma~ Spain      162 No Da~ Nuclear     Unknown         1957  
##  2  2142 Aram~ France     486 Opera~ Fuel Oil    Unknown         1400  
##  3  2154 Arge~ France     457 No Da~ Hydro       Unknown           47.5
##  4  2175 Asco~ Spain      124 No Da~ Nuclear     Unknown         2060  
##  5  2300 Bell~ France     357 Opera~ Nuclear     Unknown         2726  
##  6  2329 Bezn~ Switze~    990 No Da~ Nuclear     Unknown          760  
##  7  2336 Bibl~ Germany    932 No Da~ Nuclear     Unknown         2525  
##  8  2366 Blay~ France     451 No Da~ Nuclear     Unknown         3640  
##  9  2368 Blé~ France     278 Opera~ Coal        Fuel Oil         750  
## 10  2385 Bohu~ Slovak~   1215 No Da~ Nuclear     Unknown          880  
## # ... with 959 more rows, and 5 more variables: lincost <dbl>,
## #   cyclecost <dbl>, minuptime <int>, mindowntime <int>,
## #   minonlinecapacity <dbl>

5 Generator Database

## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"
## class      : Extent 
## xmin       : -9.243608 
## xmax       : 28.96797 
## ymin       : 35.57556 
## ymax       : 57.2472
## class       : SpatialPointsDataFrame 
## features    : 1494 
## extent      : -9.243608, 28.96797, 35.57556, 57.2472  (xmin, xmax, ymin, ymax)
## coord. ref. : +init=epsg:4124 +proj=longlat +ellps=bessel +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs 
## variables   : 3
## # A tibble: 1,494 x 3
##     node Proportional Uniform
##    <int>        <dbl>   <dbl>
##  1     1        1262.   1183.
##  2     2        1463.   1387.
##  3     3         889.    776.
##  4     4         569.    489.
##  5     5        1145.   1007.
##  6     6        1154.   1062.
##  7     7        1170.   1016.
##  8     8         598.    525.
##  9     9        1630.   1388.
## 10    10         958.    868.
## # ... with 1,484 more rows

7 Inverse Distance Weighted (IDW) interpolation for solar_layouts_COSMO

## [inverse distance weighted interpolation]
## [1] "SpatialPointsDataFrame"
## attr(,"package")
## [1] "sp"
## class      : Extent 
## xmin       : -9.243608 
## xmax       : 28.96797 
## ymin       : 35.57556 
## ymax       : 57.2472
## class       : SpatialPointsDataFrame 
## features    : 1494 
## extent      : -9.243608, 28.96797, 35.57556, 57.2472  (xmin, xmax, ymin, ymax)
## coord. ref. : +init=epsg:4124 +proj=longlat +ellps=bessel +towgs84=414.1,41.3,603.1,-0.855,2.141,-7.023,0 +no_defs 
## variables   : 3
## # A tibble: 1,494 x 3
##     node Proportional Uniform
##    <int>        <dbl>   <dbl>
##  1     1         812.   1260.
##  2     2        1190.   1917.
##  3     3         501.    827.
##  4     4         408.    521.
##  5     5         507.   1073.
##  6     6        1241.   1625.
##  7     7         662.   1083.
##  8     8         267.    559.
##  9     9        1020.   1479.
## 10    10         575.    979.
## # ... with 1,484 more rows

9 Inverse Distance Weighted (IDW) interpolation wind_layouts_COSMO

## [inverse distance weighted interpolation]

Jensen, Tue V., and Pierre Pinson. 2017. “RE-Europe, a Large-Scale Dataset for Modeling a Highly Renewable European Electricity System.” Scientific Data 4 (November): 170175. https://doi.org/10.1038/sdata.2017.175.

HeatWave 2019 : DK WC

2019-08-19