Objective of the study:

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the Weight Lifting Exercise Dataset).

Data:

The training data for this project are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv

The test data are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv

The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har. If you use the document you create for this class for any purpose please cite them as they have been very generous in allowing their data to be used for this kind of assignment.

### Load Library

#install.packages(c("caret", "randomForest", "rpart.plot"))

library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest) #Random forest for classification and regression
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
library(rpart) # Regressive Partitioning and Regression trees
library(rpart.plot) # Decision Tree

set seed 101 for overall report reproduceability

set.seed(101)

Load data sets and preliminary cleaning

# Save downloaded csv in working directory
# Missing values including "#DIV/0!" or "" or "NA" - hanged to NA
# Entire Colums with missing values -  will be deleted.  

#load Training set
trainingset <- read.csv("pml-training.csv", na.strings=c("NA","#DIV/0!", ""))

#Load testing set 
testingset <- read.csv('pml-testing.csv', na.strings=c("NA","#DIV/0!", ""))

# Check Dimensions of training and test data set
dim(trainingset)
## [1] 19622   160
dim(testingset)
## [1]  20 160
# Delete columns with all missing values
trainingset<-trainingset[,colSums(is.na(trainingset)) == 0]
testingset <-testingset[,colSums(is.na(testingset)) == 0]

# Remove unrequired columns from dataset  for e.g: user_name, raw_timestamp_part_1, raw_timestamp_part_,2 cvtd_timestamp, new_window, and  num_window (columns 1 to 7).
trainingset   <-trainingset[,-c(1:7)]
testingset <-testingset[,-c(1:7)]

# Check Dimensions of training and test data set
dim(trainingset)
## [1] 19622    53
dim(testingset)
## [1] 20 53
head(trainingset)
##   roll_belt pitch_belt yaw_belt total_accel_belt gyros_belt_x gyros_belt_y
## 1      1.41       8.07    -94.4                3         0.00         0.00
## 2      1.41       8.07    -94.4                3         0.02         0.00
## 3      1.42       8.07    -94.4                3         0.00         0.00
## 4      1.48       8.05    -94.4                3         0.02         0.00
## 5      1.48       8.07    -94.4                3         0.02         0.02
## 6      1.45       8.06    -94.4                3         0.02         0.00
##   gyros_belt_z accel_belt_x accel_belt_y accel_belt_z magnet_belt_x
## 1        -0.02          -21            4           22            -3
## 2        -0.02          -22            4           22            -7
## 3        -0.02          -20            5           23            -2
## 4        -0.03          -22            3           21            -6
## 5        -0.02          -21            2           24            -6
## 6        -0.02          -21            4           21             0
##   magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm total_accel_arm
## 1           599          -313     -128      22.5    -161              34
## 2           608          -311     -128      22.5    -161              34
## 3           600          -305     -128      22.5    -161              34
## 4           604          -310     -128      22.1    -161              34
## 5           600          -302     -128      22.1    -161              34
## 6           603          -312     -128      22.0    -161              34
##   gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x accel_arm_y accel_arm_z
## 1        0.00        0.00       -0.02        -288         109        -123
## 2        0.02       -0.02       -0.02        -290         110        -125
## 3        0.02       -0.02       -0.02        -289         110        -126
## 4        0.02       -0.03        0.02        -289         111        -123
## 5        0.00       -0.03        0.00        -289         111        -123
## 6        0.02       -0.03        0.00        -289         111        -122
##   magnet_arm_x magnet_arm_y magnet_arm_z roll_dumbbell pitch_dumbbell
## 1         -368          337          516      13.05217      -70.49400
## 2         -369          337          513      13.13074      -70.63751
## 3         -368          344          513      12.85075      -70.27812
## 4         -372          344          512      13.43120      -70.39379
## 5         -374          337          506      13.37872      -70.42856
## 6         -369          342          513      13.38246      -70.81759
##   yaw_dumbbell total_accel_dumbbell gyros_dumbbell_x gyros_dumbbell_y
## 1    -84.87394                   37                0            -0.02
## 2    -84.71065                   37                0            -0.02
## 3    -85.14078                   37                0            -0.02
## 4    -84.87363                   37                0            -0.02
## 5    -84.85306                   37                0            -0.02
## 6    -84.46500                   37                0            -0.02
##   gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y accel_dumbbell_z
## 1             0.00             -234               47             -271
## 2             0.00             -233               47             -269
## 3             0.00             -232               46             -270
## 4            -0.02             -232               48             -269
## 5             0.00             -233               48             -270
## 6             0.00             -234               48             -269
##   magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z roll_forearm
## 1              -559               293               -65         28.4
## 2              -555               296               -64         28.3
## 3              -561               298               -63         28.3
## 4              -552               303               -60         28.1
## 5              -554               292               -68         28.0
## 6              -558               294               -66         27.9
##   pitch_forearm yaw_forearm total_accel_forearm gyros_forearm_x
## 1         -63.9        -153                  36            0.03
## 2         -63.9        -153                  36            0.02
## 3         -63.9        -152                  36            0.03
## 4         -63.9        -152                  36            0.02
## 5         -63.9        -152                  36            0.02
## 6         -63.9        -152                  36            0.02
##   gyros_forearm_y gyros_forearm_z accel_forearm_x accel_forearm_y
## 1            0.00           -0.02             192             203
## 2            0.00           -0.02             192             203
## 3           -0.02            0.00             196             204
## 4           -0.02            0.00             189             206
## 5            0.00           -0.02             189             206
## 6           -0.02           -0.03             193             203
##   accel_forearm_z magnet_forearm_x magnet_forearm_y magnet_forearm_z
## 1            -215              -17              654              476
## 2            -216              -18              661              473
## 3            -213              -18              658              469
## 4            -214              -16              658              469
## 5            -214              -17              655              473
## 6            -215               -9              660              478
##   classe
## 1      A
## 2      A
## 3      A
## 4      A
## 5      A
## 6      A
head(testingset)
##   roll_belt pitch_belt yaw_belt total_accel_belt gyros_belt_x gyros_belt_y
## 1    123.00      27.00    -4.75               20        -0.50        -0.02
## 2      1.02       4.87   -88.90                4        -0.06        -0.02
## 3      0.87       1.82   -88.50                5         0.05         0.02
## 4    125.00     -41.60   162.00               17         0.11         0.11
## 5      1.35       3.33   -88.60                3         0.03         0.02
## 6     -5.92       1.59   -87.70                4         0.10         0.05
##   gyros_belt_z accel_belt_x accel_belt_y accel_belt_z magnet_belt_x
## 1        -0.46          -38           69         -179           -13
## 2        -0.07          -13           11           39            43
## 3         0.03            1           -1           49            29
## 4        -0.16           46           45         -156           169
## 5         0.00           -8            4           27            33
## 6        -0.13          -11          -16           38            31
##   magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm total_accel_arm
## 1           581          -382     40.7    -27.80     178              10
## 2           636          -309      0.0      0.00       0              38
## 3           631          -312      0.0      0.00       0              44
## 4           608          -304   -109.0     55.00    -142              25
## 5           566          -418     76.1      2.76     102              29
## 6           638          -291      0.0      0.00       0              14
##   gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x accel_arm_y accel_arm_z
## 1       -1.65        0.48       -0.18          16          38          93
## 2       -1.17        0.85       -0.43        -290         215         -90
## 3        2.10       -1.36        1.13        -341         245         -87
## 4        0.22       -0.51        0.92        -238         -57           6
## 5       -1.96        0.79       -0.54        -197         200         -30
## 6        0.02        0.05       -0.07         -26         130         -19
##   magnet_arm_x magnet_arm_y magnet_arm_z roll_dumbbell pitch_dumbbell
## 1         -326          385          481     -17.73748       24.96085
## 2         -325          447          434      54.47761      -53.69758
## 3         -264          474          413      57.07031      -51.37303
## 4         -173          257          633      43.10927      -30.04885
## 5         -170          275          617    -101.38396      -53.43952
## 6          396          176          516      62.18750      -50.55595
##   yaw_dumbbell total_accel_dumbbell gyros_dumbbell_x gyros_dumbbell_y
## 1    126.23596                    9             0.64             0.06
## 2    -75.51480                   31             0.34             0.05
## 3    -75.20287                   29             0.39             0.14
## 4   -103.32003                   18             0.10            -0.02
## 5    -14.19542                    4             0.29            -0.47
## 6    -71.12063                   29            -0.59             0.80
##   gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y accel_dumbbell_z
## 1            -0.61               21              -15               81
## 2            -0.71             -153              155             -205
## 3            -0.34             -141              155             -196
## 4             0.05              -51               72             -148
## 5            -0.46              -18              -30               -5
## 6             1.10             -138              166             -186
##   magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z roll_forearm
## 1               523              -528               -56          141
## 2              -502               388               -36          109
## 3              -506               349                41          131
## 4              -576               238                53            0
## 5              -424               252               312         -176
## 6              -543               262                96          150
##   pitch_forearm yaw_forearm total_accel_forearm gyros_forearm_x
## 1         49.30       156.0                  33            0.74
## 2        -17.60       106.0                  39            1.12
## 3        -32.60        93.0                  34            0.18
## 4          0.00         0.0                  43            1.38
## 5         -2.16       -47.9                  24           -0.75
## 6          1.46        89.7                  43           -0.88
##   gyros_forearm_y gyros_forearm_z accel_forearm_x accel_forearm_y
## 1           -3.34           -0.59            -110             267
## 2           -2.78           -0.18             212             297
## 3           -0.79            0.28             154             271
## 4            0.69            1.80             -92             406
## 5            3.10            0.80             131             -93
## 6            4.26            1.35             230             322
##   accel_forearm_z magnet_forearm_x magnet_forearm_y magnet_forearm_z
## 1            -149             -714              419              617
## 2            -118             -237              791              873
## 3            -129              -51              698              783
## 4             -39             -233              783              521
## 5             172              375             -787               91
## 6            -144             -300              800              884
##   problem_id
## 1          1
## 2          2
## 3          3
## 4          4
## 5          5
## 6          6
# The training data set contains 53 variables and 19622 obs.
# The testing data set contains 53 variables and 20 obs.

Partitioning the training data set to allow cross-validation - partionned into 2 sets: subTraining (60%) and subTest (40%).

subsamples <- createDataPartition(y=trainingset$classe, p=0.60, list=FALSE)
subTraining <- trainingset[subsamples, ] 
subTesting <- trainingset[-subsamples, ]
dim(subTraining)
## [1] 11776    53
dim(subTesting)
## [1] 7846   53
head(subTraining)
##   roll_belt pitch_belt yaw_belt total_accel_belt gyros_belt_x gyros_belt_y
## 1      1.41       8.07    -94.4                3         0.00         0.00
## 2      1.41       8.07    -94.4                3         0.02         0.00
## 4      1.48       8.05    -94.4                3         0.02         0.00
## 5      1.48       8.07    -94.4                3         0.02         0.02
## 6      1.45       8.06    -94.4                3         0.02         0.00
## 8      1.42       8.13    -94.4                3         0.02         0.00
##   gyros_belt_z accel_belt_x accel_belt_y accel_belt_z magnet_belt_x
## 1        -0.02          -21            4           22            -3
## 2        -0.02          -22            4           22            -7
## 4        -0.03          -22            3           21            -6
## 5        -0.02          -21            2           24            -6
## 6        -0.02          -21            4           21             0
## 8        -0.02          -22            4           21            -2
##   magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm total_accel_arm
## 1           599          -313     -128      22.5    -161              34
## 2           608          -311     -128      22.5    -161              34
## 4           604          -310     -128      22.1    -161              34
## 5           600          -302     -128      22.1    -161              34
## 6           603          -312     -128      22.0    -161              34
## 8           603          -313     -128      21.8    -161              34
##   gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x accel_arm_y accel_arm_z
## 1        0.00        0.00       -0.02        -288         109        -123
## 2        0.02       -0.02       -0.02        -290         110        -125
## 4        0.02       -0.03        0.02        -289         111        -123
## 5        0.00       -0.03        0.00        -289         111        -123
## 6        0.02       -0.03        0.00        -289         111        -122
## 8        0.02       -0.02        0.00        -289         111        -124
##   magnet_arm_x magnet_arm_y magnet_arm_z roll_dumbbell pitch_dumbbell
## 1         -368          337          516      13.05217      -70.49400
## 2         -369          337          513      13.13074      -70.63751
## 4         -372          344          512      13.43120      -70.39379
## 5         -374          337          506      13.37872      -70.42856
## 6         -369          342          513      13.38246      -70.81759
## 8         -372          338          510      12.75083      -70.34768
##   yaw_dumbbell total_accel_dumbbell gyros_dumbbell_x gyros_dumbbell_y
## 1    -84.87394                   37                0            -0.02
## 2    -84.71065                   37                0            -0.02
## 4    -84.87363                   37                0            -0.02
## 5    -84.85306                   37                0            -0.02
## 6    -84.46500                   37                0            -0.02
## 8    -85.09708                   37                0            -0.02
##   gyros_dumbbell_z accel_dumbbell_x accel_dumbbell_y accel_dumbbell_z
## 1             0.00             -234               47             -271
## 2             0.00             -233               47             -269
## 4            -0.02             -232               48             -269
## 5             0.00             -233               48             -270
## 6             0.00             -234               48             -269
## 8             0.00             -234               46             -272
##   magnet_dumbbell_x magnet_dumbbell_y magnet_dumbbell_z roll_forearm
## 1              -559               293               -65         28.4
## 2              -555               296               -64         28.3
## 4              -552               303               -60         28.1
## 5              -554               292               -68         28.0
## 6              -558               294               -66         27.9
## 8              -555               300               -74         27.8
##   pitch_forearm yaw_forearm total_accel_forearm gyros_forearm_x
## 1         -63.9        -153                  36            0.03
## 2         -63.9        -153                  36            0.02
## 4         -63.9        -152                  36            0.02
## 5         -63.9        -152                  36            0.02
## 6         -63.9        -152                  36            0.02
## 8         -63.8        -152                  36            0.02
##   gyros_forearm_y gyros_forearm_z accel_forearm_x accel_forearm_y
## 1            0.00           -0.02             192             203
## 2            0.00           -0.02             192             203
## 4           -0.02            0.00             189             206
## 5            0.00           -0.02             189             206
## 6           -0.02           -0.03             193             203
## 8           -0.02            0.00             193             205
##   accel_forearm_z magnet_forearm_x magnet_forearm_y magnet_forearm_z
## 1            -215              -17              654              476
## 2            -216              -18              661              473
## 4            -214              -16              658              469
## 5            -214              -17              655              473
## 6            -215               -9              660              478
## 8            -213               -9              660              474
##   classe
## 1      A
## 2      A
## 4      A
## 5      A
## 6      A
## 8      A
head(subTesting)
##    roll_belt pitch_belt yaw_belt total_accel_belt gyros_belt_x
## 3       1.42       8.07    -94.4                3         0.00
## 7       1.42       8.09    -94.4                3         0.02
## 12      1.43       8.18    -94.4                3         0.02
## 13      1.42       8.20    -94.4                3         0.02
## 22      1.57       8.09    -94.4                3         0.02
## 26      1.55       8.09    -94.4                3         0.02
##    gyros_belt_y gyros_belt_z accel_belt_x accel_belt_y accel_belt_z
## 3          0.00        -0.02          -20            5           23
## 7          0.00        -0.02          -22            3           21
## 12         0.00        -0.02          -22            2           23
## 13         0.00         0.00          -22            4           21
## 22         0.02        -0.02          -21            3           21
## 26         0.00         0.00          -21            3           22
##    magnet_belt_x magnet_belt_y magnet_belt_z roll_arm pitch_arm yaw_arm
## 3             -2           600          -305     -128      22.5    -161
## 7             -4           599          -311     -128      21.9    -161
## 12            -2           602          -319     -128      21.5    -161
## 13            -3           606          -309     -128      21.4    -161
## 22            -2           604          -313     -129      20.8    -161
## 26           -10           601          -312     -129      20.7    -161
##    total_accel_arm gyros_arm_x gyros_arm_y gyros_arm_z accel_arm_x
## 3               34        0.02       -0.02       -0.02        -289
## 7               34        0.00       -0.03        0.00        -289
## 12              34        0.02       -0.03        0.00        -288
## 13              34        0.02       -0.02       -0.02        -287
## 22              34        0.03       -0.02       -0.02        -289
## 26              34       -0.02       -0.02       -0.02        -290
##    accel_arm_y accel_arm_z magnet_arm_x magnet_arm_y magnet_arm_z
## 3          110        -126         -368          344          513
## 7          111        -125         -373          336          509
## 12         111        -123         -363          343          520
## 13         111        -124         -372          338          509
## 22         111        -123         -372          338          510
## 26         108        -123         -366          346          511
##    roll_dumbbell pitch_dumbbell yaw_dumbbell total_accel_dumbbell
## 3       12.85075      -70.27812    -85.14078                   37
## 7       13.12695      -70.24757    -85.09961                   37
## 12      13.10321      -70.45975    -84.89472                   37
## 13      13.38246      -70.81759    -84.46500                   37
## 22      13.37872      -70.42856    -84.85306                   37
## 26      12.80060      -70.31305    -85.11886                   37
##    gyros_dumbbell_x gyros_dumbbell_y gyros_dumbbell_z accel_dumbbell_x
## 3                 0            -0.02             0.00             -232
## 7                 0            -0.02             0.00             -232
## 12                0            -0.02             0.00             -233
## 13                0            -0.02            -0.02             -234
## 22                0            -0.02             0.00             -233
## 26                0            -0.02            -0.02             -233
##    accel_dumbbell_y accel_dumbbell_z magnet_dumbbell_x magnet_dumbbell_y
## 3                46             -270              -561               298
## 7                47             -270              -551               295
## 12               47             -270              -554               291
## 13               48             -269              -552               302
## 22               48             -270              -554               301
## 26               46             -271              -563               294
##    magnet_dumbbell_z roll_forearm pitch_forearm yaw_forearm
## 3                -63         28.3         -63.9        -152
## 7                -70         27.9         -63.9        -152
## 12               -65         27.5         -63.8        -152
## 13               -69         27.2         -63.9        -151
## 22               -65         27.0         -63.9        -151
## 26               -72         27.0         -63.7        -151
##    total_accel_forearm gyros_forearm_x gyros_forearm_y gyros_forearm_z
## 3                   36            0.03           -0.02            0.00
## 7                   36            0.02            0.00           -0.02
## 12                  36            0.02            0.02           -0.03
## 13                  36            0.00            0.00           -0.03
## 22                  36            0.02           -0.03           -0.02
## 26                  36            0.03            0.00            0.00
##    accel_forearm_x accel_forearm_y accel_forearm_z magnet_forearm_x
## 3              196             204            -213              -18
## 7              195             205            -215              -18
## 12             191             203            -215              -11
## 13             193             205            -215              -15
## 22             191             206            -213              -17
## 26             190             203            -216              -16
##    magnet_forearm_y magnet_forearm_z classe
## 3               658              469      A
## 7               659              470      A
## 12              657              478      A
## 13              655              472      A
## 22              654              478      A
## 26              658              462      A

Check Data: - “classe” contains 5 levels: A, B, C, D and E.

A plot to see frequency of each levels in the subTraining data set and compare one another

plot(subTraining$classe, col="grey", main="Bar Plot - levels of the variable classe within the subTraining data set", xlab="classe levels", ylab="Frequency")

# From the graph above, Level A is the most frequent with more than 4000 whereas level D is the least frequent with about 2500 occurrences.

Initial Prediction on Test data: Using Decision Tree

testModel <- rpart(classe ~ ., data=subTraining, method="class")

# Predicting:
testprediction <- predict(testModel, subTesting, type = "class")

# Plot of the Decision Tree
rpart.plot(testModel, main="Classification Tree", extra=102, under=TRUE, faclen=0)

#Test results on our subTesting data set:
confusionMatrix(testprediction, subTesting$classe)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 1921  291   63  119   39
##          B   87 1028  177   77  120
##          C   85   88 1058  202  114
##          D  127   96   58  849  112
##          E   12   15   12   39 1057
## 
## Overall Statistics
##                                           
##                Accuracy : 0.7536          
##                  95% CI : (0.7439, 0.7631)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.6874          
##                                           
##  Mcnemar's Test P-Value : < 2.2e-16       
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.8607   0.6772   0.7734   0.6602   0.7330
## Specificity            0.9088   0.9271   0.9245   0.9401   0.9878
## Pos Pred Value         0.7896   0.6904   0.6839   0.6836   0.9313
## Neg Pred Value         0.9425   0.9229   0.9508   0.9338   0.9426
## Prevalence             0.2845   0.1935   0.1744   0.1639   0.1838
## Detection Rate         0.2448   0.1310   0.1348   0.1082   0.1347
## Detection Prevalence   0.3101   0.1898   0.1972   0.1583   0.1447
## Balanced Accuracy      0.8847   0.8022   0.8490   0.8001   0.8604

Prediction on Training model: Using Random Forest

trainingModel <- randomForest(classe ~. , data=subTraining, method="class")

# Predicting:
trainingPrediction <- predict(trainingModel, subTesting, type = "class")

# Test results on subTesting data set:
confusionMatrix(trainingPrediction, subTesting$classe)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction    A    B    C    D    E
##          A 2229   15    0    0    0
##          B    0 1500   10    0    0
##          C    2    3 1358   10    2
##          D    0    0    0 1275    2
##          E    1    0    0    1 1438
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9941          
##                  95% CI : (0.9922, 0.9957)
##     No Information Rate : 0.2845          
##     P-Value [Acc > NIR] : < 2.2e-16       
##                                           
##                   Kappa : 0.9926          
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: A Class: B Class: C Class: D Class: E
## Sensitivity            0.9987   0.9881   0.9927   0.9914   0.9972
## Specificity            0.9973   0.9984   0.9974   0.9997   0.9997
## Pos Pred Value         0.9933   0.9934   0.9876   0.9984   0.9986
## Neg Pred Value         0.9995   0.9972   0.9985   0.9983   0.9994
## Prevalence             0.2845   0.1935   0.1744   0.1639   0.1838
## Detection Rate         0.2841   0.1912   0.1731   0.1625   0.1833
## Detection Prevalence   0.2860   0.1925   0.1752   0.1628   0.1835
## Balanced Accuracy      0.9980   0.9933   0.9950   0.9956   0.9985

Decision

As expected, Random Forest algorithm performed better than Decision Trees. Accuracy for Random Forest model was 0.9926 (95% CI: (0.9922, 0.9957)) compared to 0.6874 (95% CI: (0.7439, 0.7631)). The accuracy of the model is 0.995. The expected out-of-sample error is estimated at .0074 or .74% The expected out-of-sample error is calculated as 1 - accuracy for predictions made against the cross-validation set. Our Test data set comprises 20 cases. With an accuracy above 99% on our cross-validation data, we can expect that very few, or none, of the test samples will be missclassified.