PARADAS DE COLECTIVO EN CABA
library(tidyverse)
## Registered S3 method overwritten by 'rvest':
## method from
## read_xml.response xml2
## -- Attaching packages -------------------------------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.2.0 v purrr 0.3.2
## v tibble 2.1.1 v dplyr 0.8.0.1
## v tidyr 0.8.3 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## -- Conflicts ----------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
library(leaflet)
## Warning: package 'leaflet' was built under R version 3.6.1
library(purrr)
library(sf)
## Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
library(osmdata)
## Warning: package 'osmdata' was built under R version 3.6.1
## Data (c) OpenStreetMap contributors, ODbL 1.0. http://www.openstreetmap.org/copyright
bounding_box <- getbb('CABA')
limites <- getbb('CABA', format_out = "sf_polygon")
comunas <- st_read('https://bitsandbricks.github.io/data/CABA_comunas.geojson')
## Reading layer `CABA_comunas' from data source `https://bitsandbricks.github.io/data/CABA_comunas.geojson' using driver `GeoJSON'
## Simple feature collection with 15 features and 4 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -58.53152 ymin: -34.70529 xmax: -58.33514 ymax: -34.52754
## epsg (SRID): 4326
## proj4string: +proj=longlat +datum=WGS84 +no_defs
barrios <- st_read('https://bitsandbricks.github.io/data/CABA_barrios.geojson')
## Reading layer `CABA_barrios' from data source `https://bitsandbricks.github.io/data/CABA_barrios.geojson' using driver `GeoJSON'
## Simple feature collection with 48 features and 4 fields
## geometry type: POLYGON
## dimension: XY
## bbox: xmin: -58.53152 ymin: -34.70529 xmax: -58.33514 ymax: -34.52754
## epsg (SRID): 4326
## proj4string: +proj=longlat +datum=WGS84 +no_defs
bondi <- read.csv2("C:/Users/Tomás Mestre Olmedo/OneDrive/UTDT/Ciencia de Datos 2/colectivo/paradabondi.csv",fileEncoding="latin1",sep=";", stringsAsFactors =FALSE)
bondibarrio <- bondi %>%
st_as_sf(coords=c ("X","Y"), crs=4326)
Mapa de la distribución geógrafica
bondibarrioS <- st_join(barrios,bondibarrio)
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
ggplot(barrios) +
geom_sf(data = barrios) +
geom_point(data = bondi, aes(x = X, y = Y),
alpha = .15,
color = "red")+
labs(title = "Paradas de colectivo en CABA",
subtitle = "Ciudad Autónoma de Buenos Aires, 2019",
caption = "Fuente: Elaboración propia con base de datos GCBA")
bondixbarrio <- bondibarrioS %>%
group_by(BARRIO,COMUNA)%>%
summarise(freq=n())
ggplot(bondixbarrio)+ geom_bar(aes(x= as.factor(BARRIO),weight =freq,fill=BARRIO))+
coord_flip()+
labs(title = "Cantidad de paradas de colectivo ",
caption = "Fuente: Elaboración propia con base de datos GCBA",
x = "Cantidad de paradas de colectivo",
y = "Barrio")
Concentración espacial de las paradas de colectivo por barrio
ggplot(bondixbarrio)+
geom_sf(data =bondixbarrio, aes(fill=freq),color=NA) +
scale_fill_gradient(low = "yellow", high = "red")+
labs(title = "Paradas de colectivo por barrio",
subtitle = "Ciudad Autónoma de Buenos Aires, 2019",
caption = "Fuente: Elaboración propia con base de datos GCBA")
bbox <- getbb("Ciudad Autonoma de Buenos Aires")
bbox
## min max
## x -58.53146 -58.33512
## y -34.70564 -34.52655
bbox_poly <- getbb("Ciudad Autonoma de Buenos Aires", format_out = "sf_polygon")
caba <- opq(bbox) %>%
add_osm_feature(key = "highway")
caba <- caba %>%
osmdata_sf()
calles <- caba$osm_lines
calles <- calles %>%
mutate(maxspeed = as.numeric(maxspeed),
lanes = ifelse(is.na(lanes), 1, as.numeric(lanes)))
ggplot(calles) +
geom_sf(aes(color = maxspeed), alpha = 0.5) +
scale_color_viridis_c() +
theme_void() +
labs(title = "CABA",
subtitle = "Vías de circulación",
caption = "Fuente: OpenStreetMap",
color = "Velocidad máxima")
ggplot() +
geom_sf(data = filter(calles, str_detect(name, "Av")),
color = "gray40") +
theme_void() +
labs(title = "CABA",
subtitle = "Avenidas",
caption = "Fuente: OpenStreetMap")
bondi2 <- opq(bbox) %>%
add_osm_feature(key = "highway", value = "bus_stop") %>%
osmdata_sf()
## Request failed [429]. Retrying in 1 seconds...
Caba_bondi2 <- st_intersection(bondi2$osm_points, bbox_poly)
## although coordinates are longitude/latitude, st_intersection assumes that they are planar
## Warning: attribute variables are assumed to be spatially constant
## throughout all geometries
ggplot() +
geom_sf(data = Caba_bondi2, color="red")
BondiBarrios2 <- st_join(barrios,Caba_bondi2)
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
BondixBarrio2 <- BondiBarrios2 %>%
group_by(BARRIO,COMUNA)%>%
summarise(freq=n())
ggplot() +
geom_sf(data = BondixBarrio2, aes(fill=freq))