setwd("~/Dropbox/Research/Johannes")

pep<-read.csv ("Pepper_Field_Study_Online_Replication.csv", header=T, sep=",")

pep$humanness<-(pep$h1_1+pep$h2_1+pep$h3_1+ (8-pep$h4R_1) + (8-pep$h5R_1) + (8-pep$h6R_1))/6


pep$instrumental<-(pep$inst1_1+pep$inst2_1+pep$inst3_1)/3

pep$tech<-(pep$tech1+pep$tech2)/2

pep$social<-(pep$soc1+pep$soc2+pep$soc3+pep$soc4+pep$soc5)/5

summary(lm(humanness ~ condition + age + gender + tech + social + check, pep))
## 
## Call:
## lm(formula = humanness ~ condition + age + gender + tech + social + 
##     check, data = pep)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1562 -0.5147  0.1283  0.5939  1.5249 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.709924   0.460220   8.061 1.94e-14 ***
## conditionhuman -0.021892   0.121800  -0.180  0.85748    
## conditionrobot  0.106388   0.132646   0.802  0.42318    
## age             0.013346   0.004432   3.012  0.00283 ** 
## gender          0.419439   0.094843   4.422 1.38e-05 ***
## tech            0.083309   0.065793   1.266  0.20643    
## social          0.298994   0.092769   3.223  0.00141 ** 
## check          -0.137063   0.081659  -1.678  0.09432 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8379 on 293 degrees of freedom
## Multiple R-squared:  0.1291, Adjusted R-squared:  0.1083 
## F-statistic: 6.205 on 7 and 293 DF,  p-value: 8.688e-07
hist(pep$humanness)

summary(lm(instrumental ~ condition + age + gender + tech + social + check, pep))
## 
## Call:
## lm(formula = instrumental ~ condition + age + gender + tech + 
##     social + check, data = pep)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3.14689 -0.59104  0.00448  0.57247  2.50439 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.903707   0.528872   7.381 1.63e-12 ***
## conditionhuman  0.276768   0.139969   1.977  0.04894 *  
## conditionrobot  0.373938   0.152433   2.453  0.01474 *  
## age             0.005248   0.005093   1.031  0.30361    
## gender         -0.039524   0.108991  -0.363  0.71714    
## tech           -0.042168   0.075607  -0.558  0.57746    
## social          0.293212   0.106608   2.750  0.00632 ** 
## check          -0.161451   0.093840  -1.720  0.08640 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9629 on 293 degrees of freedom
## Multiple R-squared:  0.05491,    Adjusted R-squared:  0.03234 
## F-statistic: 2.432 on 7 and 293 DF,  p-value: 0.01952
summary(lm(satisfied_1 ~ condition + age + gender + tech + social + check, pep))
## 
## Call:
## lm(formula = satisfied_1 ~ condition + age + gender + tech + 
##     social + check, data = pep)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7513 -0.3789  0.2616  0.6645  1.6346 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.433063   0.545518   8.126 1.25e-14 ***
## conditionhuman -0.140427   0.144374  -0.973 0.331525    
## conditionrobot -0.402524   0.157230  -2.560 0.010966 *  
## age             0.003662   0.005253   0.697 0.486321    
## gender          0.402992   0.112422   3.585 0.000395 ***
## tech            0.143347   0.077987   1.838 0.067061 .  
## social          0.223595   0.109963   2.033 0.042917 *  
## check          -0.056471   0.096794  -0.583 0.560060    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9932 on 293 degrees of freedom
## Multiple R-squared:  0.105,  Adjusted R-squared:  0.0836 
## F-statistic:  4.91 on 7 and 293 DF,  p-value: 2.92e-05
summary(lm(recommend_1 ~ condition + age + gender + tech + social + check, pep))
## 
## Call:
## lm(formula = recommend_1 ~ condition + age + gender + tech + 
##     social + check, data = pep)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.8716 -0.7209  0.1587  0.9510  2.2395 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.393106   0.665918   5.095 6.25e-07 ***
## conditionhuman -0.004691   0.176238  -0.027  0.97878    
## conditionrobot -0.221904   0.191932  -1.156  0.24856    
## age             0.005879   0.006412   0.917  0.36000    
## gender          0.431650   0.137234   3.145  0.00183 ** 
## tech            0.310661   0.095199   3.263  0.00123 ** 
## social          0.174729   0.134233   1.302  0.19405    
## check          -0.199495   0.118157  -1.688  0.09240 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.212 on 293 degrees of freedom
## Multiple R-squared:  0.1077, Adjusted R-squared:  0.08642 
## F-statistic: 5.054 on 7 and 293 DF,  p-value: 1.977e-05
summary(lm(tip ~ condition + age + gender + tech + social + check, pep))
## 
## Call:
## lm(formula = tip ~ condition + age + gender + tech + social + 
##     check, data = pep)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -14.671  -5.200   0.701   4.566  66.974 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)     3.160530   4.616046   0.685    0.494
## conditionhuman  1.641558   1.218841   1.347    0.179
## conditionrobot -0.972774   1.327373  -0.733    0.464
## age             0.009177   0.044358   0.207    0.836
## gender          1.445794   0.950810   1.521    0.129
## tech            0.822888   0.660620   1.246    0.214
## social          1.180989   0.928500   1.272    0.204
## check          -0.080813   0.821112  -0.098    0.922
## 
## Residual standard error: 8.385 on 292 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0396, Adjusted R-squared:  0.01657 
## F-statistic:  1.72 on 7 and 292 DF,  p-value: 0.104