12-point scale

PA model

## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: bc_pa ~ outcome + PE + (1 + outcome + PE | cohort/id/exam_num)
##    Data: df.pa.conf.12
## 
##      AIC      BIC   logLik deviance df.resid 
##  22280.5  22411.5 -11118.3  22236.5     2823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.5171 -0.4406  0.0310  0.4563  5.0784 
## 
## Random effects:
##  Groups               Name        Variance  Std.Dev. Corr       
##  exam_num:(id:cohort) (Intercept) 311.16372 17.6398             
##                       outcome       3.46507  1.8615  -0.81      
##                       PE           11.53248  3.3959   0.62 -0.96
##  id:cohort            (Intercept)  30.67039  5.5381             
##                       outcome       0.76803  0.8764  -0.77      
##                       PE            2.72475  1.6507   0.99 -0.84
##  cohort               (Intercept)   1.26183  1.1233             
##                       outcome       0.04050  0.2012  -1.00      
##                       PE            0.05241  0.2289   1.00 -1.00
##  Residual                          95.00459  9.7470             
## Number of obs: 2845, groups:  
## exam_num:(id:cohort), 453; id:cohort, 156; cohort, 3
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  -1.7482     1.4413  5.2591  -1.213    0.277    
## outcome       0.2092     0.2060  3.1995   1.015    0.380    
## PE            3.0964     0.4299 10.1783   7.203 2.65e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome -0.884       
## PE       0.497 -0.596

Model AIC: 2.228051610^{4}

NA model

## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: bc_na ~ outcome + PE + (1 + outcome + PE | cohort/id/exam_num)
##    Data: df.na.conf.12
## 
##      AIC      BIC   logLik deviance df.resid 
##  22796.3  22927.3 -11376.2  22752.3     2823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9334 -0.4815 -0.0464  0.4142  5.0573 
## 
## Random effects:
##  Groups               Name        Variance  Std.Dev. Corr       
##  exam_num:(id:cohort) (Intercept) 623.81336 24.9763             
##                       outcome       8.05189  2.8376  -0.88      
##                       PE           11.48466  3.3889   0.61 -0.91
##  id:cohort            (Intercept) 147.40561 12.1411             
##                       outcome       1.88055  1.3713  -0.96      
##                       PE            7.29592  2.7011   0.96 -0.84
##  cohort               (Intercept)   0.15227  0.3902             
##                       outcome       0.04173  0.2043  -1.00      
##                       PE            0.00558  0.0747   1.00 -1.00
##  Residual                         111.28068 10.5490             
## Number of obs: 2845, groups:  
## exam_num:(id:cohort), 453; id:cohort, 156; cohort, 3
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)   7.1773     2.0384 64.4244   3.521 0.000795 ***
## outcome      -0.6854     0.2741  7.8571  -2.500 0.037438 *  
## PE           -2.6913     0.4824 75.4970  -5.579 3.61e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome -0.880       
## PE       0.511 -0.547

Model AIC: 2.27963110^{4}

100-point scale

PA model

## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: bc_pa ~ outcome + PE + (1 + outcome + PE | cohort/id/exam_num)
##    Data: df.pa.conf.100
## 
##      AIC      BIC   logLik deviance df.resid 
##  22412.2  22543.2 -11184.1  22368.2     2823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.8065 -0.4476  0.0285  0.4818  5.3176 
## 
## Random effects:
##  Groups               Name        Variance  Std.Dev. Corr       
##  exam_num:(id:cohort) (Intercept) 1.538e+02 12.40273            
##                       outcome     1.688e-03  0.04108 -1.00      
##                       PE          6.644e-01  0.81512 -0.22  0.22
##  id:cohort            (Intercept) 2.118e+02 14.55172            
##                       outcome     4.326e-02  0.20798 -0.94      
##                       PE          5.011e-01  0.70788  0.68 -0.69
##  cohort               (Intercept) 2.921e+02 17.09229            
##                       outcome     1.809e+02 13.45114  0.07      
##                       PE          1.456e+02 12.06830 -0.12  0.26
##  Residual                         9.826e+01  9.91250            
## Number of obs: 2845, groups:  
## exam_num:(id:cohort), 453; id:cohort, 156; cohort, 3
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)  -1.335170  10.007587 271.386813  -0.133    0.894
## outcome      -0.007585   7.766050  16.169136  -0.001    0.999
## PE            1.063375   6.968888   4.367755   0.153    0.886
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome  0.069       
## PE      -0.117  0.260
## convergence code: 1
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 5 negative eigenvalues

Model AIC: 2.241224710^{4}

NA model

## Linear mixed model fit by maximum likelihood . t-tests use
##   Satterthwaite's method [lmerModLmerTest]
## Formula: bc_na ~ outcome + PE + (1 + outcome + PE | cohort/id/exam_num)
##    Data: df.na.conf.100
## 
##      AIC      BIC   logLik deviance df.resid 
##  22832.3  22963.2 -11394.1  22788.3     2823 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8010 -0.4806 -0.0441  0.4054  4.8953 
## 
## Random effects:
##  Groups               Name        Variance Std.Dev. Corr       
##  exam_num:(id:cohort) (Intercept) 618.7647 24.8750             
##                       outcome       0.1088  0.3299  -0.87      
##                       PE            0.2790  0.5282   0.48 -0.85
##  id:cohort            (Intercept) 356.2874 18.8756             
##                       outcome       0.0497  0.2229  -0.99      
##                       PE            0.3906  0.6250   0.95 -0.89
##  cohort               (Intercept) 556.2738 23.5855             
##                       outcome      48.4986  6.9641  0.90       
##                       PE          174.0223 13.1918  0.04  0.24 
##  Residual                         108.1842 10.4012             
## Number of obs: 2845, groups:  
## exam_num:(id:cohort), 453; id:cohort, 156; cohort, 3
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)  6.94473   13.84387 16.40073   0.502    0.623
## outcome     -0.05052    4.02085  0.39794  -0.013    0.994
## PE          -0.82741    7.61733  2.87692  -0.109    0.921
## 
## Correlation of Fixed Effects:
##         (Intr) outcom
## outcome 0.880        
## PE      0.038  0.236 
## convergence code: 1
## unable to evaluate scaled gradient
## Model failed to converge: degenerate  Hessian with 3 negative eigenvalues

Model AIC: 2.283225210^{4}