#open packages
library(ggplot2)
library(ggthemes)
library(gridExtra)
#read data
lf <- read.csv("C:\\Users\\USER\\Desktop\\Articles\\HA330\\Data\\Analysis\\Liver Support.csv",
header=TRUE)
lf$td <- factor(lf$td)
names(lf)
## [1] "td" "GCS" "M" "HATT"
## [5] "HATtr" "nh.tho" "SpO2" "nh.do"
## [9] "glu" "Ure" "Cre" "pH"
## [13] "pO2" "pCO2" "HCO3" "Lactat"
## [17] "P.F" "RBC" "TC" "WBC"
## [21] "NEU" "PT." "PT.s" "INR"
## [25] "APTT" "fib" "Na" "K"
## [29] "Cl" "Catp" "Ca..." "Mg.."
## [33] "Bilirubin.TP" "Bil.TT" "GOT" "GPT"
## [37] "albumin"
#nhip tho
p1 <- ggplot(lf, aes(x=td, y=nh.tho, group=1)) +
geom_line(col="#DC143C") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Nh\u1ECBp th\u1EDF") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#Nhiet do
p2 <- ggplot(lf, aes(x=td, y=nh.do, group=1)) +
geom_line(col="#0000FF") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Nhi\u1EC7t \u0111\u1ED9") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#Glagow
p3 <- ggplot(lf, aes(x=td, y=GCS, group=1)) +
geom_line(col="#FF1493") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Glasgow") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#SpO2
p4 <- ggplot(lf, aes(x=td, y=SpO2, group=1)) +
geom_line(col="#FF1493") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="SpO2(%)") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#combine four plots above
grid.arrange(p1, p2, p3, p4, ncol=2)
#Mach
m1 <- ggplot(lf, aes(x=td, y=M, group=1)) +
geom_line(col="#0000FF") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="M\u1EA1ch") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#HATT
m2 <- ggplot(lf, aes(x=td, y=HATtr, group=1)) +
geom_line(col="#FF1493") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="HA t\u00E2m thu") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#HATtr
m3 <- ggplot(lf, aes(x=td, y=HATT, group=1)) +
geom_line(col="#FF1493") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="HA t\u00E2m tr\u01B0\u01A1ng") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#Blank plot
m4 <- ggplot(lf, aes(x=td, group=1)) +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#combine four plots above
grid.arrange(m1, m2, m3, m4, ncol=2)
##Kidney function #plot ure
k1 <- ggplot(lf, aes(x=td, y=Ure, group=1)) +
geom_line(col="#FF1493") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Urea") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot creatinin
k2 <- ggplot(lf, aes(x=td, y=Cre, group=1)) +
geom_line(col="#FFD700") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Creatinin") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#combine two plots above
grid.arrange(k1, k2, nrow=2, ncol=1)
##Liver function #plot total bilirubin
b1 <- ggplot(lf, aes(x=td, y=Bilirubin.TP, group=1)) +
geom_line(col="#FF0000") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Bilirubin to\u00E0n ph\u1EA7n") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot direct bilirubin
b2 <- ggplot(lf, aes(x=td, y=Bil.TT, group=1)) +
geom_line(col="#00FF00") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Bilirubin tr\u1EF1c ti\u1EBFp") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot indirect bilirubin
b3 <- ggplot(lf, aes(x=td, y=Bilirubin.TP - Bil.TT, group=1)) +
geom_line(col="#0000FF") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Bilirubin gi\u00E1n ti\u1EBFp") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot GOT
b4 <- ggplot(lf, aes(x=td, y=GOT, group=1)) +
geom_line(col="#FF00FF") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="GOT") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot GPT
b5 <- ggplot(lf, aes(x=td, y=GPT, group=1)) +
geom_line(col="#FFD700") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="GPT") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot albumin
b6 <- ggplot(lf, aes(x=td, y=albumin, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="albumin") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#combine Blood Gas Results
grid.arrange(b1, b2, b3, b4, b5, b6, nrow=3, ncol=2)
##Blood Gas Results #plot pH
b1 <- ggplot(lf, aes(x=td, y=pH, group=1)) +
geom_line(col="#FF0000") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="pH") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot pO2
b2 <- ggplot(lf, aes(x=td, y=pO2, group=1)) +
geom_line(col="#00FF00") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="pO2") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot pCO2
b3 <- ggplot(lf, aes(x=td, y=pCO2, group=1)) +
geom_line(col="#0000FF") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="pH") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot pH
b4 <- ggplot(lf, aes(x=td, y=pH, group=1)) +
geom_line(col="#FF00FF") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="pH") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot HCO3
b5 <- ggplot(lf, aes(x=td, y=HCO3, group=1)) +
geom_line(col="#FFD700") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="HCO3") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#plot P/F
b6 <- ggplot(lf, aes(x=td, y=P.F, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="P/F") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#combine Blood Gas Results
grid.arrange(b1, b2, b3, b4, b5, b6, nrow=3, ncol=2)
##Total Blood Count #RBC
bc1 <- ggplot(lf, aes(x=td, y=RBC, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="H\u1ED3ng c\u1EA7u") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#PLT
bc2 <- ggplot(lf, aes(x=td, y=TC, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Ti\u1EC3u c\u1EA7u") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#WBC
bc3 <- ggplot(lf, aes(x=td, y=WBC, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="B\u1EA1ch c\u1EA7u") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#NEUT
bc4 <- ggplot(lf, aes(x=td, y=NEU, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="B\u1EA1ch c\u1EA7u trung t\u00EDnh (%)") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#combine total blood counts
grid.arrange(bc1, bc2, bc3, bc4, nrow=2, ncol=2)
##coagulation test # PT%
c1 <- ggplot(lf, aes(x=td, y=PT., group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="PT (%)") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#PT (s)
c2 <- ggplot(lf, aes(x=td, y=PT.s, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="PT (s)") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#INR
c3 <- ggplot(lf, aes(x=td, y=INR, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="INR") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#APTT(s)
c4 <- ggplot(lf, aes(x=td, y=APTT, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="APTT (s)") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#Fibrinogen
c5 <- ggplot(lf, aes(x=td, y=fib, group=1)) +
geom_line(col="#191970") +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
labs(x="Th\u1EDDi \u0111i\u1EC3m", y="Fibrinogen") +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#Blank plot
c6 <- ggplot(lf, aes(x=td, group=1)) +
scale_x_discrete(breaks=c("1","2","3", "4", "5", "6", "7", "8"),
labels=c("T0", "T1", "T2", "T3", "T4", "T5", "T6", "T7")) +
theme_economist(base_size = 8, base_family="sans", horizontal = TRUE)
#combine cogulation test plots
grid.arrange(c1, c2, c3, c4, c5, c6, nrow=3, ncol=2)