R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

# load the data set and get an overview
library(AER)
## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
data("CigarettesSW")
library(tidyverse)
## -- Attaching packages --------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.1.0     v purrr   0.2.5
## v tibble  2.1.3     v dplyr   0.8.3
## v tidyr   0.8.2     v stringr 1.3.1
## v readr   1.3.1     v forcats 0.3.0
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## -- Conflicts ------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## x dplyr::recode() masks car::recode()
## x purrr::some()   masks car::some()
CigarettesSW<-as.data.frame(CigarettesSW)
CigarettesSW
##    state year   cpi population     packs    income      tax     price
## 1     AL 1985 1.076    3973000 116.48628  46014968 32.50000 102.18167
## 2     AR 1985 1.076    2327000 128.53459  26210736 37.00000 101.47500
## 3     AZ 1985 1.076    3184000 104.52261  43956936 31.00000 108.57875
## 4     CA 1985 1.076   26444000 100.36304 447102816 26.00000 107.83734
## 5     CO 1985 1.076    3209000 112.96354  49466672 31.00000  94.26666
## 6     CT 1985 1.076    3201000 109.27835  60063368 42.00000 128.02499
## 7     DE 1985 1.076     618000 143.85114   9927301 30.00000 102.49166
## 8     FL 1985 1.076   11352000 122.18112 166919248 37.00000 115.29000
## 9     GA 1985 1.076    5963000 127.23462  78364336 28.00000  97.02517
## 10    IA 1985 1.076    2830000 113.74558  37902896 34.00000 101.84200
## 11    ID 1985 1.076     994000 103.01811  11577261 25.10000 102.89933
## 12    IL 1985 1.076   11401000 123.20848 176786352 28.00001 104.44025
## 13    IN 1985 1.076    5460000 137.63737  71751616 26.50000  96.18000
## 14    KS 1985 1.076    2428000 116.68040  34784360 32.00000  98.92291
## 15    KY 1985 1.076    3695000 186.03519  42703144 19.00000  87.00125
## 16    LA 1985 1.076    4409000 127.55727  53431900 32.00000 108.39400
## 17    MA 1985 1.076    5881000 115.67760  98328688 42.00000 112.20834
## 18    MD 1985 1.076    4414000 120.97871  74851664 29.00000  91.96667
## 19    ME 1985 1.076    1163000 128.11694  14575292 36.00000 107.04750
## 20    MI 1985 1.076    9077000 128.00485 133728040 37.00000 104.91417
## 21    MN 1985 1.076    4185000 112.90323  63152360 34.00000 113.64967
## 22    MO 1985 1.076    5001000 130.37393  69341920 29.00000  99.33817
## 23    MS 1985 1.076    2588000 117.04018  25678534 27.58333 105.29333
## 24    MT 1985 1.076     822000 104.25790   9785230 32.00000  99.29166
## 25    NC 1985 1.076    6255000 155.28377  79104656 18.00000  84.96799
## 26    ND 1985 1.076     677000 105.46529   8672948 34.00000 106.80800
## 27    NE 1985 1.076    1585000 107.38171  21778072 34.00000 104.60667
## 28    NH 1985 1.076     997000 197.99399  15767469 33.00000  95.50000
## 29    NJ 1985 1.076    7566000 116.52128 133549208 41.00000 110.41666
## 30    NM 1985 1.076    1439000  88.74218  17258916 28.00000 102.77800
## 31    NV 1985 1.076     951000 141.95584  14581495 31.00000 114.18850
## 32    NY 1985 1.076   17794000 116.66292 297728512 37.00000 109.99783
## 33    OH 1985 1.076   10736000 127.59874 153455776 30.00000 100.42374
## 34    OK 1985 1.076    3272000 127.13937  43395580 34.00000 101.46808
## 35    OR 1985 1.076    2673000 119.45380  36205164 35.00000  97.03333
## 36    PA 1985 1.076   11772000 117.70303 170033840 34.00000 109.07401
## 37    RI 1985 1.076     967000 132.78178  14229156 39.00000 100.94167
## 38    SC 1985 1.076    3304000 127.20944  38536176 23.00000  90.64125
## 39    SD 1985 1.076     698000 106.59026   8340000 31.00000  97.08334
## 40    TN 1985 1.076    4716000 129.83459  57749668 29.00000 101.94550
## 41    TX 1985 1.076   16275000 115.10293 231003152 35.25000 107.38000
## 42    UT 1985 1.076    1643000  68.04626  19462380 28.00000 110.19584
## 43    VA 1985 1.076    5716000 134.00980  87361632 18.50000  91.61533
## 44    VT 1985 1.076     530000 145.28302   6887097 33.00000 100.98334
## 45    WA 1985 1.076    4401000  96.22813  64846548 39.00000 129.46109
## 46    WI 1985 1.076    4748000 107.87700  65732720 41.00000 114.59000
## 47    WV 1985 1.076    1907000 112.84740  20852964 33.00000 108.91125
## 48    WY 1985 1.076     500000 129.39999   7116756 24.00000  93.46667
## 49    AL 1995 1.524    4262731 101.08543  83903280 40.50000 158.37134
## 50    AR 1995 1.524    2480121 111.04297  45995496 55.50000 175.54251
## 51    AZ 1995 1.524    4306908  71.95417  88870496 65.33333 198.60750
## 52    CA 1995 1.524   31493524  56.85931 771470144 61.00000 210.50467
## 53    CO 1995 1.524    3738061  82.58292  92946544 44.00000 167.35001
## 54    CT 1995 1.524    3265293  79.47219 104315120 74.00000 218.28050
## 55    DE 1995 1.524     718265 124.46660  18237436 48.00000 165.60001
## 56    FL 1995 1.524   14185403  93.07455 333525344 57.90000 187.71718
## 57    GA 1995 1.524    7188538  97.47462 159800448 36.00000 156.57307
## 58    IA 1995 1.524    2840860  92.40160  60170928 60.00000 190.89000
## 59    ID 1995 1.524    1165000  74.84978  22868920 52.00000 179.63751
## 60    IL 1995 1.524   11884935  83.26508 304767456 68.00001 198.47617
## 61    IN 1995 1.524    5791819 134.25835 126525008 39.50000 154.53375
## 62    KS 1995 1.524    2586942  88.75344  56626672 48.00000 175.21001
## 63    KY 1995 1.524    3855248 172.64778  74079712 27.00000 145.97968
## 64    LA 1995 1.524    4327978 105.17613  84572688 44.00000 167.79535
## 65    MA 1995 1.524    6062335  76.62064 170051568 75.00000 217.10501
## 66    MD 1995 1.524    5023650  77.47355 135115456 60.00000 186.03375
## 67    ME 1995 1.524    1237438 102.46978  25045934 61.00000 197.23065
## 68    MI 1995 1.524    9659871  81.38825 231594240 99.00000 240.84967
## 69    MN 1995 1.524    4605445  82.94530 113216856 72.00000 220.34866
## 70    MO 1995 1.524    5324610 122.45028 117639672 41.00000 157.23009
## 71    MS 1995 1.524    2690788 105.58245  46241956 42.00000 169.22940
## 72    MT 1995 1.524     868522  87.15957  16296835 42.00000 156.21667
## 73    NC 1995 1.524    7185403 121.53806 157633568 29.00000 149.99400
## 74    ND 1995 1.524     641548  79.80697  12243384 68.00000 192.24867
## 75    NE 1995 1.524    1635142  87.27071  36293064 58.00000 182.17500
## 76    NH 1995 1.524    1145604 156.33675  28649564 49.00000 166.64166
## 77    NJ 1995 1.524    7965523  80.37137 233208576 64.00000 203.08717
## 78    NM 1995 1.524    1682417  64.66887  31716160 45.00000 176.14624
## 79    NV 1995 1.524    1525777  93.52612  39377292 59.00000 206.59917
## 80    NY 1995 1.524   18150928  70.81732 503163328 80.00000 221.85800
## 81    OH 1995 1.524   11155493 111.38010 255312928 48.00000 165.89125
## 82    OK 1995 1.524    3265547 108.68011  63333300 47.00000 170.13499
## 83    OR 1995 1.524    3141421  92.15575  71209312 62.00000 190.30000
## 84    PA 1995 1.524   12044780  95.64309 285923232 55.00000 176.16316
## 85    RI 1995 1.524     989203  92.59980  23786644 80.00000 224.45924
## 86    SC 1995 1.524    3699943 108.08275  72050072 31.00000 152.81874
## 87    SD 1995 1.524     728251  97.21923  14454129 47.00000 168.03799
## 88    TN 1995 1.524    5241168 122.32005 114259984 37.00000 167.06700
## 89    TX 1995 1.524   18679706  73.07931 402096768 65.00000 198.20233
## 90    UT 1995 1.524    1976774  49.27220  37278220 50.50000 180.97626
## 91    VA 1995 1.524    6601392 105.38687 161441792 26.50001 166.66125
## 92    VT 1995 1.524     582827 122.33475  12448607 44.00000 175.63875
## 93    WA 1995 1.524    5431024  65.53092 129680832 80.50000 239.10934
## 94    WI 1995 1.524    5137004  92.46635 115959680 62.00000 201.38126
## 95    WV 1995 1.524    1820560 115.56883  32611268 41.00000 166.51718
## 96    WY 1995 1.524     478447 112.23814  10293195 36.00000 158.54166
##         taxs
## 1   33.34834
## 2   37.00000
## 3   36.17042
## 4   32.10400
## 5   31.00000
## 6   51.48333
## 7   30.00000
## 8   42.49000
## 9   28.84183
## 10  37.91700
## 11  29.05767
## 12  28.91526
## 13  31.08000
## 14  34.88125
## 15  23.14292
## 16  36.16900
## 17  42.00000
## 18  29.00000
## 19  41.09750
## 20  37.83083
## 21  40.43300
## 22  29.85484
## 23  33.54333
## 24  32.00000
## 25  21.26800
## 26  38.10800
## 27  38.02333
## 28  33.00000
## 29  41.00000
## 30  31.95300
## 31  37.46350
## 32  37.88117
## 33  34.78208
## 34  34.82642
## 35  35.00000
## 36  40.17400
## 37  39.00000
## 38  27.31625
## 39  31.00000
## 40  34.77050
## 41  39.38000
## 42  34.23750
## 43  22.02367
## 44  33.00000
## 45  47.46942
## 46  46.45667
## 47  38.18625
## 48  24.00000
## 49  41.90467
## 50  63.85917
## 51  74.79082
## 52  74.77133
## 53  44.00000
## 54  86.35550
## 55  48.00000
## 56  68.52551
## 57  37.43142
## 58  69.09000
## 59  60.55417
## 60  79.23450
## 61  46.85875
## 62  56.34333
## 63  35.26300
## 64  50.45367
## 65  85.33833
## 66  68.85875
## 67  72.16400
## 68 112.63300
## 69  86.41534
## 70  42.38842
## 71  53.07108
## 72  42.00000
## 73  34.76900
## 74  78.88200
## 75  66.67500
## 76  49.00000
## 77  75.49550
## 78  53.38792
## 79  72.51583
## 80  88.53300
## 81  55.89958
## 82  55.10167
## 83  62.00000
## 84  64.97150
## 85  94.68425
## 86  38.27708
## 87  53.46300
## 88  49.37533
## 89  76.21900
## 90  59.11792
## 91  34.43626
## 92  52.36375
## 93  96.14267
## 94  71.58958
## 95  50.42550
## 96  36.00000
?CigarettesB  ## Variable Description
## starting httpd help server ...
##  done

Including Plots

You can also embed plots, for example: Base R calc ##CigarettesSW\(rprice <- with(CigarettesSW, price / cpi) # compute the sales tax #CigarettesSW\)salestax <- with(CigarettesSW, (taxs - tax) / cpi) but we are doing using dplyr # check the correlation between sales tax and price cor(CigarettesSW\(salestax, CigarettesSW\)price) # generate a subset for the year 1995 c1995 <- subset(CigarettesSW, year == “1995”)

# compute real per capita prices
CigarettesSW<-  CigarettesSW %>% mutate(rprice=price/cpi)
CigarettesSW<-CigarettesSW %>% mutate(salestax=(taxs-tax)/cpi)
CigarettesSW
##    state year   cpi population     packs    income      tax     price
## 1     AL 1985 1.076    3973000 116.48628  46014968 32.50000 102.18167
## 2     AR 1985 1.076    2327000 128.53459  26210736 37.00000 101.47500
## 3     AZ 1985 1.076    3184000 104.52261  43956936 31.00000 108.57875
## 4     CA 1985 1.076   26444000 100.36304 447102816 26.00000 107.83734
## 5     CO 1985 1.076    3209000 112.96354  49466672 31.00000  94.26666
## 6     CT 1985 1.076    3201000 109.27835  60063368 42.00000 128.02499
## 7     DE 1985 1.076     618000 143.85114   9927301 30.00000 102.49166
## 8     FL 1985 1.076   11352000 122.18112 166919248 37.00000 115.29000
## 9     GA 1985 1.076    5963000 127.23462  78364336 28.00000  97.02517
## 10    IA 1985 1.076    2830000 113.74558  37902896 34.00000 101.84200
## 11    ID 1985 1.076     994000 103.01811  11577261 25.10000 102.89933
## 12    IL 1985 1.076   11401000 123.20848 176786352 28.00001 104.44025
## 13    IN 1985 1.076    5460000 137.63737  71751616 26.50000  96.18000
## 14    KS 1985 1.076    2428000 116.68040  34784360 32.00000  98.92291
## 15    KY 1985 1.076    3695000 186.03519  42703144 19.00000  87.00125
## 16    LA 1985 1.076    4409000 127.55727  53431900 32.00000 108.39400
## 17    MA 1985 1.076    5881000 115.67760  98328688 42.00000 112.20834
## 18    MD 1985 1.076    4414000 120.97871  74851664 29.00000  91.96667
## 19    ME 1985 1.076    1163000 128.11694  14575292 36.00000 107.04750
## 20    MI 1985 1.076    9077000 128.00485 133728040 37.00000 104.91417
## 21    MN 1985 1.076    4185000 112.90323  63152360 34.00000 113.64967
## 22    MO 1985 1.076    5001000 130.37393  69341920 29.00000  99.33817
## 23    MS 1985 1.076    2588000 117.04018  25678534 27.58333 105.29333
## 24    MT 1985 1.076     822000 104.25790   9785230 32.00000  99.29166
## 25    NC 1985 1.076    6255000 155.28377  79104656 18.00000  84.96799
## 26    ND 1985 1.076     677000 105.46529   8672948 34.00000 106.80800
## 27    NE 1985 1.076    1585000 107.38171  21778072 34.00000 104.60667
## 28    NH 1985 1.076     997000 197.99399  15767469 33.00000  95.50000
## 29    NJ 1985 1.076    7566000 116.52128 133549208 41.00000 110.41666
## 30    NM 1985 1.076    1439000  88.74218  17258916 28.00000 102.77800
## 31    NV 1985 1.076     951000 141.95584  14581495 31.00000 114.18850
## 32    NY 1985 1.076   17794000 116.66292 297728512 37.00000 109.99783
## 33    OH 1985 1.076   10736000 127.59874 153455776 30.00000 100.42374
## 34    OK 1985 1.076    3272000 127.13937  43395580 34.00000 101.46808
## 35    OR 1985 1.076    2673000 119.45380  36205164 35.00000  97.03333
## 36    PA 1985 1.076   11772000 117.70303 170033840 34.00000 109.07401
## 37    RI 1985 1.076     967000 132.78178  14229156 39.00000 100.94167
## 38    SC 1985 1.076    3304000 127.20944  38536176 23.00000  90.64125
## 39    SD 1985 1.076     698000 106.59026   8340000 31.00000  97.08334
## 40    TN 1985 1.076    4716000 129.83459  57749668 29.00000 101.94550
## 41    TX 1985 1.076   16275000 115.10293 231003152 35.25000 107.38000
## 42    UT 1985 1.076    1643000  68.04626  19462380 28.00000 110.19584
## 43    VA 1985 1.076    5716000 134.00980  87361632 18.50000  91.61533
## 44    VT 1985 1.076     530000 145.28302   6887097 33.00000 100.98334
## 45    WA 1985 1.076    4401000  96.22813  64846548 39.00000 129.46109
## 46    WI 1985 1.076    4748000 107.87700  65732720 41.00000 114.59000
## 47    WV 1985 1.076    1907000 112.84740  20852964 33.00000 108.91125
## 48    WY 1985 1.076     500000 129.39999   7116756 24.00000  93.46667
## 49    AL 1995 1.524    4262731 101.08543  83903280 40.50000 158.37134
## 50    AR 1995 1.524    2480121 111.04297  45995496 55.50000 175.54251
## 51    AZ 1995 1.524    4306908  71.95417  88870496 65.33333 198.60750
## 52    CA 1995 1.524   31493524  56.85931 771470144 61.00000 210.50467
## 53    CO 1995 1.524    3738061  82.58292  92946544 44.00000 167.35001
## 54    CT 1995 1.524    3265293  79.47219 104315120 74.00000 218.28050
## 55    DE 1995 1.524     718265 124.46660  18237436 48.00000 165.60001
## 56    FL 1995 1.524   14185403  93.07455 333525344 57.90000 187.71718
## 57    GA 1995 1.524    7188538  97.47462 159800448 36.00000 156.57307
## 58    IA 1995 1.524    2840860  92.40160  60170928 60.00000 190.89000
## 59    ID 1995 1.524    1165000  74.84978  22868920 52.00000 179.63751
## 60    IL 1995 1.524   11884935  83.26508 304767456 68.00001 198.47617
## 61    IN 1995 1.524    5791819 134.25835 126525008 39.50000 154.53375
## 62    KS 1995 1.524    2586942  88.75344  56626672 48.00000 175.21001
## 63    KY 1995 1.524    3855248 172.64778  74079712 27.00000 145.97968
## 64    LA 1995 1.524    4327978 105.17613  84572688 44.00000 167.79535
## 65    MA 1995 1.524    6062335  76.62064 170051568 75.00000 217.10501
## 66    MD 1995 1.524    5023650  77.47355 135115456 60.00000 186.03375
## 67    ME 1995 1.524    1237438 102.46978  25045934 61.00000 197.23065
## 68    MI 1995 1.524    9659871  81.38825 231594240 99.00000 240.84967
## 69    MN 1995 1.524    4605445  82.94530 113216856 72.00000 220.34866
## 70    MO 1995 1.524    5324610 122.45028 117639672 41.00000 157.23009
## 71    MS 1995 1.524    2690788 105.58245  46241956 42.00000 169.22940
## 72    MT 1995 1.524     868522  87.15957  16296835 42.00000 156.21667
## 73    NC 1995 1.524    7185403 121.53806 157633568 29.00000 149.99400
## 74    ND 1995 1.524     641548  79.80697  12243384 68.00000 192.24867
## 75    NE 1995 1.524    1635142  87.27071  36293064 58.00000 182.17500
## 76    NH 1995 1.524    1145604 156.33675  28649564 49.00000 166.64166
## 77    NJ 1995 1.524    7965523  80.37137 233208576 64.00000 203.08717
## 78    NM 1995 1.524    1682417  64.66887  31716160 45.00000 176.14624
## 79    NV 1995 1.524    1525777  93.52612  39377292 59.00000 206.59917
## 80    NY 1995 1.524   18150928  70.81732 503163328 80.00000 221.85800
## 81    OH 1995 1.524   11155493 111.38010 255312928 48.00000 165.89125
## 82    OK 1995 1.524    3265547 108.68011  63333300 47.00000 170.13499
## 83    OR 1995 1.524    3141421  92.15575  71209312 62.00000 190.30000
## 84    PA 1995 1.524   12044780  95.64309 285923232 55.00000 176.16316
## 85    RI 1995 1.524     989203  92.59980  23786644 80.00000 224.45924
## 86    SC 1995 1.524    3699943 108.08275  72050072 31.00000 152.81874
## 87    SD 1995 1.524     728251  97.21923  14454129 47.00000 168.03799
## 88    TN 1995 1.524    5241168 122.32005 114259984 37.00000 167.06700
## 89    TX 1995 1.524   18679706  73.07931 402096768 65.00000 198.20233
## 90    UT 1995 1.524    1976774  49.27220  37278220 50.50000 180.97626
## 91    VA 1995 1.524    6601392 105.38687 161441792 26.50001 166.66125
## 92    VT 1995 1.524     582827 122.33475  12448607 44.00000 175.63875
## 93    WA 1995 1.524    5431024  65.53092 129680832 80.50000 239.10934
## 94    WI 1995 1.524    5137004  92.46635 115959680 62.00000 201.38126
## 95    WV 1995 1.524    1820560 115.56883  32611268 41.00000 166.51718
## 96    WY 1995 1.524     478447 112.23814  10293195 36.00000 158.54166
##         taxs    rprice   salestax
## 1   33.34834  94.96438  0.7884121
## 2   37.00000  94.30762  0.0000000
## 3   36.17042 100.90962  4.8052211
## 4   32.10400 100.22058  5.6728627
## 5   31.00000  87.60842  0.0000000
## 6   51.48333 118.98234  8.8135073
## 7   30.00000  95.25248  0.0000000
## 8   42.49000 107.14684  5.1022322
## 9   28.84183  90.17209  0.7823728
## 10  37.91700  94.64870  3.6403345
## 11  29.05767  95.63135  3.6781287
## 12  28.91526  97.06344  0.8506048
## 13  31.08000  89.38662  4.2565056
## 14  34.88125  91.93579  2.6777403
## 15  23.14292  80.85618  3.8502953
## 16  36.16900 100.73792  3.8745342
## 17  42.00000 104.28284  0.0000000
## 18  29.00000  85.47088  0.0000000
## 19  41.09750  99.48653  4.7374535
## 20  37.83083  97.50388  0.7721501
## 21  40.43300 105.62237  5.9786234
## 22  29.85484  92.32172  0.7944550
## 23  33.54333  97.85626  5.5390327
## 24  32.00000  92.27850  0.0000000
## 25  21.26800  78.96654  3.0371745
## 26  38.10800  99.26394  3.8178455
## 27  38.02333  97.21809  3.7391585
## 28  33.00000  88.75465  0.0000000
## 29  41.00000 102.61772  0.0000000
## 30  31.95300  95.51859  3.6737911
## 31  37.46350 106.12314  6.0069713
## 32  37.88117 102.22846  0.8189297
## 33  34.78208  93.33062  4.4443139
## 34  34.82642  94.30119  0.7680446
## 35  35.00000  90.17968  0.0000000
## 36  40.17400 101.36990  5.7379181
## 37  39.00000  93.81196  0.0000000
## 38  27.31625  84.23908  4.0113847
## 39  31.00000  90.22615  0.0000000
## 40  34.77050  94.74489  5.3629185
## 41  39.38000  99.79554  3.8382910
## 42  34.23750 102.41249  5.7969325
## 43  22.02367  85.14436  3.2747830
## 44  33.00000  93.85069  0.0000000
## 45  47.46942 120.31700  7.8712061
## 46  46.45667 106.49629  5.0712502
## 47  38.18625 101.21863  4.8199339
## 48  24.00000  86.86493  0.0000000
## 49  41.90467 103.91821  0.9216975
## 50  63.85917 115.18538  5.4850193
## 51  74.79082 130.31989  6.2057067
## 52  74.77133 138.12643  9.0363074
## 53  44.00000 109.80972  0.0000000
## 54  86.35550 143.22868  8.1072834
## 55  48.00000 108.66143  0.0000000
## 56  68.52551 123.17401  6.9721155
## 57  37.43142 102.73824  0.9392491
## 58  69.09000 125.25591  5.9645648
## 59  60.55417 117.87239  5.6129718
## 60  79.23450 130.23371  7.3717176
## 61  46.85875 101.40010  4.8285759
## 62  56.34333 114.96720  5.4746290
## 63  35.26300  95.78719  5.4219166
## 64  50.45367 110.10194  4.2346896
## 65  85.33833 142.45736  6.7836835
## 66  68.85875 122.06940  5.8128280
## 67  72.16400 129.41644  7.3254606
## 68 112.63300 158.03785  8.9455406
## 69  86.41534 144.58574  9.4588827
## 70  42.38842 103.16935  0.9110344
## 71  53.07108 111.04292  7.2644905
## 72  42.00000 102.50438  0.0000000
## 73  34.76900  98.42127  3.7854339
## 74  78.88200 126.14743  7.1404228
## 75  66.67500 119.53741  5.6922595
## 76  49.00000 109.34493  0.0000000
## 77  75.49550 133.25931  7.5429785
## 78  53.38792 115.58153  5.5038825
## 79  72.51583 135.56376  8.8686559
## 80  88.53300 145.57612  5.5990797
## 81  55.89958 108.85253  5.1834529
## 82  55.10167 111.63714  5.3160537
## 83  62.00000 124.86877  0.0000000
## 84  64.97150 115.59263  6.5429771
## 85  94.68425 147.28298  9.6353350
## 86  38.27708 100.27477  4.7749900
## 87  53.46300 110.26116  4.2408147
## 88  49.37533 109.62402  8.1202969
## 89  76.21900 130.05403  7.3615501
## 90  59.11792 118.75083  5.6548009
## 91  34.43626 109.35778  5.2075138
## 92  52.36375 115.24853  5.4880255
## 93  96.14267 156.89590 10.2642194
## 94  71.58958 132.13994  6.2923785
## 95  50.42550 109.26325  6.1847109
## 96  36.00000 104.02996  0.0000000
cor(CigarettesSW$salestax,CigarettesSW$price)
## [1] 0.6141228
c1995<-CigarettesSW %>% 
  filter(year=="1995")

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

# perform the first stage regression
cig_s1 <- lm(log(rprice) ~ salestax, data = c1995)

coeftest(cig_s1, vcov = vcovHC, type = "HC1")
## 
## t test of coefficients:
## 
##              Estimate Std. Error  t value  Pr(>|t|)    
## (Intercept) 4.6165463  0.0289177 159.6444 < 2.2e-16 ***
## salestax    0.0307289  0.0048354   6.3549 8.489e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# inspect the R^2 of the first stage regressio
summary(cig_s1)$r.squared
## [1] 0.4709961
# store the predicted values
lcigp_pred <- cig_s1$fitted.values
# run the stage 2 regression
cig_s2<-lm(log(c1995$packs)~lcigp_pred)
coeftest(cig_s2,vcov=vcovHC)
## 
## t test of coefficients:
## 
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)  9.71988    1.70304  5.7074 7.932e-07 ***
## lcigp_pred  -1.08359    0.35563 -3.0469  0.003822 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(cig_s2, vcov = vcovHC)
## 
## t test of coefficients:
## 
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)  9.71988    1.70304  5.7074 7.932e-07 ***
## lcigp_pred  -1.08359    0.35563 -3.0469  0.003822 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# perform TSLS using 'ivreg()'
#cig_ivreg <- ivreg(log(packs) ~ log(rprice) | salestax, data = c1995)
cig_ivreg<-ivreg(log(packs)~log(rprice)|salestax,data = c1995)
coeftest(cig_ivreg, vcov = vcovHC, type = "HC1")
## 
## t test of coefficients:
## 
##             Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)  9.71988    1.52832  6.3598 8.346e-08 ***
## log(rprice) -1.08359    0.31892 -3.3977  0.001411 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# add rincome to the dataset
CigarettesSW <- CigarettesSW %>% mutate(rincome=income / population / cpi)
c1995<-CigarettesSW %>% filter(year=="1995")

# estimate the model
cig_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + salestax, data = c1995)
coeftest(cig_ivreg2, vcov = vcovHC, type = "HC1")
## 
## t test of coefficients:
## 
##              Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)   9.43066    1.25939  7.4883 1.935e-09 ***
## log(rprice)  -1.14338    0.37230 -3.0711  0.003611 ** 
## log(rincome)  0.21452    0.31175  0.6881  0.494917    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# add cigtax to the data set
CigarettesSW<-CigarettesSW %>% mutate(cigtax=tax/cpi)
c1995<-CigarettesSW %>% filter(year=="1995")

# estimate the model
cig_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | 
                    log(rincome) + salestax + cigtax, data = c1995)

coeftest(cig_ivreg3, vcov = vcovHC, type = "HC1")
## 
## t test of coefficients:
## 
##              Estimate Std. Error t value  Pr(>|t|)    
## (Intercept)   9.89496    0.95922 10.3157 1.947e-13 ***
## log(rprice)  -1.27742    0.24961 -5.1177 6.211e-06 ***
## log(rincome)  0.28040    0.25389  1.1044    0.2753    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# subset data for year 1985
c1985 <- CigarettesSW %>% mutate(year == "1985")

# define differences in variables
packsdiff <- log(c1995$packs) - log(c1985$packs)

pricediff <- log(c1995$price/c1995$cpi) - log(c1985$price/c1985$cpi)

incomediff <- log(c1995$income/c1995$population/c1995$cpi) -
log(c1985$income/c1985$population/c1985$cpi)

salestaxdiff <- (c1995$taxs - c1995$tax)/c1995$cpi - (c1985$taxs - c1985$tax)/c1985$cpi

cigtaxdiff <- c1995$tax/c1995$cpi - c1985$tax/c1985$cpi
# estimate the three models
cig_ivreg_diff1 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff + salestaxdiff)

cig_ivreg_diff2 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff + cigtaxdiff)

cig_ivreg_diff3 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff + salestaxdiff + cigtaxdiff)

# robust coefficient summary for 1.
coeftest(cig_ivreg_diff1, vcov = vcovHC, type = "HC1")
## 
## t test of coefficients:
## 
##               Estimate Std. Error t value  Pr(>|t|)    
## (Intercept) -0.0074733  0.0047300 -1.5800    0.1175    
## pricediff   -1.0639421  0.1716869 -6.1970 1.558e-08 ***
## incomediff  -0.0406767  0.2506843 -0.1623    0.8715    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(cig_ivreg_diff1, type = "HC1"))),
               sqrt(diag(vcovHC(cig_ivreg_diff2, type = "HC1"))),
               sqrt(diag(vcovHC(cig_ivreg_diff3, type = "HC1"))))
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
# generate table
stargazer(cig_ivreg_diff1, cig_ivreg_diff2,cig_ivreg_diff3,
  header = FALSE, 
  type = "LaTex",
  omit.table.layout = "n",
  digits = 3, 
  column.labels = c("IV: salestax", "IV: cigtax", "IVs: salestax, cigtax"),
  dep.var.labels.include = FALSE,
  dep.var.caption = "Dependent Variable: 1985-1995 Difference in Log per Pack Price",
  se = rob_se)