library(AER)
## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
library(dynlm)
## Warning: package 'dynlm' was built under R version 3.5.3
library(forecast)
library(readxl)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(scales)
library(xts)
## Warning: package 'xts' was built under R version 3.5.3
library(quantmod)
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
library(urca)
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
# load US macroeconomic data
library(tidyverse)
## -- Attaching packages --------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.1.0 v purrr 0.2.5
## v tibble 2.1.3 v dplyr 0.8.3
## v tidyr 0.8.2 v stringr 1.3.1
## v readr 1.3.1 v forcats 0.3.0
## Warning: package 'tibble' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## -- Conflicts ------------------------------------ tidyverse_conflicts() --
## x readr::col_factor() masks scales::col_factor()
## x purrr::discard() masks scales::discard()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks xts::first()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks xts::last()
## x dplyr::recode() masks car::recode()
## x purrr::some() masks car::some()
library(quantmod)
setwd("C:/Users/hp/OneDrive - Higher Education Commission/Econometric Analysis")
USMacroSWQ<-read_xlsx("UsMacro_Quarterly.xlsx")
USMacroSWQ$Date<- with(USMacroSWQ, sprintf("%d-%02d", Year, Quarter))
You can also embed plots, for example:
GDP<-ts(USMacroSWQ$RealGDP,frequency = 4,start = c(1947,1))
plot(GDP)
USMacroSWQ
## # A tibble: 252 x 5
## Year Quarter RealGDP TBillRate Date
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 1947 1 1772. 0.38 1947-01
## 2 1947 2 1769. 0.38 1947-02
## 3 1947 3 1768. 0.737 1947-03
## 4 1947 4 1795. 0.907 1947-04
## 5 1948 1 1823. 0.99 1948-01
## 6 1948 2 1857. 1 1948-02
## 7 1948 3 1867. 1.05 1948-03
## 8 1948 4 1870. 1.14 1948-04
## 9 1949 1 1844. 1.17 1949-01
## 10 1949 2 1837. 1.17 1949-02
## # ... with 242 more rows
theme_set(theme_minimal())
p1<-ggplot(USMacroSWQ)+aes(x=Year,y=RealGDP)+geom_line(color ="#00AFBB", size = 1)
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 3.5.3
p1+theme_economist()
p1+theme_wsj()
##install.packages("ggthemes")
ggplot(USMacroSWQ)+aes(x=Year,y=TBillRate)+geom_line(color ="#00AFBB", size = 1)
library(readr)
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.