rm(list = ls())
setwd("~/Downloads")
library(foreign)
sex_data <- read.spss("sex_data.sav", use.value.label=TRUE, to.data.frame=TRUE)

Libraries/themes

library(ggplot2)
library(tidyverse)
library(gridExtra)
library(finalfit)
library(kableExtra)
library(xtable)
jrothsch_theme <-  theme_bw() + 
  theme(text = element_text(size = 10, face = "bold", color = "deepskyblue4"),panel.grid = element_blank(),axis.text = element_text(size = 10, color = "gray13"), axis.title = element_text(size = 10, color = "red"), legend.text = element_text(colour="Black", size=10), legend.title = element_text(colour="Black", size=7), plot.subtitle = element_text(size=14, face="italic", color="black"))

Removing obserations without our key variables

sex_data <- sex_data[!is.na(sex_data$status),]
sex_data <- sex_data[!is.na(sex_data$age),]
sex_data <- sex_data[!is.na(sex_data$Years_PrimaryPartner),]
sex_data <- sex_data[!is.na(sex_data$MALE),]
sex_data <- sex_data[!is.na(sex_data$satis24),]
sex_data <- sex_data[!is.na(sex_data$sexfreq),]

Distributions of trying new things, by Marriage Status

Raw Numbers

sex_data <- sex_data %>% mutate(freq_num =  7 - as.numeric(sexfreq))

novelty_sum <- sex_data %>%
          group_by(satis24, married) %>%
          summarize(nobs = n(),
                    like = mean(totlike),
                    want = mean(want),
                    frequency = mean(as.numeric(freq_num)))

ggplot(novelty_sum, aes(x = satis24, y = nobs,fill = as.factor(married))) + 
  geom_bar(stat = 'identity',position = "dodge") +
 geom_text(aes(label = nobs),color = "black", position = position_dodge(width = 1)) + 
  coord_flip() +
  jrothsch_theme +
  scale_fill_discrete(labels = c("Unmarried", "Married")) + 
  labs(title = "Trying New Things, By Marriage Status", x = "Frequency Of Trying New Things", y = "Number Of Participants", fill = "")

As Percentage Of Group Total

novelty_sum <- novelty_sum %>%
              group_by(married) %>%
              mutate(total_obs_ms = sum(nobs),
                     obs_as_pct = nobs/total_obs_ms)

ggplot(novelty_sum, aes(x = satis24, y = obs_as_pct,fill = as.factor(married))) + 
  geom_bar(stat = 'identity',position = "dodge") +
 geom_text(aes(label = round(obs_as_pct*100)),color = "black", position = position_dodge(width = 1)) + 
  coord_flip() +
  jrothsch_theme +
  scale_fill_discrete(labels = c("Unmarried", "Married")) + 
  scale_y_continuous(label = scales::percent) +
  labs(title = "Rate Of Trying New Things, By Marriage Status", x = "Rate Of Trying New Things", y = "Percent Of Participants", fill = "")

WLF by Trying New things, With Group size

Wanting

ggplot(data = novelty_sum, aes(x = satis24, y = want, size = obs_as_pct)) +
  geom_point(aes(color = as.factor(married)), alpha = .5) +
  jrothsch_theme + 
  labs(title = "Sex Wanting By Marriage And Propensity To Try New Things", x = "Trying New Things", y = "Liking", color = "", size = "Percentage Of Category") + 
  scale_color_discrete(labels = c("Unmarried", "Married")) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Liking

ggplot(data = novelty_sum, aes(x = satis24, y = like, size = obs_as_pct)) +
  geom_point(aes(color = as.factor(married)), alpha = .5) +
  jrothsch_theme + 
  labs(title = "Sex Liking By Marriage And Propensity To Try New Things", x = "Trying New Things", y = "Liking", color = "", size = "Percentage Of Category") + 
  scale_color_discrete(labels = c("Unmarried", "Married")) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Frequency

ggplot(data = novelty_sum, aes(x = satis24, y = frequency, size = obs_as_pct)) +
  geom_point(aes(color = as.factor(married)), alpha = .5) +
  jrothsch_theme + 
  labs(title = "Sex Frequency By Marriage And Propensity To Try New Things", x = "Trying New Things", y = "Liking", color = "", size = "Percentage Of Category") + 
  scale_color_discrete(labels = c("Unmarried", "Married")) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Age/Duration And Trying New Things

Age

agedursum <- sex_data %>%
          group_by(satis24) %>%
          summarize(age = mean(age),
                    duration = mean(Years_PrimaryPartner))


ggplot(data = agedursum, aes(x = satis24, y = age)) +
  geom_point() +
  jrothsch_theme + 
  labs(title = "Average Age, By Trying New Things", x = "Trying New Things", y = "Age") + 
  scale_color_discrete(labels = c("Unmarried", "Married")) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

ggplot(data = agedursum, aes(x = satis24, y = duration)) +
  geom_point() +
  jrothsch_theme + 
  labs(title = "Relationship Duration, by Trying New Things", x = "Trying New Things", y = "Duration") + 
  scale_color_discrete(labels = c("Unmarried", "Married")) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

Marriage Age Effects

Baseline Marriage Age Effect

want <- ggplot(data = sex_data, aes(x = age, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Age", x = "Age", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data, aes(x = age, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data, aes(x = age, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


grid.arrange(want, like, freq)

Try Always

sex_data_try <- sex_data %>%
            filter(satis24 == "Always")

want <- ggplot(data = sex_data_try, aes(x = age, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Age", x = "Age", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = age, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = age, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Often

sex_data_try <- sex_data %>%
            filter(satis24 == "Often or most of the time")

want <- ggplot(data = sex_data_try, aes(x = age, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Age", x = "Age", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = age, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = age, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Sometimes

sex_data_try <- sex_data %>%
            filter(satis24 == "Moderate amount of the time")

want <- ggplot(data = sex_data_try, aes(x = age, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Age", x = "Age", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = age, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = age, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Occasionally

sex_data_try <- sex_data %>%
            filter(satis24 == "Occasionally or some of the time")

want <- ggplot(data = sex_data_try, aes(x = age, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Age", x = "Age", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = age, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = age, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Never

sex_data_try <- sex_data %>%
            filter(satis24 == "Never")

want <- ggplot(data = sex_data_try, aes(x = age, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Age", x = "Age", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = age, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = age, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Age", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Marriage Duration Effects

Baseline Marriage Duration Effect

sex_data <- sex_data %>% 
         filter(Years_PrimaryPartner < 50)

want <- ggplot(data = sex_data, aes(x = Years_PrimaryPartner, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Duration", x = "Duration", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data, aes(x = Years_PrimaryPartner, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data, aes(x = Years_PrimaryPartner, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


grid.arrange(want, like, freq)

Try Always

sex_data_try <- sex_data %>%
            filter(satis24 == "Always")

want <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Duration", x = "Duration", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Often

sex_data_try <- sex_data %>%
            filter(satis24 == "Often or most of the time")

want <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Duration", x = "Duration", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Sometimes

sex_data_try <- sex_data %>%
            filter(satis24 == "Moderate amount of the time")

want <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Duration", x = "Duration", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Duration", x = "Age", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Occasionally

sex_data_try <- sex_data %>%
            filter(satis24 == "Occasionally or some of the time")

want <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Duration", x = "Duration", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Try Never

sex_data_try <- sex_data %>%
            filter(satis24 == "Never")

want <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = want, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Want by Marriage/Duration", x = "Duration", y = "Want", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))


like <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = totlike, color = as.factor(married))) +
  geom_point(alpha = .1) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Like by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

freq <- ggplot(data = sex_data_try, aes(x = Years_PrimaryPartner, y = freq_num, color = as.factor(married))) +
  geom_smooth(method = 'lm', se = F) +
  jrothsch_theme +
  labs(title = "Frequency by Marriage/Duration", x = "Duration", y = "Like", color = "") + 
  scale_color_discrete(labels = c("Unmarried", "Married"))

grid.arrange(want, like, freq)

Regressions – Marriage

sex_data %>%
lm(want ~  married + age + Years_PrimaryPartner+ MALE + satis24, data = .) %>%
  summary()
## 
## Call:
## lm(formula = want ~ married + age + Years_PrimaryPartner + MALE + 
##     satis24, data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -24.6527  -4.8991  -0.0493   4.8221  27.1469 
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                             22.295203   0.496783  44.879
## married                                 -0.303632   0.281403  -1.079
## age                                     -0.081556   0.009418  -8.660
## Years_PrimaryPartner                    -0.079820   0.011555  -6.908
## MALEMale                                 4.279200   0.227962  18.772
## satis24Occasionally or some of the time  4.563104   0.344129  13.260
## satis24Moderate amount of the time       6.720767   0.358328  18.756
## satis24Often or most of the time         9.401797   0.377770  24.888
## satis24Always                           12.547588   0.416989  30.091
##                                         Pr(>|t|)    
## (Intercept)                              < 2e-16 ***
## married                                    0.281    
## age                                      < 2e-16 ***
## Years_PrimaryPartner                    5.65e-12 ***
## MALEMale                                 < 2e-16 ***
## satis24Occasionally or some of the time  < 2e-16 ***
## satis24Moderate amount of the time       < 2e-16 ***
## satis24Often or most of the time         < 2e-16 ***
## satis24Always                            < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.157 on 4189 degrees of freedom
## Multiple R-squared:  0.3593, Adjusted R-squared:  0.358 
## F-statistic: 293.6 on 8 and 4189 DF,  p-value: < 2.2e-16
sex_data %>%
lm(totlike ~  married + age + Years_PrimaryPartner+ MALE + satis24, data = .) %>%
  summary()
## 
## Call:
## lm(formula = totlike ~ married + age + Years_PrimaryPartner + 
##     MALE + satis24, data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -30.6741  -5.2500   0.3337   4.6973  27.0233 
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                             23.07323    0.51168  45.093
## married                                 -0.08189    0.28984  -0.283
## age                                      0.02926    0.00970   3.017
## Years_PrimaryPartner                    -0.05145    0.01190  -4.323
## MALEMale                                 1.39433    0.23480   5.938
## satis24Occasionally or some of the time  8.31620    0.35445  23.463
## satis24Moderate amount of the time      12.47338    0.36907  33.797
## satis24Often or most of the time        16.54187    0.38910  42.514
## satis24Always                           21.54919    0.42949  50.174
##                                         Pr(>|t|)    
## (Intercept)                              < 2e-16 ***
## married                                  0.77754    
## age                                      0.00257 ** 
## Years_PrimaryPartner                    1.58e-05 ***
## MALEMale                                3.11e-09 ***
## satis24Occasionally or some of the time  < 2e-16 ***
## satis24Moderate amount of the time       < 2e-16 ***
## satis24Often or most of the time         < 2e-16 ***
## satis24Always                            < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.371 on 4189 degrees of freedom
## Multiple R-squared:  0.4614, Adjusted R-squared:  0.4604 
## F-statistic: 448.6 on 8 and 4189 DF,  p-value: < 2.2e-16
sex_data %>%
lm(freq_num ~  married + age + Years_PrimaryPartner+ MALE + satis24, data = .) %>%
  summary()
## 
## Call:
## lm(formula = freq_num ~ married + age + Years_PrimaryPartner + 
##     MALE + satis24, data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5189 -0.6600  0.1662  0.8565  3.3691 
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                              3.202430   0.085058  37.650
## married                                  0.063494   0.048181   1.318
## age                                     -0.020216   0.001612 -12.538
## Years_PrimaryPartner                    -0.010851   0.001978  -5.485
## MALEMale                                 0.169963   0.039031   4.355
## satis24Occasionally or some of the time  1.079696   0.058921  18.325
## satis24Moderate amount of the time       1.294192   0.061352  21.095
## satis24Often or most of the time         1.521265   0.064681  23.520
## satis24Always                            1.580606   0.071396  22.139
##                                         Pr(>|t|)    
## (Intercept)                              < 2e-16 ***
## married                                    0.188    
## age                                      < 2e-16 ***
## Years_PrimaryPartner                    4.38e-08 ***
## MALEMale                                1.37e-05 ***
## satis24Occasionally or some of the time  < 2e-16 ***
## satis24Moderate amount of the time       < 2e-16 ***
## satis24Often or most of the time         < 2e-16 ***
## satis24Always                            < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.225 on 4189 degrees of freedom
## Multiple R-squared:  0.2913, Adjusted R-squared:   0.29 
## F-statistic: 215.2 on 8 and 4189 DF,  p-value: < 2.2e-16

Regressions – Marriage X Age

sex_data %>%
lm(want ~  married*age + Years_PrimaryPartner+ MALE + satis24, data = .) %>%
  summary()
## 
## Call:
## lm(formula = want ~ married * age + Years_PrimaryPartner + MALE + 
##     satis24, data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.641  -4.868  -0.094   4.808  27.027 
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                             21.51736    0.60261  35.707
## married                                  1.15259    0.69838   1.650
## age                                     -0.06250    0.01259  -4.964
## Years_PrimaryPartner                    -0.06971    0.01237  -5.635
## MALEMale                                 4.30521    0.22813  18.871
## satis24Occasionally or some of the time  4.51568    0.34459  13.105
## satis24Moderate amount of the time       6.69339    0.35835  18.678
## satis24Often or most of the time         9.36772    0.37788  24.790
## satis24Always                           12.51743    0.41699  30.018
## married:age                             -0.03648    0.01602  -2.278
##                                         Pr(>|t|)    
## (Intercept)                              < 2e-16 ***
## married                                   0.0989 .  
## age                                     7.19e-07 ***
## Years_PrimaryPartner                    1.87e-08 ***
## MALEMale                                 < 2e-16 ***
## satis24Occasionally or some of the time  < 2e-16 ***
## satis24Moderate amount of the time       < 2e-16 ***
## satis24Often or most of the time         < 2e-16 ***
## satis24Always                            < 2e-16 ***
## married:age                               0.0228 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.153 on 4188 degrees of freedom
## Multiple R-squared:  0.3601, Adjusted R-squared:  0.3587 
## F-statistic: 261.8 on 9 and 4188 DF,  p-value: < 2.2e-16
sex_data %>%
lm(totlike ~  married * age + Years_PrimaryPartner+ MALE + satis24, data = .) %>%
  summary()
## 
## Call:
## lm(formula = totlike ~ married * age + Years_PrimaryPartner + 
##     MALE + satis24, data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -30.6911  -5.2832   0.3319   4.7047  27.0144 
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                             22.935661   0.621047  36.931
## married                                  0.175644   0.719751   0.244
## age                                      0.032634   0.012977   2.515
## Years_PrimaryPartner                    -0.049660   0.012750  -3.895
## MALEMale                                 1.398930   0.235115   5.950
## satis24Occasionally or some of the time  8.307811   0.355130  23.394
## satis24Moderate amount of the time      12.468540   0.369316  33.761
## satis24Often or most of the time        16.535846   0.389440  42.461
## satis24Always                           21.543861   0.429751  50.131
## married:age                             -0.006452   0.016505  -0.391
##                                         Pr(>|t|)    
## (Intercept)                              < 2e-16 ***
## married                                    0.807    
## age                                        0.012 *  
## Years_PrimaryPartner                    9.98e-05 ***
## MALEMale                                2.90e-09 ***
## satis24Occasionally or some of the time  < 2e-16 ***
## satis24Moderate amount of the time       < 2e-16 ***
## satis24Often or most of the time         < 2e-16 ***
## satis24Always                            < 2e-16 ***
## married:age                                0.696    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 7.372 on 4188 degrees of freedom
## Multiple R-squared:  0.4614, Adjusted R-squared:  0.4603 
## F-statistic: 398.7 on 9 and 4188 DF,  p-value: < 2.2e-16
sex_data %>%
lm(freq_num ~  married * age + Years_PrimaryPartner+ MALE + satis24, data = .) %>%
  summary()
## 
## Call:
## lm(formula = freq_num ~ married * age + Years_PrimaryPartner + 
##     MALE + satis24, data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4610 -0.6672  0.1614  0.8812  3.3421 
## 
## Coefficients:
##                                          Estimate Std. Error t value
## (Intercept)                              2.856548   0.102809  27.785
## married                                  0.711030   0.119148   5.968
## age                                     -0.011744   0.002148  -5.467
## Years_PrimaryPartner                    -0.006357   0.002111  -3.012
## MALEMale                                 0.181529   0.038921   4.664
## satis24Occasionally or some of the time  1.058609   0.058789  18.007
## satis24Moderate amount of the time       1.282020   0.061137  20.970
## satis24Often or most of the time         1.506113   0.064468  23.362
## satis24Always                            1.567197   0.071141  22.029
## married:age                             -0.016223   0.002732  -5.938
##                                         Pr(>|t|)    
## (Intercept)                              < 2e-16 ***
## married                                 2.61e-09 ***
## age                                     4.85e-08 ***
## Years_PrimaryPartner                     0.00261 ** 
## MALEMale                                3.20e-06 ***
## satis24Occasionally or some of the time  < 2e-16 ***
## satis24Moderate amount of the time       < 2e-16 ***
## satis24Often or most of the time         < 2e-16 ***
## satis24Always                            < 2e-16 ***
## married:age                             3.13e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.22 on 4188 degrees of freedom
## Multiple R-squared:  0.2972, Adjusted R-squared:  0.2957 
## F-statistic: 196.8 on 9 and 4188 DF,  p-value: < 2.2e-16