data(UCBAdmissions)
UCB <- UCBAdmissions # save typing ftable(UCB)
sum(UCB)
## [1] 4526
#total applicants for each dept
margin.table(UCB, 3)
## Dept
## A B C D E F
## 933 585 918 792 584 714
apply(UCBAdmissions, 3, sum)
## A B C D E F
## 933 585 918 792 584 714
#proportion admited for each dept
tab1 <- margin.table(UCB , c(1,3))
tab1
## Dept
## Admit A B C D E F
## Admitted 601 370 322 269 147 46
## Rejected 332 215 596 523 437 668
tab1[1,] / margin.table(UCB, 3)
## Dept
## A B C D E F
## 0.64415863 0.63247863 0.35076253 0.33964646 0.25171233 0.06442577
# or, using prop.table prop.table(margin.table(UCB, c(1, 3)),2)
#proportion in each cell admitted
admit <- UCB[1,,]
reject <- UCB[2,,]
admit / (admit+reject)
## Dept
## Gender A B C D E F
## Male 0.62060606 0.63035714 0.36923077 0.33093525 0.27748691 0.05898123
## Female 0.82407407 0.68000000 0.34064081 0.34933333 0.23918575 0.07038123
## Away
## Home 0 1 2 3 4 Sum
## 0 27 29 10 8 2 76
## 1 59 53 14 12 4 142
## 2 28 32 14 12 4 90
## 3 19 14 7 4 1 45
## 4 7 8 10 2 0 27
## Sum 140 136 55 38 11 380
## Home
## 0 1 2 3 4
## 0.20000000 0.37368421 0.23684211 0.11842105 0.07105263
## Away
## 0 1 2 3 4
## 0.36842105 0.35789474 0.14473684 0.10000000 0.02894737
## Loading required package: grid
##
## Observed and fitted values for poisson distribution
## with parameters estimated by `ML'
##
## count observed fitted pearson residual
## 0 76 85.91248 -1.0694349
## 1 142 127.73830 1.2618589
## 2 90 94.96334 -0.5093262
## 3 45 47.06516 -0.3010265
## 4 27 17.49462 0.5432891
##
## Observed and fitted values for poisson distribution
## with parameters estimated by `ML'
##
## count observed fitted pearson residual
## 0 140 131.238117 0.7648345
## 1 136 139.526840 -0.2985774
## 2 55 74.169531 -2.2258645
## 3 38 26.284641 2.2850967
## 4 11 6.986181 0.7488822
##
## Pearson's Chi-squared test
##
## data: tab
## X-squared = 34.868, df = 4, p-value = 4.945e-07
## [1] 1.486842
## [1] 1.063158
## Home Away
## Min. :0.000 Min. :0.000
## 1st Qu.:1.000 1st Qu.:0.000
## Median :1.000 Median :1.000
## Mean :1.487 Mean :1.063
## 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :4.000 Max. :4.000
Note that the echo = FALSE
parameter was added to the code chunk to prevent printing of the R code that generated the plot.