Package cần làm quen/sử dụng: BMA, visreg, GGally, table1, caret, relaimpo
Dữ liệu thực hành: obesity data.csv
Mục tiêu: đánh giá mối liên quan giữa pcfat với các biến gender, age, height, weight, bmi
ob = read.csv ("C:/Users/ADMIN/OneDrive/Statistical courses/Benh vien Cho Ray-Aug2019/Datasets/Obesity data.csv")
head(ob)
## id gender height weight bmi age bmc bmd fat lean pcfat
## 1 1 F 150 49 21.8 53 1312 0.88 17802 28600 37.3
## 2 2 M 165 52 19.1 65 1309 0.84 8381 40229 16.8
## 3 3 F 157 57 23.1 64 1230 0.84 19221 36057 34.0
## 4 4 F 156 53 21.8 56 1171 0.80 17472 33094 33.8
## 5 5 M 160 51 19.9 54 1681 0.98 7336 40621 14.8
## 6 6 F 153 47 20.1 52 1358 0.91 14904 30068 32.2
Chọn các biến liên quan cần phân tích, đặt tên data mới tên là dat
dat = ob[, c("gender", "age", "height", "weight", "bmi", "pcfat")]
head (dat)
## gender age height weight bmi pcfat
## 1 F 53 150 49 21.8 37.3
## 2 M 65 165 52 19.1 16.8
## 3 F 64 157 57 23.1 34.0
## 4 F 56 156 53 21.8 33.8
## 5 M 54 160 51 19.9 14.8
## 6 F 52 153 47 20.1 32.2
library(table1)
## Warning: package 'table1' was built under R version 3.6.1
##
## Attaching package: 'table1'
## The following objects are masked from 'package:base':
##
## units, units<-
#Mô tả dữ liệu theo gender
table1(~age + height + weight + bmi + pcfat | gender, data=ob)
| F (n=862) |
M (n=355) |
Overall (n=1217) |
|
|---|---|---|---|
| age | |||
| Mean (SD) | 48.6 (16.4) | 43.7 (18.8) | 47.2 (17.3) |
| Median [Min, Max] | 49.0 [14.0, 85.0] | 44.0 [13.0, 88.0] | 48.0 [13.0, 88.0] |
| height | |||
| Mean (SD) | 153 (5.55) | 165 (6.73) | 157 (7.98) |
| Median [Min, Max] | 153 [136, 170] | 165 [146, 185] | 155 [136, 185] |
| weight | |||
| Mean (SD) | 52.3 (7.72) | 62.0 (9.59) | 55.1 (9.40) |
| Median [Min, Max] | 51.0 [34.0, 95.0] | 62.0 [38.0, 95.0] | 54.0 [34.0, 95.0] |
| bmi | |||
| Mean (SD) | 22.3 (3.05) | 22.7 (3.04) | 22.4 (3.06) |
| Median [Min, Max] | 22.1 [15.2, 37.1] | 22.5 [14.5, 34.7] | 22.2 [14.5, 37.1] |
| pcfat | |||
| Mean (SD) | 34.7 (5.19) | 24.2 (5.76) | 31.6 (7.18) |
| Median [Min, Max] | 34.7 [14.6, 48.4] | 24.6 [9.20, 39.0] | 32.4 [9.20, 48.4] |
library(GGally)
## Warning: package 'GGally' was built under R version 3.6.1
## Loading required package: ggplot2
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
ggpairs(dat, mapping = aes(color = gender))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
m = lm(pcfat ~ gender, data=ob)
summary(m)
##
## Call:
## lm(formula = pcfat ~ gender, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.0724 -3.2724 0.1484 3.6276 14.8439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.6724 0.1826 189.9 <2e-16 ***
## genderM -10.5163 0.3381 -31.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.362 on 1215 degrees of freedom
## Multiple R-squared: 0.4432, Adjusted R-squared: 0.4428
## F-statistic: 967.3 on 1 and 1215 DF, p-value: < 2.2e-16
Hoặc một cách khác để có kết quả nhanh hơn.
summary (lm(pcfat ~ gender, data=ob))
##
## Call:
## lm(formula = pcfat ~ gender, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.0724 -3.2724 0.1484 3.6276 14.8439
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.6724 0.1826 189.9 <2e-16 ***
## genderM -10.5163 0.3381 -31.1 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.362 on 1215 degrees of freedom
## Multiple R-squared: 0.4432, Adjusted R-squared: 0.4428
## F-statistic: 967.3 on 1 and 1215 DF, p-value: < 2.2e-16
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 3.6.1
autoplot(m)
#Chú ý biểu đồ khi xuất bản lên RMarkdown không giống như biểu đồ gốc
pcfat theo genderlibrary(visreg)
## Warning: package 'visreg' was built under R version 3.6.1
visreg(m)
m0 = lm(pcfat ~ gender + bmi, data= ob)
summary(m0)
##
## Call:
## lm(formula = pcfat ~ gender + bmi, data = ob)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.4709 -2.4780 0.1773 2.6903 15.1761
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.01035 0.85880 10.49 <2e-16 ***
## genderM -11.06631 0.25599 -43.23 <2e-16 ***
## bmi 1.15303 0.03809 30.27 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.049 on 1214 degrees of freedom
## Multiple R-squared: 0.6828, Adjusted R-squared: 0.6822
## F-statistic: 1306 on 2 and 1214 DF, p-value: < 2.2e-16
visreg(m0)
bmi#Hồi quy bậc nhất
m1 = lm(pcfat ~ bmi, data=ob)
m1
##
## Call:
## lm(formula = pcfat ~ bmi, data = ob)
##
## Coefficients:
## (Intercept) bmi
## 8.399 1.036
#Hồi quy bậc hai
m2 = lm(pcfat ~ bmi + I(bmi^2), data=ob)
m2
##
## Call:
## lm(formula = pcfat ~ bmi + I(bmi^2), data = ob)
##
## Coefficients:
## (Intercept) bmi I(bmi^2)
## -16.31919 3.20632 -0.04675
#Hồi quy bậc 3
m3 = lm(pcfat ~ bmi + I(bmi^2) + I(bmi^3), data=ob)
m3
##
## Call:
## lm(formula = pcfat ~ bmi + I(bmi^2) + I(bmi^3), data = ob)
##
## Coefficients:
## (Intercept) bmi I(bmi^2) I(bmi^3)
## -68.046558 9.799399 -0.320765 0.003711
anova(m1, m2, m3)
## Analysis of Variance Table
##
## Model 1: pcfat ~ bmi
## Model 2: pcfat ~ bmi + I(bmi^2)
## Model 3: pcfat ~ bmi + I(bmi^2) + I(bmi^3)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 1215 50541
## 2 1214 49921 1 620.14 15.1175 0.0001065 ***
## 3 1213 49758 1 162.30 3.9565 0.0469163 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(1,3))
visreg(m1)
visreg(m2)
visreg(m3)
library(BMA)
## Warning: package 'BMA' was built under R version 3.6.1
## Loading required package: survival
## Loading required package: leaps
## Warning: package 'leaps' was built under R version 3.6.1
## Loading required package: robustbase
## Warning: package 'robustbase' was built under R version 3.6.1
##
## Attaching package: 'robustbase'
## The following object is masked from 'package:survival':
##
## heart
## Loading required package: inline
## Warning: package 'inline' was built under R version 3.6.1
## Loading required package: rrcov
## Warning: package 'rrcov' was built under R version 3.6.1
## Scalable Robust Estimators with High Breakdown Point (version 1.4-7)
# Định nghĩa bến y và x.
y = ob$pcfat
x = ob[, c("gender", "age", "height", "weight", "bmi")]
# Tìm biến liên quan
bma = bicreg(x, y, strict=FALSE, OR=20)
summary(bma)
##
## Call:
## bicreg(x = x, y = y, strict = FALSE, OR = 20)
##
##
## 3 models were selected
## Best 3 models (cumulative posterior probability = 1 ):
##
## p!=0 EV SD model 1 model 2 model 3
## Intercept 100.0 5.26146 4.582901 7.958e+00 -7.928e-01 8.137e+00
## genderM 100.0 -11.25139 0.429659 -1.144e+01 -1.143e+01 -1.081e+01
## age 100.0 0.05259 0.008048 5.497e-02 5.473e-02 4.715e-02
## height 31.4 0.01759 0.028494 . 5.598e-02 .
## weight 39.2 0.03102 0.042611 7.921e-02 . .
## bmi 100.0 1.01265 0.111625 8.942e-01 1.089e+00 1.089e+00
##
## nVar 4 4 3
## r2 0.697 0.696 0.695
## BIC -1.423e+03 -1.423e+03 -1.422e+03
## post prob 0.392 0.314 0.294
pcfatimageplot.bma(bma)
library(caret)
## Warning: package 'caret' was built under R version 3.6.1
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:survival':
##
## cluster
sample = createDataPartition(ob$pcfat, p=0.6, list=F)
dev = ob[sample, ]
val = ob[-sample, ]
Kiểm tra bộ dữ liệu dev và val
dim (dev) ; dim (val)
## [1] 731 11
## [1] 486 11
#dev có 731 hàng 11 biến số, val có 486 hàng và 11 biến số
control = trainControl (method="cv", number=10)
training = train (pcfat ~ gender + age + bmi + I(bmi^2), data= dev, method= "lm", trControl= control, metric="Rsquared")
summary(training)
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.6820 -2.4532 0.1328 2.6358 15.4526
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.078385 5.324512 -3.959 8.28e-05 ***
## genderM -10.765872 0.335250 -32.113 < 2e-16 ***
## age 0.040269 0.009021 4.464 9.33e-06 ***
## bmi 3.630391 0.458246 7.922 8.76e-15 ***
## `I(bmi^2)` -0.053656 0.009685 -5.540 4.23e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.015 on 726 degrees of freedom
## Multiple R-squared: 0.6903, Adjusted R-squared: 0.6885
## F-statistic: 404.5 on 4 and 726 DF, p-value: < 2.2e-16
library(relaimpo)
## Loading required package: MASS
## Loading required package: boot
##
## Attaching package: 'boot'
## The following object is masked from 'package:lattice':
##
## melanoma
## The following object is masked from 'package:robustbase':
##
## salinity
## The following object is masked from 'package:survival':
##
## aml
## Loading required package: survey
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
## Loading required package: mitools
## This is the global version of package relaimpo.
## If you are a non-US user, a version with the interesting additional metric pmvd is available
## from Ulrike Groempings web site at prof.beuth-hochschule.de/groemping.
m = lm(pcfat ~ gender + age + bmi + I(bmi^2), data=ob)
calc.relimp(m, type="lmg", rela=T, rank=T)
## Response variable: pcfat
## Total response variance: 51.5935
## Analysis based on 1217 observations
##
## 4 Regressors:
## gender age bmi I(bmi^2)
## Proportion of variance explained by model: 70.65%
## Metrics are normalized to sum to 100% (rela=TRUE).
##
## Relative importance metrics:
##
## lmg
## gender 0.64634359
## age 0.06186434
## bmi 0.15442688
## I(bmi^2) 0.13736518
##
## Average coefficients for different model sizes:
##
## 1X 2Xs 3Xs 4Xs
## gender -10.51634414 -10.717838213 -10.88911021 -10.86319562
## age 0.12768705 0.092389959 0.06189251 0.04405818
## bmi 1.03619023 1.759526891 2.52740016 3.47197075
## I(bmi^2) 0.02152954 -0.001260437 -0.02421181 -0.05122595
# Tính giá trị tiên lượng
pred = predict(training, newdata=val)
plot(pred ~ val$pcfat, pch=16)
validation = data.frame(obs=val$pcfat, pred)
head (validation)
## obs pred
## 3 34.0 36.72967
## 8 28.0 25.62818
## 9 21.1 21.45873
## 14 24.1 26.41889
## 15 33.0 37.78287
## 17 40.7 35.04582
defaultSummary(validation)
## RMSE Rsquared MAE
## 3.7239987 0.7300235 2.9855669