rm(list = ls())
setwd("~/Downloads")
library(foreign)
sex_data <- read.spss("sex_data.sav", use.value.label=TRUE, to.data.frame=TRUE)
Libraries/themes
library(ggplot2)
library(tidyverse)
library(gridExtra)
library(finalfit)
library(kableExtra)
library(xtable)
jrothsch_theme <- theme_bw() +
theme(text = element_text(size = 10, face = "bold", color = "deepskyblue4"),panel.grid = element_blank(),axis.text = element_text(size = 10, color = "gray13"), axis.title = element_text(size = 10, color = "red"), legend.text = element_text(colour="Black", size=10), legend.title = element_text(colour="Black", size=7), plot.subtitle = element_text(size=14, face="italic", color="black"))
Removing obserations without our key variables
sex_data <- sex_data[!is.na(sex_data$status),]
sex_data <- sex_data[!is.na(sex_data$age),]
sex_data <- sex_data[!is.na(sex_data$Years_PrimaryPartner),]
sex_data <- sex_data[!is.na(sex_data$MALE),]
Making variables
sex_data <- sex_data %>%
mutate(married = status == "Married")
sex_data <- sex_data %>%
mutate(married_gender = ifelse(married,
ifelse(MALE == "Male", "Married Male", "Married Female"),
ifelse(MALE == "Male", "Unmarried Male", "Unmarried Female ")))
married_num = length(sex_data$married[sex_data$married == T])
unmarried_num = length(sex_data$married[sex_data$married == T])
sex_data <- sex_data %>% mutate(freq_num = as.numeric(ifelse(sexfreq == "At least once per day", 6,
ifelse(sexfreq == "3-4 times per week", 5,
ifelse(sexfreq == 'At least once a week', 4,
ifelse(sexfreq == 'At least once per month', 3,
ifelse(sexfreq =='At least once per year', 2,
ifelse( sexfreq =="Less than once a year", 1, 0))))))))
female <- sex_data %>%
filter(sex_data$MALE == "Female")
Binary graphs
bin_graphs_want <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$want) & !is.na(mod),]
mod = mod[!is.na(df$want) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = want, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Want", " -- Age"), x = "Age", y = "Want", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(want))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "Black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Want", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_like <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$totlike) & !is.na(mod),]
mod = mod[!is.na(df$totlike) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = totlike, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Like", " -- Age"), x = "Age", y = "Like", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(totlike))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Like", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_freq <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$freq_num) & !is.na(mod),]
mod = mod[!is.na(df$freq_num) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = freq_num, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Frequency", " -- Age"), x = "Age", y = "Frequency", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by(mod_married) %>%
summarize(DV = mean(freq_num))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Frequency", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
Small continuous graphs
contsmall <- function(df, mod, modname, modlabs){
df2 = df[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod) ,]
mod = mod[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod)]
want <- ggplot(df2, aes(x=mod, y= want)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs(title = paste0("Interaction between marriage and ", modname ), x = modname, y = "Want")
like <- ggplot(df2, aes(x=mod, y = totlike)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Like")
freq <- ggplot(df2, aes(x=mod, y= freq_num)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Frequency")
grid.arrange(want, like, freq)
}
Regressions – Standard
###################################################################################################################################
#REgressions
#########################################################################################################################
reg_no_mod <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
###########################################################################################################################
reg_no_mod_i <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_no_mod_control <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Duration", "MALE")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname)
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Subsets where controls can’t be used – e.g. one gender subsets
reg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration" )
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
reg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Looking at modertators interaction with marriage
ireg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
#For subsets wheere we can't use all controls
#############################################################################################################################################################################################################################################################
ireg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
ireg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Monotony – Negative Effect, No Clear Interaction With Marriege
Graphs
sex_data$MonoNum = as.numeric(sex_data$satis5)
contsmall(sex_data, sex_data$MonoNum, "Monotony", "")

Want - Only Monotony
reg_just_mod_i(sex_data$want, sex_data, sex_data$MonoNum, "Monotony")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.5259136
|
0.3511769
|
84.077
|
0
|
|
Married: True
|
-4.9183274
|
0.2844883
|
-17.288
|
0
|
|
Monotony
|
-0.2051366
|
0.0927987
|
-2.211
|
0.0271
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$MonoNum, "Monotony")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.5128795
|
0.4728986
|
75.096
|
0
|
|
Married: True
|
-2.3731787
|
0.2860717
|
-8.296
|
0
|
|
Monotony
|
-0.5559344
|
0.0873297
|
-6.366
|
0
|
|
Age (years)
|
-0.1857905
|
0.0081737
|
-22.73
|
0
|
|
Duration
|
-0.0148084
|
0.0049804
|
-2.973
|
0.003
|
|
Male
|
4.4861607
|
0.2468294
|
18.175
|
0
|
Like - Only Monotony
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$MonoNum, "Monotony")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
42.784049
|
0.3820126
|
111.996
|
0
|
|
Married: True
|
-4.227152
|
0.3098335
|
-13.643
|
0
|
|
Monotony
|
-1.535484
|
0.1011579
|
-15.179
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$MonoNum, "Monotony")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
46.9634370
|
0.5466499
|
85.911
|
0
|
|
Married: True
|
-2.6328889
|
0.3306209
|
-7.963
|
0
|
|
Monotony
|
-1.7679711
|
0.1010195
|
-17.501
|
0
|
|
Age (years)
|
-0.1154494
|
0.0094498
|
-12.217
|
0
|
|
Duration
|
-0.0074340
|
0.0057137
|
-1.301
|
0.1933
|
|
Male
|
1.8702236
|
0.2852568
|
6.556
|
0
|
Frequency - Only Monotony
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$MonoNum, "Monotony")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7307217
|
0.0597737
|
62.414
|
0
|
|
Married: True
|
-0.6360546
|
0.0485138
|
-13.111
|
0
|
|
Monotony
|
-0.0197453
|
0.0157821
|
-1.251
|
0.211
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$MonoNum, "Monotony")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.1952864
|
0.0820679
|
63.305
|
0
|
|
Married: True
|
-0.1445071
|
0.0489517
|
-2.952
|
0.0032
|
|
Monotony
|
-0.0971658
|
0.0148454
|
-6.545
|
0
|
|
Age (years)
|
-0.0345372
|
0.0014561
|
-23.719
|
0
|
|
Duration
|
-0.0027521
|
0.0010713
|
-2.569
|
0.0102
|
|
Male
|
0.2256946
|
0.0415652
|
5.43
|
0
|
Fantasy Of Other Partner – Strong Negative Effect, No Clear Interaction With Marriege
Graphs
sex_data$OtherNum = as.numeric(sex_data$satis14)
contsmall(sex_data, sex_data$OtherNum, "Fantasize About Other Sex Partner", "")

Want - Only Monotony
reg_just_mod_i(sex_data$want, sex_data, sex_data$OtherNum, "Fantasy Other Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
30.2063690
|
0.3359159
|
89.922
|
0
|
|
Married: True
|
-4.9715910
|
0.2852515
|
-17.429
|
0
|
|
Fantasy Other Partner
|
-0.7041937
|
0.1449588
|
-4.858
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$OtherNum, "Fantasy Other Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.7117038
|
0.4340663
|
82.272
|
0
|
|
Married: True
|
-2.5159268
|
0.2866776
|
-8.776
|
0
|
|
Fantasy Other Partner
|
-1.2303163
|
0.1353922
|
-9.087
|
0
|
|
Age (years)
|
-0.1810275
|
0.0080917
|
-22.372
|
0
|
|
Duration
|
-0.0136193
|
0.0049551
|
-2.749
|
0.006
|
|
Male
|
4.8201704
|
0.2499502
|
19.285
|
0
|
Like - Only Monotony
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$OtherNum, "Fantasy Other Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
43.273313
|
0.3602976
|
120.104
|
0
|
|
Married: True
|
-4.242085
|
0.3059558
|
-13.865
|
0
|
|
Fantasy Other Partner
|
-2.913021
|
0.1554803
|
-18.736
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$OtherNum, "Fantasy Other Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
46.4198309
|
0.4944105
|
93.889
|
0
|
|
Married: True
|
-2.8816458
|
0.3265317
|
-8.825
|
0
|
|
Fantasy Other Partner
|
-3.2163329
|
0.1542145
|
-20.856
|
0
|
|
Age (years)
|
-0.1039780
|
0.0092167
|
-11.282
|
0
|
|
Duration
|
-0.0051358
|
0.0056440
|
-0.91
|
0.3629
|
|
Male
|
2.7726414
|
0.2846984
|
9.739
|
0
|
Frequency - Only Monotony
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$OtherNum, "Fantasy Other Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7295288
|
0.0573182
|
65.067
|
0
|
|
Married: True
|
-0.6361004
|
0.0485324
|
-13.107
|
0
|
|
Fantasy Other Partner
|
-0.0219594
|
0.0248557
|
-0.883
|
0.377
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$OtherNum, "Fantasy Other Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.9729976
|
0.0756913
|
65.701
|
0
|
|
Married: True
|
-0.1628016
|
0.0493060
|
-3.302
|
0.001
|
|
Fantasy Other Partner
|
-0.0748040
|
0.0233300
|
-3.206
|
0.0014
|
|
Age (years)
|
-0.0324980
|
0.0014478
|
-22.447
|
0
|
|
Duration
|
-0.0028291
|
0.0010725
|
-2.638
|
0.0084
|
|
Male
|
0.2498086
|
0.0422698
|
5.91
|
0
|
Hurried Sex - Strongly Harms Like, Doesn’t Change Marriage Much
Graphs
sex_data$HurryNum = as.numeric(sex_data$satis16)
contsmall(sex_data, sex_data$HurryNum, "Sex Completed Too Hurriedly", "")

Want - Only Hurry
reg_just_mod_i(sex_data$want, sex_data, sex_data$HurryNum, "Too Quick")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
30.275498
|
0.3397738
|
89.105
|
0
|
|
Married: True
|
-4.821224
|
0.2852910
|
-16.899
|
0
|
|
Too Quick
|
-0.570011
|
0.1132467
|
-5.033
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$HurryNum, "Too Quick")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.9840531
|
0.4513280
|
79.729
|
0
|
|
Married: True
|
-2.1978202
|
0.2878586
|
-7.635
|
0
|
|
Too Quick
|
-0.9559470
|
0.1055536
|
-9.057
|
0
|
|
Age (years)
|
-0.1844556
|
0.0081382
|
-22.665
|
0
|
|
Duration
|
-0.0137789
|
0.0049548
|
-2.781
|
0.0054
|
|
Male
|
4.6001122
|
0.2475807
|
18.58
|
0
|
Like - Only Hurry
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$HurryNum, "Too Quick")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
44.248025
|
0.3591588
|
123.199
|
0
|
|
Married: True
|
-3.574343
|
0.3015677
|
-11.853
|
0
|
|
Too Quick
|
-2.680510
|
0.1197077
|
-22.392
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$HurryNum, "Too Quick")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
48.1806020
|
0.5054212
|
95.328
|
0
|
|
Married: True
|
-1.9419931
|
0.3223594
|
-6.024
|
0
|
|
Too Quick
|
-2.9202466
|
0.1182045
|
-24.705
|
0
|
|
Age (years)
|
-0.1176091
|
0.0091136
|
-12.905
|
0
|
|
Duration
|
-0.0048224
|
0.0055486
|
-0.869
|
0.3848
|
|
Male
|
2.2470082
|
0.2772541
|
8.105
|
0
|
Frequency - Only Hurry
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$HurryNum, "Too Quick")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7815070
|
0.0576402
|
65.605
|
0
|
|
Married: True
|
-0.6274247
|
0.0485768
|
-12.916
|
0
|
|
Too Quick
|
-0.0413275
|
0.0191751
|
-2.155
|
0.0312
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$HurryNum, "Too Quick")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.1187966
|
0.0784816
|
65.223
|
0
|
|
Married: True
|
-0.1291410
|
0.0494262
|
-2.613
|
0.009
|
|
Too Quick
|
-0.1092619
|
0.0179364
|
-6.092
|
0
|
|
Age (years)
|
-0.0333392
|
0.0014525
|
-22.953
|
0
|
|
Duration
|
-0.0026991
|
0.0010694
|
-2.524
|
0.0116
|
|
Male
|
0.2424752
|
0.0417810
|
5.803
|
0
|
Distracted during - Strong Negative Effect, Doesn’t Change Marriage Much
Graphs
sex_data$DistractNum = as.numeric(sex_data$satis18)
contsmall(sex_data, sex_data$DistractNum, "Gets Distracted", "")

Want - Only Distracted
reg_just_mod_i(sex_data$want, sex_data, sex_data$DistractNum, "Gets Distracted")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
32.172881
|
0.3311453
|
97.156
|
0
|
|
Married: True
|
-5.055033
|
0.2805466
|
-18.019
|
0
|
|
Gets Distracted
|
-1.545575
|
0.1158295
|
-13.344
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$DistractNum, "Gets Distracted")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.0551853
|
0.4521564
|
84.164
|
0
|
|
Married: True
|
-2.3906136
|
0.2812337
|
-8.5
|
0
|
|
Gets Distracted
|
-1.7687953
|
0.1086924
|
-16.273
|
0
|
|
Age (years)
|
-0.1922949
|
0.0079836
|
-24.086
|
0
|
|
Duration
|
-0.0128899
|
0.0048612
|
-2.652
|
0.008
|
|
Male
|
4.0684648
|
0.2439992
|
16.674
|
0
|
Like - Only Distracted
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$DistractNum, "Gets Distracted")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
44.716559
|
0.3515265
|
127.207
|
0
|
|
Married: True
|
-4.258508
|
0.2978136
|
-14.299
|
0
|
|
Gets Distracted
|
-3.072837
|
0.1229585
|
-24.991
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$DistractNum, "Gets Distracted")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
49.2125749
|
0.5106058
|
96.381
|
0
|
|
Married: True
|
-2.5933206
|
0.3175883
|
-8.166
|
0
|
|
Gets Distracted
|
-3.2994353
|
0.1227429
|
-26.881
|
0
|
|
Age (years)
|
-0.1196268
|
0.0090157
|
-13.269
|
0
|
|
Duration
|
-0.0051364
|
0.0054896
|
-0.936
|
0.3495
|
|
Male
|
1.1212549
|
0.2755405
|
4.069
|
0
|
Frequency - Only Distracted
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$DistractNum, "Gets Distracted")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7240482
|
0.0572071
|
65.098
|
0
|
|
Married: True
|
-0.6355050
|
0.0485176
|
-13.098
|
0
|
|
Gets Distracted
|
-0.0149976
|
0.0200057
|
-0.75
|
0.4535
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$DistractNum, "Gets Distracted")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.0677481
|
0.0803318
|
63.085
|
0
|
|
Married: True
|
-0.1550681
|
0.0492552
|
-3.148
|
0.0017
|
|
Gets Distracted
|
-0.0877909
|
0.0189700
|
-4.628
|
0
|
|
Age (years)
|
-0.0330110
|
0.0014538
|
-22.707
|
0
|
|
Duration
|
-0.0027907
|
0.0010711
|
-2.605
|
0.0092
|
|
Male
|
0.2069520
|
0.0421376
|
4.911
|
0
|
Tries New Things – Massive Effect, Decimates Marriage Effect
Graphs
sex_data$NewNum = as.numeric(sex_data$satis24)
contsmall(sex_data, sex_data$NewNum, "Tries New Things", "")

Want - Only New
reg_just_mod_i(sex_data$want, sex_data, sex_data$NewNum, "New")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.277493
|
0.3635358
|
47.526
|
0
|
|
Married: True
|
-2.457230
|
0.2549766
|
-9.637
|
0
|
|
New
|
3.485618
|
0.0883668
|
39.445
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$NewNum, "New")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
20.9415194
|
0.4754371
|
44.047
|
0
|
|
Married: True
|
-1.0224475
|
0.2577227
|
-3.967
|
1e-04
|
|
New
|
3.1395434
|
0.0857641
|
36.607
|
0
|
|
Age (years)
|
-0.1153445
|
0.0073363
|
-15.722
|
0
|
|
Duration
|
-0.0158141
|
0.0044020
|
-3.592
|
3e-04
|
|
Male
|
4.1302188
|
0.2200485
|
18.77
|
0
|
Like - Only New
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$NewNum, "New")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
21.4035724
|
0.3518714
|
60.828
|
0
|
|
Married: True
|
-0.4013391
|
0.2467954
|
-1.626
|
0.104
|
|
New
|
5.0655671
|
0.0855314
|
59.225
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$NewNum, "New")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
20.4167057
|
0.4852004
|
42.079
|
0
|
|
Married: True
|
-0.3920576
|
0.2630151
|
-1.491
|
0.1361
|
|
New
|
5.0809793
|
0.0875253
|
58.052
|
0
|
|
Age (years)
|
0.0094618
|
0.0074870
|
1.264
|
0.2064
|
|
Duration
|
-0.0104979
|
0.0044924
|
-2.337
|
0.0195
|
|
Male
|
1.3246685
|
0.2245672
|
5.899
|
0
|
Frequency - Only New
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$NewNum, "New")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.2343526
|
0.0652348
|
34.251
|
0
|
|
Married: True
|
-0.3344510
|
0.0461251
|
-7.251
|
0
|
|
New
|
0.4410455
|
0.0160447
|
27.489
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$NewNum, "New")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.4179222
|
0.0860175
|
39.735
|
0
|
|
Married: True
|
0.0062303
|
0.0470354
|
0.132
|
0.8946
|
|
New
|
0.3676306
|
0.0155445
|
23.65
|
0
|
|
Age (years)
|
-0.0261641
|
0.0013851
|
-18.889
|
0
|
|
Duration
|
-0.0025752
|
0.0010116
|
-2.546
|
0.0109
|
|
Male
|
0.1880966
|
0.0395304
|
4.758
|
0
|
Interesting/Mysterious Partner – Accounts For Part Of Marriage Effect
Graphs
sex_data$MystNum = as.numeric(sex_data$satis25)
contsmall(sex_data, sex_data$MystNum, "Partner Mysterious and Interesting", "")

Want - Only Partner Interesting
reg_just_mod_i(sex_data$want, sex_data, sex_data$MystNum, "Interesting")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
21.435459
|
0.3580187
|
59.872
|
0
|
|
Married: True
|
-3.327966
|
0.2716355
|
-12.252
|
0
|
|
Interesting
|
2.647642
|
0.0974496
|
27.169
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$MystNum, "Interesting")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
26.2125777
|
0.4601101
|
56.97
|
0
|
|
Married: True
|
-1.4323576
|
0.2750976
|
-5.207
|
0
|
|
Interesting
|
2.2809680
|
0.0928068
|
24.578
|
0
|
|
Age (years)
|
-0.1456037
|
0.0077300
|
-18.836
|
0
|
|
Duration
|
-0.0164465
|
0.0046997
|
-3.499
|
5e-04
|
|
Male
|
3.9779383
|
0.2356056
|
16.884
|
0
|
Like - Only Partner Interesting
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$MystNum, "Interesting")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.254788
|
0.3908048
|
74.858
|
0
|
|
Married: True
|
-2.040204
|
0.2965110
|
-6.881
|
0
|
|
Interesting
|
3.219601
|
0.1063737
|
30.267
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$MystNum, "Interesting")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
30.8720969
|
0.5316977
|
58.063
|
0
|
|
Married: True
|
-1.3186588
|
0.3178995
|
-4.148
|
0
|
|
Interesting
|
3.0974577
|
0.1072464
|
28.882
|
0
|
|
Age (years)
|
-0.0468673
|
0.0089327
|
-5.247
|
0
|
|
Duration
|
-0.0112585
|
0.0054310
|
-2.073
|
0.0382
|
|
Male
|
1.2109024
|
0.2722630
|
4.448
|
0
|
Frequency - Only Partner Interesting
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$MystNum, "Interesting")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.9456605
|
0.0633786
|
46.477
|
0
|
|
Married: True
|
-0.4839334
|
0.0482961
|
-10.02
|
0
|
|
Interesting
|
0.2655542
|
0.0174524
|
15.216
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$MystNum, "Interesting")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.1953493
|
0.0820903
|
51.106
|
0
|
|
Married: True
|
-0.0717980
|
0.0489997
|
-1.465
|
0.1429
|
|
Interesting
|
0.2088167
|
0.0165309
|
12.632
|
0
|
|
Age (years)
|
-0.0299742
|
0.0014304
|
-20.954
|
0
|
|
Duration
|
-0.0026900
|
0.0010549
|
-2.55
|
0.0108
|
|
Male
|
0.1867203
|
0.0413268
|
4.518
|
0
|
Interesting/Mysterious Partner – Accounts For Part Of Marriage Effect
Graphs
sex_data$DiscNewNum = as.numeric(sex_data$satis26)
contsmall(sex_data, sex_data$DiscNewNum, "Discovers New Things About Partner", "")

Want - Only Discovering
reg_just_mod_i(sex_data$want, sex_data, sex_data$DiscNewNum, "Discovering")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
19.015735
|
0.3619703
|
52.534
|
0
|
|
Married: True
|
-2.747458
|
0.2626967
|
-10.459
|
0
|
|
Discovering
|
3.137622
|
0.0912593
|
34.381
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$DiscNewNum, "Discovering")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
23.3240442
|
0.4646886
|
50.193
|
0
|
|
Married: True
|
-1.0989919
|
0.2652105
|
-4.144
|
0
|
|
Discovering
|
2.7911754
|
0.0873766
|
31.944
|
0
|
|
Age (years)
|
-0.1337139
|
0.0074652
|
-17.912
|
0
|
|
Duration
|
-0.0133074
|
0.0045246
|
-2.941
|
0.0033
|
|
Male
|
4.0860144
|
0.2262791
|
18.057
|
0
|
Like - Only Discovering
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$DiscNewNum, "Discovering")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
25.108310
|
0.3779806
|
66.428
|
0
|
|
Married: True
|
-1.075977
|
0.2743160
|
-3.922
|
1e-04
|
|
Discovering
|
4.191605
|
0.0952958
|
43.985
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$DiscNewNum, "Discovering")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
25.7549054
|
0.5139211
|
50.115
|
0
|
|
Married: True
|
-0.7097562
|
0.2933089
|
-2.42
|
0.0156
|
|
Discovering
|
4.1146860
|
0.0966340
|
42.58
|
0
|
|
Age (years)
|
-0.0260560
|
0.0082561
|
-3.156
|
0.0016
|
|
Duration
|
-0.0067482
|
0.0050040
|
-1.349
|
0.1775
|
|
Male
|
1.3110139
|
0.2502528
|
5.239
|
0
|
Frequency - Only Discovering
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$DiscNewNum, "Discovering")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.7055783
|
0.0657384
|
41.157
|
0
|
|
Married: True
|
-0.4229947
|
0.0480013
|
-8.812
|
0
|
|
Discovering
|
0.3144845
|
0.0167285
|
18.799
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$DiscNewNum, "Discovering")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.9637027
|
0.0849400
|
46.665
|
0
|
|
Married: True
|
-0.0420060
|
0.0486551
|
-0.863
|
0.388
|
|
Discovering
|
0.2488899
|
0.0159668
|
15.588
|
0
|
|
Age (years)
|
-0.0291566
|
0.0014203
|
-20.528
|
0
|
|
Duration
|
-0.0022667
|
0.0010459
|
-2.167
|
0.0303
|
|
Male
|
0.1941551
|
0.0408757
|
4.75
|
0
|
Intellectually Stimulating – Strongly Reduces Marriage Effect
Graphs
sex_data$IntNum = as.numeric(sex_data$intellectualstim)
contsmall(sex_data, sex_data$IntNum, "Intellectually Stimulating Partner", "")

Want - Only Intellectually stimulating
reg_just_mod_i(sex_data$want, sex_data, sex_data$IntNum, "Intellectually Stimulating")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
16.194569
|
0.4892062
|
33.104
|
0
|
|
Married: True
|
-4.686088
|
0.2627498
|
-17.835
|
0
|
|
Intellectually Stimulating
|
2.294247
|
0.0778895
|
29.455
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$IntNum, "Intellectually Stimulating")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
20.9372811
|
0.5386318
|
38.871
|
0
|
|
Married: True
|
-2.4122527
|
0.2648919
|
-9.107
|
0
|
|
Intellectually Stimulating
|
2.1794216
|
0.0721333
|
30.214
|
0
|
|
Age (years)
|
-0.1600354
|
0.0074552
|
-21.466
|
0
|
|
Duration
|
-0.0158778
|
0.0045697
|
-3.475
|
5e-04
|
|
Male
|
4.3161638
|
0.2285628
|
18.884
|
0
|
Like - Only Intellectually Stimuating
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$IntNum, "Intellectually Stimulating")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.513912
|
0.4800842
|
36.481
|
0
|
|
Married: True
|
-3.605761
|
0.2578504
|
-13.984
|
0
|
|
Intellectually Stimulating
|
3.745942
|
0.0764371
|
49.007
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$IntNum, "Intellectually Stimulating")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
19.4060631
|
0.5650010
|
34.347
|
0
|
|
Married: True
|
-2.6414464
|
0.2778599
|
-9.506
|
0
|
|
Intellectually Stimulating
|
3.6999956
|
0.0756647
|
48.9
|
0
|
|
Age (years)
|
-0.0622205
|
0.0078201
|
-7.956
|
0
|
|
Duration
|
-0.0104218
|
0.0047934
|
-2.174
|
0.0297
|
|
Male
|
1.6438567
|
0.2397523
|
6.856
|
0
|
Frequency - Only Intellectually Stimulating
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$IntNum, "Intellectually Stimulating")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.4224503
|
0.0863825
|
28.043
|
0
|
|
Married: True
|
-0.6075684
|
0.0470778
|
-12.906
|
0
|
|
Intellectually Stimulating
|
0.2277971
|
0.0137416
|
16.577
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$IntNum, "Intellectually Stimulating")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.6439135
|
0.0968524
|
37.623
|
0
|
|
Married: True
|
-0.1499368
|
0.0479399
|
-3.128
|
0.0018
|
|
Intellectually Stimulating
|
0.2089352
|
0.0128012
|
16.322
|
0
|
|
Age (years)
|
-0.0308807
|
0.0014053
|
-21.975
|
0
|
|
Duration
|
-0.0028770
|
0.0010416
|
-2.762
|
0.0058
|
|
Male
|
0.2048077
|
0.0407177
|
5.03
|
0
|