Introduction

This interactive maps permits users to compare the number of hotels and equivalent Air b n b rentals across all London boroughs.

Code

library(sf)
## Linking to GEOS 3.6.1, GDAL 2.2.3, PROJ 4.9.3
library(tmap)
## Warning: package 'tmap' was built under R version 3.6.1
library(leafpop)
library(leaflet)
library(tmaptools)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.1
## -- Attaching packages ------------------------------------------------------ tidyverse 1.2.1 --
## v ggplot2 3.2.0     v purrr   0.3.2
## v tibble  2.1.3     v dplyr   0.8.1
## v tidyr   0.8.3     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts --------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(plyr)
## -------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## -------------------------------------------------------------------------
## 
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
## 
##     arrange, count, desc, failwith, id, mutate, rename, summarise,
##     summarize
## The following object is masked from 'package:purrr':
## 
##     compact
OSM <- read_shape("data/gis_osm_pois_a_free_1.shp",as.sf = TRUE)

Londonborough <- read_shape("data/London_Borough_Excluding_MHW.shp",as.sf = TRUE)

Airbnb <- read_csv("data/listings.csv")
## Parsed with column specification:
## cols(
##   id = col_double(),
##   name = col_character(),
##   host_id = col_double(),
##   host_name = col_character(),
##   neighbourhood_group = col_logical(),
##   neighbourhood = col_character(),
##   latitude = col_double(),
##   longitude = col_double(),
##   room_type = col_character(),
##   price = col_double(),
##   minimum_nights = col_double(),
##   number_of_reviews = col_double(),
##   last_review = col_date(format = ""),
##   reviews_per_month = col_double(),
##   calculated_host_listings_count = col_double(),
##   availability_365 = col_double()
## )
# plot xy data
Airbnb <- st_as_sf(Airbnb, coords = c("longitude", "latitude"), 
                   crs = 4326)

# reproject
OSM <- st_transform(OSM, 27700)
Airbnb <- st_transform(Airbnb, 27700)
# we don't need to reproject Londonborough, but it 
# doesn't have a CRS..you could also use set_crs
# it needs to have one for the next step
Londonborough<- st_transform(Londonborough, 27700)

#select hotels only
OSM <- OSM[OSM$fclass == 'hotel',]
Airbnb <- Airbnb[Airbnb$room_type == 'Entire home/apt' &
                   Airbnb$availability_365=='365',]

# make a function for the join
# functions are covered in practical 7
# but see if you can work out what is going on
# hint all you have to do is replace data1 and data2
# with the data you want to use

Joinfun <- function(data1, data2) {
  # join OSM and London boroughs
  joined <- st_join(data1, data2, join = st_within)
  
  # count the number of hotels per borough
  countno <- as.data.frame(count(joined$GSS_CODE))
  
  # join the count back to the borough layer
  counted <-left_join(data2, countno, by=c("GSS_CODE"="x"))
  
  return(counted)
}

# use the function for hotels
Hotels <- Joinfun(OSM, Londonborough)

# then for airbnb
Airbnb <- Joinfun(Airbnb, Londonborough)

# now try to arrange the plots with tmap
breaks = c(0, 5, 12, 26, 57, 286) 

#change the column name from freq for the legend
colnames(Hotels)[colnames(Hotels)=="freq"] <- "Accom count"


#join data
ti<-st_join(Airbnb, Hotels)
ti<-st_transform(ti,crs = 4326)

#remove the geometry for our pop up boxes to avoid
#the geometry field 
ti2<-ti
st_geometry(ti2)<-NULL
popairbnb=popupTable(ti2, zcol=c("NAME.x", "GSS_CODE.x", "freq"))
pophotels=popupTable(ti2, zcol=c("NAME.x", "GSS_CODE.x", "Accom count"))

tmap_mode("view")
## tmap mode set to interactive viewing
# set the colour palettes using our previously defined breaks
pal <- colorBin(palette = "YlOrRd", domain=ti2$freq, bins=breaks)
pal2 <- colorBin(palette = "YlOrRd", domain=ti2$`Accom count`, bins=breaks)

map<- leaflet(ti) %>%
  
  # add basemap options
  addTiles(group = "OSM (default)") %>%
  addProviderTiles(providers$Stamen.Toner, group = "Toner") %>%
  addProviderTiles(providers$Stamen.TonerLite, group = "Toner Lite") %>%
  addProviderTiles(providers$CartoDB.Positron, group = "CartoDB")%>%
  
  #add our polygons, linking to the tables we just made
  addPolygons(color="white", 
              weight = 2,
              opacity = 1,
              dashArray = "3",
              popup = popairbnb,
              fillOpacity = 0.7,
              fillColor = ~pal(freq),
              group = "Airbnb")%>%
  
  addPolygons(fillColor = ~pal(`Accom count`), 
              weight = 2,
              opacity = 1,
              color = "white",
              dashArray = "3",
              popup = pophotels,
              fillOpacity = 0.7,group = "Hotels")%>%
  # add a legend
  addLegend(pal = pal2, values = ~`Accom count`, group = c("Airbnb","Hotel"), 
            position ="bottomleft") %>%
  # specify layers control
  addLayersControl(
    baseGroups = c("OSM (default)", "Toner", "Toner Lite", "CartoDB"),
    overlayGroups = c("Airbnb", "Hotels"),
    options = layersControlOptions(collapsed = FALSE)
  )

# plot the map
map

```