gower
library(cluster)
gower_dist <- daisy(data[c(2,23,24,28,29)], metric = "gower")
gower_mat <- as.matrix(gower_dist)
sil_width <- c(NA)
for(i in 2:8){
pam_fit <- pam(gower_dist, diss = TRUE, k = i)
sil_width[i] <- pam_fit$silinfo$avg.width
}
plot(1:8, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:8, sil_width)
k <- 4
pam_fit <- pam(gower_dist, diss = TRUE, k)
pam_results <- data %>%
mutate(cluster = pam_fit$clustering) %>%
group_by(cluster) %>%
do(the_summary = summary(.))
pam_results$the_summary
tsne_obj <- Rtsne(gower_dist, is_distance = TRUE,pca_scale=TRUE)
tsne_data <- tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering))
ggplot(aes(x = X, y = Y), data = tsne_data) +
geom_point(aes(color = cluster))
Mutilevel Model
Overall EQI
model1 <- lmer(air_EQI_22July2013 ~ sk09+ (1 |state)+cat_rucc+education+black+income, data=data,REML=F)
summary(model1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
air_EQI_22July2013 ~ sk09 + (1 | state) + cat_rucc + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
4444.3 4504.8 -2212.2 4424.3 3098
Scaled residuals:
Min 1Q Median 3Q Max
-3.4461 -0.6132 0.0368 0.6398 5.1351
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.2542 0.5042
Residual 0.2285 0.4780
Number of obs: 3108, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.46598 0.07517 6.199
sk09 -0.22650 0.01299 -17.439
cat_rucc2 -0.08711 0.03224 -2.702
cat_rucc3 -0.53989 0.02523 -21.401
cat_rucc4 -1.14784 0.03128 -36.699
education 0.14457 0.01480 9.768
black 0.15412 0.01305 11.806
income 0.08422 0.01353 6.223
Correlation of Fixed Effects:
(Intr) sk09 ct_rc2 ct_rc3 ct_rc4 eductn black
sk09 0.066
cat_rucc2 -0.130 -0.056
cat_rucc3 -0.189 -0.250 0.413
cat_rucc4 -0.173 -0.407 0.354 0.603
education -0.059 -0.392 0.038 0.224 0.220
black -0.034 -0.098 0.071 0.143 0.175 0.095
income -0.088 0.060 0.223 0.310 0.285 -0.443 0.161
model2 <- lmer(water_EQI_22July2013 ~ sk09+ (1 |state)+cat_rucc+education+black+income, data=data,REML=F)
summary(model2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
water_EQI_22July2013 ~ sk09 + (1 | state) + cat_rucc + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
5763.9 5824.4 -2872.0 5743.9 3098
Scaled residuals:
Min 1Q Median 3Q Max
-4.0632 -0.2854 0.1306 0.5485 3.2417
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.6477 0.8048
Residual 0.3466 0.5887
Number of obs: 3108, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.12797 0.11808 1.084
sk09 -0.09265 0.01602 -5.783
cat_rucc2 0.05545 0.03972 1.396
cat_rucc3 0.03094 0.03108 0.995
cat_rucc4 -0.17255 0.03854 -4.478
education 0.04708 0.01825 2.580
black -0.02885 0.01613 -1.789
income 0.03058 0.01670 1.831
Correlation of Fixed Effects:
(Intr) sk09 ct_rc2 ct_rc3 ct_rc4 eductn black
sk09 0.051
cat_rucc2 -0.102 -0.056
cat_rucc3 -0.148 -0.250 0.413
cat_rucc4 -0.135 -0.407 0.354 0.603
education -0.046 -0.391 0.038 0.224 0.220
black -0.028 -0.097 0.071 0.142 0.174 0.092
income -0.070 0.061 0.223 0.309 0.285 -0.443 0.162
model3 <- lmer(land_EQI_22July2013 ~ sk09+ (1 |state)+cat_rucc+education+black+income, data=data,REML=F)
summary(model3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
land_EQI_22July2013 ~ sk09 + (1 | state) + cat_rucc + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
5892.2 5952.6 -2936.1 5872.2 3098
Scaled residuals:
Min 1Q Median 3Q Max
-8.4960 -0.3826 0.0644 0.5070 3.0536
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.2992 0.5470
Residual 0.3658 0.6048
Number of obs: 3108, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.24062 0.08264 2.912
sk09 0.04893 0.01641 2.981
cat_rucc2 -0.02405 0.04079 -0.590
cat_rucc3 -0.13029 0.03191 -4.083
cat_rucc4 -0.23730 0.03956 -5.998
education -0.06309 0.01871 -3.373
black -0.02487 0.01647 -1.510
income 0.11247 0.01710 6.578
Correlation of Fixed Effects:
(Intr) sk09 ct_rc2 ct_rc3 ct_rc4 eductn black
sk09 0.077
cat_rucc2 -0.149 -0.056
cat_rucc3 -0.218 -0.250 0.413
cat_rucc4 -0.199 -0.408 0.354 0.603
education -0.069 -0.392 0.037 0.223 0.220
black -0.039 -0.098 0.072 0.144 0.176 0.097
income -0.100 0.060 0.223 0.310 0.285 -0.443 0.160
model4 <- lmer(sociod_EQI_22July2013 ~ sk09+ (1 |state)+cat_rucc+education+black+income, data=data,REML=F)
summary(model4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
sociod_EQI_22July2013 ~ sk09 + (1 | state) + cat_rucc + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
2814.3 2874.8 -1397.2 2794.3 3098
Scaled residuals:
Min 1Q Median 3Q Max
-8.1763 -0.5236 0.0483 0.6158 3.1107
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.08391 0.2897
Residual 0.13645 0.3694
Number of obs: 3108, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.07613 0.04446 1.712
sk09 0.03720 0.01001 3.716
cat_rucc2 -0.07570 0.02491 -3.040
cat_rucc3 -0.14387 0.01948 -7.385
cat_rucc4 -0.38094 0.02415 -15.772
education 0.30210 0.01141 26.470
black -0.07883 0.01003 -7.859
income 0.60189 0.01042 57.746
Correlation of Fixed Effects:
(Intr) sk09 ct_rc2 ct_rc3 ct_rc4 eductn black
sk09 0.088
cat_rucc2 -0.169 -0.056
cat_rucc3 -0.247 -0.251 0.413
cat_rucc4 -0.226 -0.408 0.354 0.602
education -0.078 -0.393 0.037 0.223 0.219
black -0.044 -0.098 0.072 0.145 0.177 0.099
income -0.112 0.060 0.223 0.311 0.286 -0.443 0.160
model5 <- lmer(built_EQI_22July2013 ~ sk09+ (1 |state)+cat_rucc+education+black+income, data=data,REML=F)
summary(model5)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
built_EQI_22July2013 ~ sk09 + (1 | state) + cat_rucc + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
7458.6 7519.1 -3719.3 7438.6 3098
Scaled residuals:
Min 1Q Median 3Q Max
-5.2991 -0.4847 0.0818 0.6186 4.2431
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.08751 0.2958
Residual 0.62073 0.7879
Number of obs: 3108, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.22625 0.05332 4.244
sk09 0.10929 0.02104 5.194
cat_rucc2 0.38232 0.05299 7.215
cat_rucc3 0.03574 0.04138 0.864
cat_rucc4 -0.94362 0.05129 -18.396
education 0.24623 0.02403 10.246
black 0.07270 0.02069 3.514
income -0.02441 0.02181 -1.119
Correlation of Fixed Effects:
(Intr) sk09 ct_rc2 ct_rc3 ct_rc4 eductn black
sk09 0.164
cat_rucc2 -0.296 -0.059
cat_rucc3 -0.437 -0.257 0.412
cat_rucc4 -0.402 -0.416 0.354 0.601
education -0.138 -0.405 0.033 0.218 0.217
black -0.079 -0.095 0.078 0.156 0.187 0.125
income -0.185 0.059 0.225 0.315 0.290 -0.444 0.154
RUCC 1
model1.1 <- lmer(RUCC1_air_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model1.1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC1_air_EQI_22July2013 ~ sk09 + (1 | state) + education + black +
income
Data: data
AIC BIC logLik deviance df.resid
2711.4 2746.4 -1348.7 2697.4 1078
Scaled residuals:
Min 1Q Median 3Q Max
-3.4414 -0.6389 0.0713 0.6558 2.9951
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.3002 0.5479
Residual 0.6389 0.7993
Number of obs: 1085, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.31262 0.08931 -3.500
sk09 -0.25408 0.04084 -6.222
education 0.25387 0.04692 5.411
black 0.40058 0.03370 11.887
income 0.14484 0.03215 4.505
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.178
education -0.132 -0.315
black -0.077 -0.137 0.080
income -0.094 0.098 -0.593 0.148
model1.2 <- lmer(RUCC1_water_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model1.2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC1_water_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
1959.1 1994.0 -972.5 1945.1 1078
Scaled residuals:
Min 1Q Median 3Q Max
-4.0704 -0.1863 0.0844 0.4767 3.4794
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.6637 0.8147
Residual 0.2999 0.5476
Number of obs: 1085, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.078527 0.120546 0.651
sk09 -0.088252 0.028378 -3.110
education 0.094215 0.032613 2.889
black -0.064913 0.023614 -2.749
income 0.001459 0.022467 0.065
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.084
education -0.068 -0.304
black -0.038 -0.131 0.056
income -0.050 0.096 -0.597 0.163
model1.3 <- lmer(RUCC1_land_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model1.3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC1_land_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
2192.3 2227.2 -1089.2 2178.3 1078
Scaled residuals:
Min 1Q Median 3Q Max
-8.8502 -0.3919 0.0765 0.5253 4.1780
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.3566 0.5972
Residual 0.3856 0.6210
Number of obs: 1085, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.14276 0.09205 1.551
sk09 0.05923 0.03197 1.853
education -0.09580 0.03676 -2.606
black -0.06848 0.02652 -2.582
income 0.13654 0.02526 5.404
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.130
education -0.100 -0.309
black -0.057 -0.135 0.066
income -0.072 0.096 -0.595 0.156
model1.4 <- lmer(RUCC1_sociod_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model1.4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC1_sociod_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
1410.1 1445.0 -698.0 1396.1 1078
Scaled residuals:
Min 1Q Median 3Q Max
-2.9816 -0.5849 -0.0655 0.4491 8.0322
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.1371 0.3703
Residual 0.1894 0.4352
Number of obs: 1085, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.50286 0.05807 8.659
sk09 -0.01827 0.02235 -0.817
education -0.26102 0.02569 -10.159
black 0.20647 0.01851 11.154
income -0.59995 0.01764 -34.006
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.146
education -0.111 -0.311
black -0.063 -0.136 0.071
income -0.080 0.097 -0.594 0.153
model1.5 <- lmer(RUCC1_built_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model1.5)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC1_built_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
2808.4 2843.3 -1397.2 2794.4 1078
Scaled residuals:
Min 1Q Median 3Q Max
-4.7613 -0.5660 0.1271 0.6305 4.4819
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.1655 0.4069
Residual 0.7165 0.8465
Number of obs: 1085, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.01665 0.07264 -0.229
sk09 0.15397 0.04278 3.599
education 0.40089 0.04900 8.181
black 0.22162 0.03494 6.342
income -0.01117 0.03340 -0.334
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.239
education -0.168 -0.327
black -0.106 -0.140 0.102
income -0.119 0.102 -0.588 0.135
RUCC 2
model2.1 <- lmer(RUCC2_air_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model2.1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC2_air_EQI_22July2013 ~ sk09 + (1 | state) + education + black +
income
Data: data
AIC BIC logLik deviance df.resid
742.0 768.4 -364.0 728.0 312
Scaled residuals:
Min 1Q Median 3Q Max
-3.6511 -0.5417 0.0642 0.5809 2.3070
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.5832 0.7637
Residual 0.4226 0.6501
Number of obs: 319, groups: state, 45
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.13412 0.12618 -1.063
sk09 0.09009 0.09525 0.946
education 0.14424 0.06820 2.115
black 0.15114 0.07103 2.128
income -0.09245 0.08095 -1.142
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.197
education -0.177 -0.517
black -0.011 -0.162 0.129
income 0.041 0.085 -0.361 0.292
model2.2 <- lmer(RUCC2_water_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model2.2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC2_water_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
542.9 569.2 -264.4 528.9 312
Scaled residuals:
Min 1Q Median 3Q Max
-4.4962 -0.1765 0.0193 0.2852 2.8883
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.7072 0.8409
Residual 0.2011 0.4484
Number of obs: 319, groups: state, 45
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.10835 0.13121 0.826
sk09 -0.02734 0.06758 -0.405
education 0.03613 0.04758 0.759
black -0.01992 0.05145 -0.387
income 0.06365 0.05783 1.101
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.131
education -0.120 -0.513
black -0.006 -0.171 0.113
income 0.019 0.087 -0.357 0.291
model2.3 <- lmer(RUCC2_land_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model2.3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC2_land_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
652.4 678.7 -319.2 638.4 312
Scaled residuals:
Min 1Q Median 3Q Max
-6.7082 -0.3555 0.0813 0.4729 2.7411
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.2369 0.4867
Residual 0.3457 0.5880
Number of obs: 319, groups: state, 45
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.144963 0.086741 1.671
sk09 0.142783 0.083325 1.714
education 0.004104 0.060780 0.068
black -0.047979 0.060412 -0.794
income 0.099979 0.070444 1.419
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.256
education -0.226 -0.522
black -0.017 -0.154 0.148
income 0.070 0.081 -0.365 0.293
model2.4 <- lmer(RUCC2_sociod_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model2.4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC2_sociod_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
382.2 408.6 -184.1 368.2 312
Scaled residuals:
Min 1Q Median 3Q Max
-3.6802 -0.4660 0.0135 0.6162 2.1651
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.1511 0.3887
Residual 0.1410 0.3755
Number of obs: 319, groups: state, 45
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.04130 0.06575 0.628
sk09 0.18677 0.05442 3.432
education 0.36299 0.03920 9.259
black -0.06514 0.04023 -1.619
income 0.78296 0.04616 16.963
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.218
education -0.194 -0.518
black -0.013 -0.159 0.135
income 0.050 0.084 -0.362 0.292
model2.5 <- lmer(RUCC2_built_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model2.5)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC2_built_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
798.5 824.9 -392.3 784.5 312
Scaled residuals:
Min 1Q Median 3Q Max
-5.7727 -0.5109 0.0567 0.5298 2.9185
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.1588 0.3986
Residual 0.5980 0.7733
Number of obs: 319, groups: state, 45
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.19405 0.08382 2.315
sk09 0.60434 0.10347 5.841
education 0.18332 0.07767 2.360
black -0.20405 0.07090 -2.878
income -0.07050 0.08730 -0.808
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.334
education -0.294 -0.533
black -0.025 -0.145 0.183
income 0.124 0.074 -0.371 0.295
RUCC 3
model3.1 <- lmer(RUCC3_air_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model3.1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC3_air_EQI_22July2013 ~ sk09 + (1 | state) + education + black +
income
Data: data
AIC BIC logLik deviance df.resid
2179.9 2214.6 -1082.9 2165.9 1041
Scaled residuals:
Min 1Q Median 3Q Max
-3.8569 -0.5920 -0.0162 0.6385 3.2613
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.6776 0.8232
Residual 0.3999 0.6324
Number of obs: 1048, groups: state, 44
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.04170 0.12740 0.327
sk09 -0.38356 0.04002 -9.584
education 0.31160 0.03314 9.402
black 0.08819 0.03020 2.920
income 0.07591 0.04162 1.824
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.031
education 0.006 -0.434
black 0.041 -0.138 0.101
income 0.073 -0.028 -0.315 0.212
model3.2 <- lmer(RUCC3_water_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model3.2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC3_water_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
2039.0 2073.7 -1012.5 2025.0 1041
Scaled residuals:
Min 1Q Median 3Q Max
-3.8947 -0.2268 0.1626 0.5279 2.8749
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.7098 0.8425
Residual 0.3470 0.5890
Number of obs: 1048, groups: state, 44
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.04668 0.12983 0.360
sk09 -0.09007 0.03735 -2.411
education 0.08062 0.03089 2.610
black -0.05058 0.02820 -1.794
income -0.04312 0.03883 -1.110
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.029
education 0.006 -0.434
black 0.037 -0.139 0.100
income 0.066 -0.026 -0.315 0.211
model3.3 <- lmer(RUCC3_land_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model3.3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC3_land_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
2076.2 2110.9 -1031.1 2062.2 1041
Scaled residuals:
Min 1Q Median 3Q Max
-8.0744 -0.3723 0.0571 0.4614 2.5967
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.4098 0.6402
Residual 0.3684 0.6069
Number of obs: 1048, groups: state, 44
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.16920 0.10032 1.687
sk09 0.04255 0.03819 1.114
education -0.03411 0.03173 -1.075
black -0.05140 0.02876 -1.787
income 0.08884 0.03976 2.234
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.038
education 0.008 -0.437
black 0.049 -0.136 0.106
income 0.091 -0.031 -0.316 0.214
model3.4 <- lmer(RUCC3_sociod_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model3.4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC3_sociod_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
1132.7 1167.4 -559.3 1118.7 1041
Scaled residuals:
Min 1Q Median 3Q Max
-8.4568 -0.5611 0.0543 0.6302 3.7975
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.09431 0.3071
Residual 0.15316 0.3914
Number of obs: 1048, groups: state, 44
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.34238 0.04945 6.923
sk09 0.11890 0.02433 4.886
education 0.36709 0.02036 18.028
black -0.09469 0.01825 -5.189
income 0.71355 0.02542 28.075
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.050
education 0.011 -0.443
black 0.064 -0.133 0.116
income 0.124 -0.037 -0.318 0.219
model3.5 <- lmer(RUCC3_built_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model3.5)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC3_built_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
2275.6 2310.3 -1130.8 2261.6 1041
Scaled residuals:
Min 1Q Median 3Q Max
-4.8311 -0.5406 0.0620 0.6246 4.3945
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.1040 0.3225
Residual 0.4726 0.6875
Number of obs: 1048, groups: state, 44
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.11256 0.05683 1.981
sk09 0.37849 0.04133 9.157
education 0.23360 0.03522 6.632
black -0.10146 0.03049 -3.328
income -0.01539 0.04367 -0.352
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.078
education 0.021 -0.460
black 0.096 -0.123 0.147
income 0.204 -0.050 -0.325 0.232
RUCC 4
model4.1 <- lmer(RUCC4_air_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model4.1)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC4_air_EQI_22July2013 ~ sk09 + (1 | state) + education + black +
income
Data: data
AIC BIC logLik deviance df.resid
1021.7 1053.1 -503.8 1007.7 649
Scaled residuals:
Min 1Q Median 3Q Max
-3.4180 -0.6065 -0.0306 0.6109 3.7516
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.7340 0.8568
Residual 0.2181 0.4670
Number of obs: 656, groups: state, 41
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.39988 0.13849 2.887
sk09 -0.19556 0.02097 -9.325
education 0.13213 0.03365 3.927
black 0.06358 0.03177 2.001
income 0.09724 0.03555 2.736
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.081
education -0.007 -0.367
black 0.050 -0.081 0.162
income 0.093 0.005 -0.447 0.085
model4.2 <- lmer(RUCC4_water_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model4.2)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC4_water_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
1520.8 1552.2 -753.4 1506.8 649
Scaled residuals:
Min 1Q Median 3Q Max
-3.05989 -0.58308 0.06681 0.66507 2.58322
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.5369 0.7328
Residual 0.4981 0.7058
Number of obs: 656, groups: state, 41
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.19988 0.12561 1.591
sk09 -0.11678 0.03138 -3.721
education 0.04929 0.05020 0.982
black 0.01909 0.04688 0.407
income 0.08930 0.05340 1.672
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.135
education -0.007 -0.373
black 0.084 -0.077 0.179
income 0.157 0.003 -0.449 0.084
model4.3 <- lmer(RUCC4_land_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model1.3)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC1_land_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
2192.3 2227.2 -1089.2 2178.3 1078
Scaled residuals:
Min 1Q Median 3Q Max
-8.8502 -0.3919 0.0765 0.5253 4.1780
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.3566 0.5972
Residual 0.3856 0.6210
Number of obs: 1085, groups: state, 49
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.14276 0.09205 1.551
sk09 0.05923 0.03197 1.853
education -0.09580 0.03676 -2.606
black -0.06848 0.02652 -2.582
income 0.13654 0.02526 5.404
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 0.130
education -0.100 -0.309
black -0.057 -0.135 0.066
income -0.072 0.096 -0.595 0.156
model4.4 <- lmer(RUCC4_sociod_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model4.4)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC4_sociod_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
911.8 943.2 -448.9 897.8 649
Scaled residuals:
Min 1Q Median 3Q Max
-5.5427 -0.4525 0.0575 0.5875 2.4639
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.09776 0.3127
Residual 0.20533 0.4531
Number of obs: 656, groups: state, 41
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.19876 0.05825 3.412
sk09 0.11786 0.01985 5.937
education 0.36624 0.03163 11.578
black -0.11695 0.02913 -4.015
income 0.59014 0.03399 17.365
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.190
education -0.002 -0.382
black 0.117 -0.072 0.199
income 0.219 -0.001 -0.452 0.086
model4.5 <- lmer(RUCC4_built_EQI_22July2013 ~ sk09+ (1 |state)+education+black+income, data=data,REML=F)
summary(model4.5)
Linear mixed model fit by maximum likelihood ['lmerMod']
Formula:
RUCC4_built_EQI_22July2013 ~ sk09 + (1 | state) + education +
black + income
Data: data
AIC BIC logLik deviance df.resid
1744.6 1776.0 -865.3 1730.6 649
Scaled residuals:
Min 1Q Median 3Q Max
-3.5640 -0.4689 0.1504 0.6488 2.7310
Random effects:
Groups Name Variance Std.Dev.
state (Intercept) 0.08265 0.2875
Residual 0.77661 0.8813
Number of obs: 656, groups: state, 41
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.06991 0.07185 -0.973
sk09 0.09493 0.03669 2.588
education 0.19878 0.05772 3.444
black -0.13814 0.05112 -2.702
income -0.11418 0.06401 -1.784
Correlation of Fixed Effects:
(Intr) sk09 eductn black
sk09 -0.324
education 0.030 -0.409
black 0.178 -0.053 0.248
income 0.348 -0.025 -0.454 0.094
LS0tCnRpdGxlOiAiU29jaWFsIENhcGl0YWwiCmF1dGhvcjogTWluZyBaaG9uZwpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDogdHJ1ZQotLS0KIyBJbXBvcnRpbmcgRGF0YQpgYGB7ciBlY2hvPUZBTFNFfQpsaWJyYXJ5KGxtZTQpCmxpYnJhcnkocmVhZHhsKQpsaWJyYXJ5KGRwbHlyKQpyYWNlIDwtIHJlYWQuY3N2KCJ+L0Rlc2t0b3AvQ29sdW1iaWEgcmVzZWFyY2gvU29jaWFsIENhcGl0YWwgYW5kIEVRSS9kYXRhLzIwMDktMjAxMyByYWNlL0FDU18xM181WVJfQjAyMDAxX3dpdGhfYW5uLmNzdiIpCgppbmNvbWUgPC0gcmVhZC5jc3YoIn4vRGVza3RvcC9Db2x1bWJpYSByZXNlYXJjaC9Tb2NpYWwgQ2FwaXRhbCBhbmQgRVFJL2RhdGEvMjAwOS0yMDEzIGluY29tZS9BQ1NfMTNfNVlSX1MxOTAzX3dpdGhfYW5uLmNzdiIpCgplZHVjYXRpb24gPC0gcmVhZC5jc3YoIn4vRGVza3RvcC9Db2x1bWJpYSByZXNlYXJjaC9Tb2NpYWwgQ2FwaXRhbCBhbmQgRVFJL2RhdGEvMjAwOS0yMDEzIGVkdWNhdGlvbi9BQ1NfMTNfNVlSX1MxNTAxX3dpdGhfYW5uLmNzdiIpCgpzayA8LSByZWFkX2V4Y2VsKCJ+L0Rlc2t0b3AvQ29sdW1iaWEgcmVzZWFyY2gvU29jaWFsIENhcGl0YWwgYW5kIEVRSS9kYXRhLzIwMDkgc2sueGxzeCIsIHNoZWV0ID0gIjIwMDkiKQoKZ2luaSA8LSByZWFkLmNzdigifi9EZXNrdG9wL0NvbHVtYmlhIHJlc2VhcmNoL1NvY2lhbCBDYXBpdGFsIGFuZCBFUUkvZGF0YS8yMDEwIGdpbmkuY3N2IikKCkVRSSA8LXJlYWQuY3N2KCJ+L0Rlc2t0b3AvQ29sdW1iaWEgcmVzZWFyY2gvU29jaWFsIENhcGl0YWwgYW5kIEVRSS9kYXRhL0VRSV9SRVNVTFRTXzIwMTNKVUxZMjIuQ1NWIikKYGBgCgojIERhdGEgQ2xlYW5pbmcgCmBgYHtyIGVjaG89RkFMU0V9CmVkdWNhdGlvbj1lZHVjYXRpb25bYygyLDMsODIpXQpyYWNlPXJhY2VbYygyLDMsNCw2LDgpXSN3aXRoIHdoaXRlIGFuZCBibGFjayBhbmQgdG90YWwKaW5jb21lPWluY29tZVtjKDIsMyw2KV0jbWVkaWVtIGluY29tZQpuYW1lcyhFUUkpWzFdPSJGSVBTIgpgYGAKCmBgYHtyIGVjaG89RkFMU0V9Cm5hbWVzKGVkdWNhdGlvbilbMV09IkZJUFMiCmVkdWNhdGlvbiRGSVBTPWFzLm51bWVyaWMoYXMuY2hhcmFjdGVyKGVkdWNhdGlvbiRGSVBTKSkKbmFtZXMocmFjZSlbMV09IkZJUFMiCnJhY2UkRklQUz1hcy5udW1lcmljKGFzLmNoYXJhY3RlcihyYWNlJEZJUFMpKQpuYW1lcyhpbmNvbWUpWzFdPSJGSVBTIgppbmNvbWUkRklQUz1hcy5udW1lcmljKGFzLmNoYXJhY3RlcihpbmNvbWUkRklQUykpCm5hbWVzKHNrKVsxXT0iRklQUyIKc2skRklQUz1hcy5udW1lcmljKGFzLmNoYXJhY3RlcihzayRGSVBTKSkKZGF0YT1FUUklPiVsZWZ0X2pvaW4oc2ssYnk9IkZJUFMiKSU+JWxlZnRfam9pbihlZHVjYXRpb24sYnk9IkZJUFMiKSU+JWxlZnRfam9pbihyYWNlLGJ5PSJGSVBTIiklPiVsZWZ0X2pvaW4oaW5jb21lLGJ5PSJGSVBTIikKYGBgCiMgRmluYWwgY2xlYW5pbmcgYW5kIHJlbmFtZQpgYGB7ciBlY2hvPUZBTFNFfQpkYXRhPWRhdGFbYygxOjM0LDUxLDUzLDU1LDU2LDU3LDU5KV0KbmFtZXMoZGF0YSlbMzY6NDBdPWMoImVkdWNhdGlvbiIsInRvdGFsX3BvcCIsIndoaXRlX3BvcCIsImJsYWNrX3BvcCIsImluY29tZSIpCiNjcmVhdGUgbmV3IHZhcmlhYmxlCmRhdGFbYygzNjo0MCldIDwtIHNhcHBseShkYXRhW2MoMzY6NDApXSwgYXMuY2hhcmFjdGVyKQpkYXRhW2MoMzY6NDApXSA8LSBzYXBwbHkoZGF0YVtjKDM2OjQwKV0sIGFzLm51bWVyaWMpCmRhdGE9ZGF0YSU+JW11dGF0ZSh3aGl0ZSA9IHdoaXRlX3BvcC90b3RhbF9wb3ApCmRhdGE9ZGF0YSU+JW11dGF0ZShibGFjayA9IGJsYWNrX3BvcC90b3RhbF9wb3ApCmRhdGE9ZGF0YSU+JWxlZnRfam9pbihmaW5hbGRhdGFbYygiRklQUyIsInJ1cmFsX3BlcmNlbnQiKV0sYnk9IkZJUFMiKQojc2F2ZSBkYXRhIGZpbGUgZm9yIGNvbnZlbmllbmNlCndyaXRlLmNzdihkYXRhLGZpbGUgPSAifi9EZXNrdG9wL0NvbHVtYmlhIHJlc2VhcmNoL1NvY2lhbCBDYXBpdGFsIGFuZCBFUUkvY2xlYW5fc3RyYXRpZmllZC5jc3YiKQpgYGAKCmBgYHtyIGVjaG89RkFMU0V9CmRhdGEkY2F0X3J1Y2M9YXMuZmFjdG9yKGRhdGEkY2F0X3J1Y2MpCmRhdGFbNTo0M109c2NhbGUoZGF0YVs1OjQzXSkKYGBgCgojSGllcmFyY2hpY2FsIGNsdXN0ZXJpbmcKYGBge3IgZWNobz1GQUxTRX0KbGlicmFyeShmYWN0b2V4dHJhKQpsaWJyYXJ5KEZhY3RvTWluZVIpCiMgYWxsIGRhdGEgaXMgbnVtZXJpYyBmb3Igbm93CiMgQ29tcHV0ZSBQQ0Egd2l0aCBuY3AgPSAzCmRmPWRhdGFbYygyMywyNCwyOCwyOSwzMCwzMSldCnJlcy5wY2EgPC0gcHJjb21wKGRmLCBzY2FsZSA9IFRSVUUpCmZ2aXpfZWlnKHJlcy5wY2EpCmBgYApgYGB7cn0KcmVzLnBjYSA8LSBQQ0EoZGYsIG5jcCA9IDYsIGdyYXBoID0gRkFMU0UpCiMgQ29tcHV0ZSBoaWVyYXJjaGljYWwgY2x1c3RlcmluZyBvbiBwcmluY2lwYWwgY29tcG9uZW50cwpyZXMuaGNwYyA8LSBIQ1BDKHJlcy5wY2EsIGdyYXBoID0gRkFMU0UpCmBgYApgYGB7cn0KZnZpel9kZW5kKHJlcy5oY3BjLCBzaG93X2xhYmVscyA9IEZBTFNFKQpgYGAKYGBge3J9CmxpYnJhcnkoUnRzbmUpCmZ2aXpfY2x1c3RlcihyZXMuaGNwYywgZ2VvbSA9ICJwb2ludCIsIG1haW4gPSAiRmFjdG9yIG1hcCIpCgpgYGAKYGBge3J9CnJlcy5oY3BjJGRlc2MudmFyJHF1YW50aQpgYGAKIyB0LVNORQpgYGB7cn0KbGlicmFyeShSdHNuZSkKdHNuZSA8LSBSdHNuZShkYXRhW2MoMjMsMjQsMjgsMjksMzEpXSwgZGltcyA9IDIsIHBlcnBsZXhpdHk9NTAsIHZlcmJvc2U9RkFMU0UsIG1heF9pdGVyID0gNTAwKQp0c25lX2RhdGEgPC0gdHNuZSRZICU+JQogIGRhdGEuZnJhbWUoKSAlPiUKICBzZXROYW1lcyhjKCJYIiwgIlkiKSkgJT4lCiAgbXV0YXRlKGNsdXN0ZXIgPSBmYWN0b3IocmVzLmhjcGMkZGF0YS5jbHVzdCRjbHVzdCkpCmdncGxvdChhZXMoeCA9IFgsIHkgPSBZKSwgZGF0YSA9IHRzbmVfZGF0YSkgKwogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gY2x1c3RlcikpCmBgYAojIGRhdGEgZXhwbG9yYXRpb24gYWZ0ZXIgY2x1c3RlcmluZwpgYGB7cn0KZD1yZXMuaGNwYyRkYXRhLmNsdXN0CmQkY2x1c3Q9YXMuZmFjdG9yKGQkY2x1c3QpCmBgYApgYGB7cn0KZ2dwbG90KGQsIGFlcyh4PWNsdXN0LCB5PWVkdWNhdGlvbikpICtnZW9tX3Zpb2xpbih0cmltPUZBTFNFKQpnZ3Bsb3QoZCwgYWVzKHg9Y2x1c3QsIHk9c2swOSkpICtnZW9tX3Zpb2xpbih0cmltPUZBTFNFKQpnZ3Bsb3QoZCwgYWVzKHg9Y2x1c3QsIHk9aW5jb21lKSkgK2dlb21fdmlvbGluKHRyaW09RkFMU0UpCmdncGxvdChkLCBhZXMoeD1jbHVzdCwgeT13aGl0ZSkpICtnZW9tX3Zpb2xpbih0cmltPUZBTFNFKQpnZ3Bsb3QoZCwgYWVzKHg9Y2x1c3QsIHk9YmxhY2spKSArZ2VvbV92aW9saW4odHJpbT1GQUxTRSkKZ2dwbG90KGQsIGFlcyh4PWNsdXN0LCB5PXJ1cmFsX3BlcmNlbnQpKSArZ2VvbV92aW9saW4odHJpbT1GQUxTRSkKYGBgCgojIFJVQ0MKYGBge3J9CmxpYnJhcnkoY2x1c3RlcikgCmdvd2VyX2Rpc3QgPC0gZGFpc3koZGF0YVtjKDIzLDI0LDI4LDI5LDMxKV0sIG1ldHJpYyA9ICJnb3dlciIpCmdvd2VyX21hdCA8LSBhcy5tYXRyaXgoZ293ZXJfZGlzdCkKc2lsX3dpZHRoIDwtIGMoTkEpCmZvcihpIGluIDI6OCl7ICAKICBwYW1fZml0IDwtIHBhbShkYXRhW2MoMjMsMjQsMjgsMjksMzEpXSwgayA9IGkpICAKICBzaWxfd2lkdGhbaV0gPC0gcGFtX2ZpdCRzaWxpbmZvJGF2Zy53aWR0aCAgCn0KcGxvdCgxOjgsIHNpbF93aWR0aCwKICAgICB4bGFiID0gIk51bWJlciBvZiBjbHVzdGVycyIsCiAgICAgeWxhYiA9ICJTaWxob3VldHRlIFdpZHRoIikKbGluZXMoMTo4LCBzaWxfd2lkdGgpCmBgYAojZ293ZXIKYGBge3J9CmxpYnJhcnkoY2x1c3RlcikgCmdvd2VyX2Rpc3QgPC0gZGFpc3koZGF0YVtjKDIsMjMsMjQsMjgsMjkpXSwgbWV0cmljID0gImdvd2VyIikKZ293ZXJfbWF0IDwtIGFzLm1hdHJpeChnb3dlcl9kaXN0KQpzaWxfd2lkdGggPC0gYyhOQSkKZm9yKGkgaW4gMjo4KXsgIAogIHBhbV9maXQgPC0gcGFtKGdvd2VyX2Rpc3QsIGRpc3MgPSBUUlVFLCBrID0gaSkgIAogIHNpbF93aWR0aFtpXSA8LSBwYW1fZml0JHNpbGluZm8kYXZnLndpZHRoICAKfQpwbG90KDE6OCwgc2lsX3dpZHRoLAogICAgIHhsYWIgPSAiTnVtYmVyIG9mIGNsdXN0ZXJzIiwKICAgICB5bGFiID0gIlNpbGhvdWV0dGUgV2lkdGgiKQpsaW5lcygxOjgsIHNpbF93aWR0aCkKYGBgCmBgYHtyfQprIDwtIDQKcGFtX2ZpdCA8LSBwYW0oZ293ZXJfZGlzdCwgZGlzcyA9IFRSVUUsIGspCnBhbV9yZXN1bHRzIDwtIGRhdGEgJT4lCiAgbXV0YXRlKGNsdXN0ZXIgPSBwYW1fZml0JGNsdXN0ZXJpbmcpICU+JQogIGdyb3VwX2J5KGNsdXN0ZXIpICU+JQogIGRvKHRoZV9zdW1tYXJ5ID0gc3VtbWFyeSguKSkKcGFtX3Jlc3VsdHMkdGhlX3N1bW1hcnkKdHNuZV9vYmogPC0gUnRzbmUoZ293ZXJfZGlzdCwgaXNfZGlzdGFuY2UgPSBUUlVFLHBjYV9zY2FsZT1UUlVFKQp0c25lX2RhdGEgPC0gdHNuZV9vYmokWSAlPiUKICBkYXRhLmZyYW1lKCkgJT4lCiAgc2V0TmFtZXMoYygiWCIsICJZIikpICU+JQogIG11dGF0ZShjbHVzdGVyID0gZmFjdG9yKHBhbV9maXQkY2x1c3RlcmluZykpCmdncGxvdChhZXMoeCA9IFgsIHkgPSBZKSwgZGF0YSA9IHRzbmVfZGF0YSkgKwogIGdlb21fcG9pbnQoYWVzKGNvbG9yID0gY2x1c3RlcikpCmBgYAoKIyBNdXRpbGV2ZWwgTW9kZWwKIyMgT3ZlcmFsbCBFUUkKYGBge3J9Cm1vZGVsMSA8LSBsbWVyKGFpcl9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrY2F0X3J1Y2MrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDEpCmBgYAoKYGBge3J9Cm1vZGVsMiA8LSBsbWVyKHdhdGVyX0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStjYXRfcnVjYytlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsMikKYGBgCgpgYGB7cn0KbW9kZWwzIDwtIGxtZXIobGFuZF9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrY2F0X3J1Y2MrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDMpCmBgYAoKYGBge3J9Cm1vZGVsNCA8LSBsbWVyKHNvY2lvZF9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrY2F0X3J1Y2MrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDQpCmBgYAoKYGBge3J9Cm1vZGVsNSA8LSBsbWVyKGJ1aWx0X0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStjYXRfcnVjYytlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsNSkKYGBgCiMjIFJVQ0MgMQpgYGB7cn0KbW9kZWwxLjEgPC0gbG1lcihSVUNDMV9haXJfRVFJXzIySnVseTIwMTMgfiBzazA5KyAoMSB8c3RhdGUpK2VkdWNhdGlvbitibGFjaytpbmNvbWUsIGRhdGE9ZGF0YSxSRU1MPUYsKQpzdW1tYXJ5KG1vZGVsMS4xKQpgYGAKCmBgYHtyfQptb2RlbDEuMiA8LSBsbWVyKFJVQ0MxX3dhdGVyX0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsMS4yKQpgYGAKCmBgYHtyfQptb2RlbDEuMyA8LSBsbWVyKFJVQ0MxX2xhbmRfRVFJXzIySnVseTIwMTMgfiBzazA5KyAoMSB8c3RhdGUpK2VkdWNhdGlvbitibGFjaytpbmNvbWUsIGRhdGE9ZGF0YSxSRU1MPUYpCnN1bW1hcnkobW9kZWwxLjMpCmBgYAoKYGBge3J9Cm1vZGVsMS40IDwtIGxtZXIoUlVDQzFfc29jaW9kX0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsMS40KQpgYGAKCmBgYHtyfQptb2RlbDEuNSA8LSBsbWVyKFJVQ0MxX2J1aWx0X0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsMS41KQpgYGAKIyMgUlVDQyAyCmBgYHtyfQptb2RlbDIuMSA8LSBsbWVyKFJVQ0MyX2Fpcl9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDIuMSkKYGBgCgpgYGB7cn0KbW9kZWwyLjIgPC0gbG1lcihSVUNDMl93YXRlcl9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDIuMikKYGBgCgpgYGB7cn0KbW9kZWwyLjMgPC0gbG1lcihSVUNDMl9sYW5kX0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsMi4zKQpgYGAKCmBgYHtyfQptb2RlbDIuNCA8LSBsbWVyKFJVQ0MyX3NvY2lvZF9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDIuNCkKYGBgCgpgYGB7cn0KbW9kZWwyLjUgPC0gbG1lcihSVUNDMl9idWlsdF9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDIuNSkKYGBgCiMjIFJVQ0MgMwpgYGB7cn0KbW9kZWwzLjEgPC0gbG1lcihSVUNDM19haXJfRVFJXzIySnVseTIwMTMgfiBzazA5KyAoMSB8c3RhdGUpK2VkdWNhdGlvbitibGFjaytpbmNvbWUsIGRhdGE9ZGF0YSxSRU1MPUYpCnN1bW1hcnkobW9kZWwzLjEpCmBgYAoKYGBge3J9Cm1vZGVsMy4yIDwtIGxtZXIoUlVDQzNfd2F0ZXJfRVFJXzIySnVseTIwMTMgfiBzazA5KyAoMSB8c3RhdGUpK2VkdWNhdGlvbitibGFjaytpbmNvbWUsIGRhdGE9ZGF0YSxSRU1MPUYpCnN1bW1hcnkobW9kZWwzLjIpCmBgYAoKYGBge3J9Cm1vZGVsMy4zIDwtIGxtZXIoUlVDQzNfbGFuZF9FUUlfMjJKdWx5MjAxMyB+IHNrMDkrICgxIHxzdGF0ZSkrZWR1Y2F0aW9uK2JsYWNrK2luY29tZSwgZGF0YT1kYXRhLFJFTUw9RikKc3VtbWFyeShtb2RlbDMuMykKYGBgCgpgYGB7cn0KbW9kZWwzLjQgPC0gbG1lcihSVUNDM19zb2Npb2RfRVFJXzIySnVseTIwMTMgfiBzazA5KyAoMSB8c3RhdGUpK2VkdWNhdGlvbitibGFjaytpbmNvbWUsIGRhdGE9ZGF0YSxSRU1MPUYpCnN1bW1hcnkobW9kZWwzLjQpCmBgYAoKYGBge3J9Cm1vZGVsMy41IDwtIGxtZXIoUlVDQzNfYnVpbHRfRVFJXzIySnVseTIwMTMgfiBzazA5KyAoMSB8c3RhdGUpK2VkdWNhdGlvbitibGFjaytpbmNvbWUsIGRhdGE9ZGF0YSxSRU1MPUYpCnN1bW1hcnkobW9kZWwzLjUpCmBgYAojIyBSVUNDIDQKYGBge3J9Cm1vZGVsNC4xIDwtIGxtZXIoUlVDQzRfYWlyX0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsNC4xKQpgYGAKCmBgYHtyfQptb2RlbDQuMiA8LSBsbWVyKFJVQ0M0X3dhdGVyX0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsNC4yKQpgYGAKCmBgYHtyfQptb2RlbDQuMyA8LSBsbWVyKFJVQ0M0X2xhbmRfRVFJXzIySnVseTIwMTMgfiBzazA5KyAoMSB8c3RhdGUpK2VkdWNhdGlvbitibGFjaytpbmNvbWUsIGRhdGE9ZGF0YSxSRU1MPUYpCnN1bW1hcnkobW9kZWwxLjMpCmBgYAoKYGBge3J9Cm1vZGVsNC40IDwtIGxtZXIoUlVDQzRfc29jaW9kX0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsNC40KQpgYGAKCmBgYHtyfQptb2RlbDQuNSA8LSBsbWVyKFJVQ0M0X2J1aWx0X0VRSV8yMkp1bHkyMDEzIH4gc2swOSsgKDEgfHN0YXRlKStlZHVjYXRpb24rYmxhY2sraW5jb21lLCBkYXRhPWRhdGEsUkVNTD1GKQpzdW1tYXJ5KG1vZGVsNC41KQpgYGAKCgoK