title: “Week 2 HW” author: “Bryan Persaud” date: “7/28/2019” output: html_document

I am using the quakes data set

Bonus: Reading csv file from github file

theUrl <- "https://raw.githubusercontent.com/bpersaud104/R/master/quakes.csv"
quakes <- read.table(file = theUrl, header = TRUE, sep = ",")
head(quakes, 50)
##     X    lat   long depth mag stations
## 1   1 -20.42 181.62   562 4.8       41
## 2   2 -20.62 181.03   650 4.2       15
## 3   3 -26.00 184.10    42 5.4       43
## 4   4 -17.97 181.66   626 4.1       19
## 5   5 -20.42 181.96   649 4.0       11
## 6   6 -19.68 184.31   195 4.0       12
## 7   7 -11.70 166.10    82 4.8       43
## 8   8 -28.11 181.93   194 4.4       15
## 9   9 -28.74 181.74   211 4.7       35
## 10 10 -17.47 179.59   622 4.3       19
## 11 11 -21.44 180.69   583 4.4       13
## 12 12 -12.26 167.00   249 4.6       16
## 13 13 -18.54 182.11   554 4.4       19
## 14 14 -21.00 181.66   600 4.4       10
## 15 15 -20.70 169.92   139 6.1       94
## 16 16 -15.94 184.95   306 4.3       11
## 17 17 -13.64 165.96    50 6.0       83
## 18 18 -17.83 181.50   590 4.5       21
## 19 19 -23.50 179.78   570 4.4       13
## 20 20 -22.63 180.31   598 4.4       18
## 21 21 -20.84 181.16   576 4.5       17
## 22 22 -10.98 166.32   211 4.2       12
## 23 23 -23.30 180.16   512 4.4       18
## 24 24 -30.20 182.00   125 4.7       22
## 25 25 -19.66 180.28   431 5.4       57
## 26 26 -17.94 181.49   537 4.0       15
## 27 27 -14.72 167.51   155 4.6       18
## 28 28 -16.46 180.79   498 5.2       79
## 29 29 -20.97 181.47   582 4.5       25
## 30 30 -19.84 182.37   328 4.4       17
## 31 31 -22.58 179.24   553 4.6       21
## 32 32 -16.32 166.74    50 4.7       30
## 33 33 -15.55 185.05   292 4.8       42
## 34 34 -23.55 180.80   349 4.0       10
## 35 35 -16.30 186.00    48 4.5       10
## 36 36 -25.82 179.33   600 4.3       13
## 37 37 -18.73 169.23   206 4.5       17
## 38 38 -17.64 181.28   574 4.6       17
## 39 39 -17.66 181.40   585 4.1       17
## 40 40 -18.82 169.33   230 4.4       11
## 41 41 -37.37 176.78   263 4.7       34
## 42 42 -15.31 186.10    96 4.6       32
## 43 43 -24.97 179.82   511 4.4       23
## 44 44 -15.49 186.04    94 4.3       26
## 45 45 -19.23 169.41   246 4.6       27
## 46 46 -30.10 182.30    56 4.9       34
## 47 47 -26.40 181.70   329 4.5       24
## 48 48 -11.77 166.32    70 4.4       18
## 49 49 -24.12 180.08   493 4.3       21
## 50 50 -18.97 185.25   129 5.1       73

Question 1

summary(quakes)
##        X               lat              long           depth      
##  Min.   :   1.0   Min.   :-38.59   Min.   :165.7   Min.   : 40.0  
##  1st Qu.: 250.8   1st Qu.:-23.47   1st Qu.:179.6   1st Qu.: 99.0  
##  Median : 500.5   Median :-20.30   Median :181.4   Median :247.0  
##  Mean   : 500.5   Mean   :-20.64   Mean   :179.5   Mean   :311.4  
##  3rd Qu.: 750.2   3rd Qu.:-17.64   3rd Qu.:183.2   3rd Qu.:543.0  
##  Max.   :1000.0   Max.   :-10.72   Max.   :188.1   Max.   :680.0  
##       mag          stations     
##  Min.   :4.00   Min.   : 10.00  
##  1st Qu.:4.30   1st Qu.: 18.00  
##  Median :4.60   Median : 27.00  
##  Mean   :4.62   Mean   : 33.42  
##  3rd Qu.:4.90   3rd Qu.: 42.00  
##  Max.   :6.40   Max.   :132.00
# The two attributes I am using are "depth" and "mag"

# Mean and median for "depth"
depth_mean <- mean(quakes$depth)
depth_median <- median(quakes$depth)
print(paste("The mean of depth is = ", round(depth_mean, 2), "and the median of depth = ", depth_median))
## [1] "The mean of depth is =  311.37 and the median of depth =  247"
# Mean and median for "mag"
mag_mean <- mean(quakes$mag)
mag_median <- median(quakes$mag)
print(paste("The mean of mag is = ", round(mag_mean, 2), "and the median of mag = ", mag_median))
## [1] "The mean of mag is =  4.62 and the median of mag =  4.6"

Question 2

sub_quakes <- data.frame(subset(quakes, depth > 350 & mag >= 4.5))

Question 3

names(sub_quakes) <- c("X" = "Y", "lat" = "nlat", "long" = "nlong", "depth" = "ndepth", "mag" = "nmag", "stations" = "nstations") # n = new

Question 4

summary(sub_quakes)
##        Y              nlat            nlong           ndepth     
##  Min.   :  1.0   Min.   :-32.20   Min.   :169.1   Min.   :361.0  
##  1st Qu.:261.0   1st Qu.:-23.50   1st Qu.:180.0   1st Qu.:511.0  
##  Median :463.0   Median :-21.08   Median :180.9   Median :561.0  
##  Mean   :478.5   Mean   :-21.13   Mean   :180.4   Mean   :549.7  
##  3rd Qu.:693.0   3rd Qu.:-18.48   3rd Qu.:181.5   3rd Qu.:595.0  
##  Max.   :981.0   Max.   :-12.66   Max.   :183.6   Max.   :664.0  
##       nmag         nstations     
##  Min.   :4.500   Min.   : 10.00  
##  1st Qu.:4.600   1st Qu.: 27.00  
##  Median :4.700   Median : 39.00  
##  Mean   :4.808   Mean   : 43.81  
##  3rd Qu.:5.000   3rd Qu.: 56.00  
##  Max.   :5.900   Max.   :129.00
# Mean and median for the new "depth"
ndepth_mean <- mean(sub_quakes$ndepth)
ndepth_median <- median(sub_quakes$ndepth)
print(paste("The mean of the new depth = ", round(ndepth_mean, 2), "and the median of the new depth = ", ndepth_median))
## [1] "The mean of the new depth =  549.74 and the median of the new depth =  561"
# Compare to Question 1's depth mean and median
print(paste("The mean for depth = ", round(depth_mean, 2), "and the mean for the new depth = ", round(ndepth_mean, 2)))
## [1] "The mean for depth =  311.37 and the mean for the new depth =  549.74"
print(paste("The median for depth = ", depth_median, "and the median for the new depth = ", ndepth_median))
## [1] "The median for depth =  247 and the median for the new depth =  561"
# Mean and median for the new "mag"
nmag_mean <- mean(sub_quakes$nmag)
nmag_median <- median(sub_quakes$nmag)
print(paste("The mean for the new mag = ", round(nmag_mean, 2), "and the median for the new mag = ", nmag_median))
## [1] "The mean for the new mag =  4.81 and the median for the new mag =  4.7"
# Compare to Question 1's mag mean and median
print(paste("The mean for mag = ", round(mag_mean, 2), "and the mean for the new mag = ", round(nmag_mean, 2)))
## [1] "The mean for mag =  4.62 and the mean for the new mag =  4.81"
print(paste("The medain for mag = ", mag_median, "and the median for the new mag = ", nmag_median))
## [1] "The medain for mag =  4.6 and the median for the new mag =  4.7"

Question 5

sub_quakes$nmag[sub_quakes$nmag == 4.6] <- "light"
sub_quakes$nmag[sub_quakes$nmag == 5.1] <- "moderate"
sub_quakes$nmag[sub_quakes$nmag == 5.7] <- "strong"

Question 6

head(sub_quakes, 100)
##       Y   nlat  nlong ndepth     nmag nstations
## 1     1 -20.42 181.62    562      4.8        41
## 18   18 -17.83 181.50    590      4.5        21
## 21   21 -20.84 181.16    576      4.5        17
## 25   25 -19.66 180.28    431      5.4        57
## 28   28 -16.46 180.79    498      5.2        79
## 29   29 -20.97 181.47    582      4.5        25
## 31   31 -22.58 179.24    553    light        21
## 38   38 -17.64 181.28    574    light        17
## 57   57 -22.70 181.00    445      4.5        17
## 61   61 -20.69 181.55    582      4.7        35
## 63   63 -13.82 172.38    613        5        61
## 65   65 -20.68 181.41    593      4.9        40
## 68   68 -21.96 179.62    627        5        45
## 69   69 -20.42 181.86    530      4.5        27
## 74   74 -23.74 179.99    506      5.2        75
## 82   82 -23.84 180.99    367      4.5        27
## 83   83 -19.57 182.38    579    light        38
## 88   88 -23.64 179.96    538      4.5        26
## 93   93 -20.64 182.02    497      5.2        64
## 97   97 -27.24 181.11    365      4.5        21
## 100 100 -24.57 179.92    484      4.7        33
## 102 102 -26.20 178.41    583    light        25
## 103 103 -21.88 180.39    608      4.7        30
## 105 105 -21.33 180.69    636    light        29
## 114 114 -26.11 178.30    617      4.8        39
## 123 123 -22.05 180.40    606      4.7        27
## 124 124 -19.22 182.43    571      4.5        23
## 128 128 -26.53 178.57    600        5        69
## 134 134 -23.71 180.30    510    light        30
## 141 141 -12.66 169.46    658    light        43
## 149 149 -23.58 180.17    462      5.3        63
## 156 156 -20.65 181.32    597      4.7        39
## 162 162 -24.34 179.52    504      4.8        34
## 169 169 -23.43 180.00    553      4.7        41
## 172 172 -25.68 180.34    434    light        41
## 177 177 -22.64 180.64    544        5        50
## 181 181 -18.04 181.75    640      4.5        47
## 188 188 -19.85 181.85    576      4.9        54
## 189 189 -24.27 179.88    523    light        24
## 193 193 -17.87 182.00    569    light        12
## 195 195 -32.20 179.61    422    light        41
## 200 200 -17.72 180.30    595      5.2        74
## 203 203 -16.23 183.59    367      4.7        35
## 205 205 -12.95 169.09    629      4.5        19
## 207 207 -21.96 180.54    603      5.2        66
## 208 208 -20.32 181.69    508      4.5        14
## 211 211 -30.66 180.13    411      4.7        42
## 218 218 -18.13 181.52    618    light        41
## 225 225 -23.77 180.16    505      4.5        26
## 231 231 -19.40 180.94    664      4.7        34
## 235 235 -23.84 180.13    525      4.5        15
## 238 238 -21.68 180.63    617        5        63
## 240 240 -24.96 180.22    470      4.8        41
## 246 246 -18.11 181.67    597    light        28
## 249 249 -23.36 180.01    553      5.3        61
## 253 253 -17.80 181.38    587 moderate        47
## 260 260 -23.79 179.89    526      4.9        43
## 262 262 -20.90 181.51    548      4.7        32
## 269 269 -20.21 182.37    482    light        37
## 270 270 -21.29 180.85    607      4.5        23
## 272 272 -22.09 180.38    590      4.9        35
## 275 275 -22.13 180.38    577   strong       104
## 276 276 -17.44 181.40    529    light        25
## 277 277 -23.33 180.18    528        5        59
## 279 279 -22.00 180.52    561      4.5        19
## 280 280 -19.13 182.51    579      5.2        56
## 286 286 -24.40 179.85    522      4.7        29
## 289 289 -18.07 181.57    572      4.5        26
## 290 290 -20.60 182.28    529        5        50
## 291 291 -18.48 181.49    641        5        49
## 293 293 -20.92 181.50    546    light        31
## 294 294 -25.31 179.69    507    light        35
## 297 297 -24.57 178.40    562      5.6        80
## 304 304 -21.09 181.38    555    light        15
## 306 306 -23.30 179.70    500      4.7        29
## 308 308 -22.00 180.53    583      4.9        20
## 309 309 -21.38 181.39    501    light        36
## 311 311 -13.05 169.58    644      4.9        68
## 312 312 -12.93 169.63    641 moderate        57
## 313 313 -18.60 181.91    442      5.4        82
## 314 314 -21.34 181.41    464      4.5        21
## 319 319 -26.16 179.50    492      4.5        25
## 332 332 -23.91 180.00    534      4.5        11
## 335 335 -23.49 179.07    544 moderate        58
## 356 356 -17.79 181.32    587        5        49
## 358 358 -17.10 182.68    403      5.5        82
## 363 363 -21.98 179.60    583      5.4        67
## 367 367 -20.43 182.37    502 moderate        48
## 371 371 -23.73 179.99    527 moderate        49
## 373 373 -17.59 181.09    536 moderate        61
## 374 374 -19.77 181.40    630 moderate        54
## 385 385 -20.04 182.01    605 moderate        49
## 388 388 -27.23 180.98    401      4.5        39
## 395 395 -21.04 181.20    591      4.9        45
## 397 397 -17.72 181.42    565      5.3        89
## 399 399 -17.84 181.30    535   strong       112
## 400 400 -13.45 170.30    641      5.3        93
## 404 404 -26.18 178.59    548      5.4        65
## 424 424 -22.10 179.71    579 moderate        58
## 427 427 -20.58 181.24    602      4.7        44

Question 7: See above