---
title: "Premier League 2018-2019"
output:
flexdashboard::flex_dashboard:
orientation: rows
vertical_layout: fill
social: [ "twitter", "facebook", "menu"]
source_code: embed
theme: readable
---
```{r setup, include=FALSE}
library(flexdashboard)
library(knitr)
library(tidyverse)
library(DT)
library(rpivotTable)
library(ggplot2)
library(ggthemes)
library(dplyr)
library(openintro)
library(highcharter)
library(scales)
library(janitor)
```
```{r}
epl <- read_csv("C:\\Users\\ald04\\Desktop\\RR\\Datascience\\Football\\epl_1819.csv",n_max = 20)
epl_transfer <- read_csv("C:\\Users\\ald04\\Desktop\\RR\\Datascience\\Football\\transfer.csv",n_max = 20)
# Cleaning ----------------------------------------------------------------
epl_transfer$end_2016 <- as.numeric(gsub(",","",epl_transfer$end_2016))
epl_transfer$end_2015 <- as.numeric(gsub(",","",epl_transfer$end_2015))
epl_transfer$end_2014 <- as.numeric(gsub(",","",epl_transfer$end_2014))
epl_transfer$end_2012 <- as.numeric(gsub(",","",epl_transfer$end_2012))
epl_transfer$end_2011 <- as.numeric(gsub(",","",epl_transfer$end_2011))
# Formatting --------------------------------------------------------------
epl_mod <- gather(epl_transfer,"period","amount",2:11)
Liv<- epl %>%
filter(Team == "Liverpool")
epl <- clean_names(epl)
```
```{r}
mycolors <- c("blue", "#FFC125", "darkgreen", "darkorange")
```
Home Page
=====================================
Row
-------------------------------------
### Premier League 2018 2019
```{r}
valueBox(paste("Season Review"),
color = "#fbf2e9")
```
### **League Champions**
```{r}
valueBox(paste("Manchester City"),
icon = "fa-crown",
color = "Light Gray")
```
### **Goals Scored**
```{r}
valueBox(sum(epl$attack_scored),
icon = "fa-bullseye",
color = "Light Gray")
```
### **Transfer Fees**
```{r}
transfer_value <-epl_mod %>%
filter(period == "end_2019") %>%
tally(abs(round(amount))/1000)
valueBox(paste(round(transfer_value,2),"Billion"),
color = "Light Gray",
icon = 'fa-coins')
```
### **Highest Transfers Fees (Chelsea)**
```{r}
HighSpend <- epl_mod %>%
filter(period == "end_2019" & team == "Chelsea") %>%
select(amount) %>%
mutate(amount = amount * -1)
valueBox(paste(HighSpend$amount,"Million"),
icon = 'fa-piggy-bank',
color = "Light Gray")
```
Row
-------------------------------
### **Total TV Revenue Payout**
```{r}
valueBox(paste(round(sum(epl$finance_tv_revenue)/1000000000,2), "Billion"),
color = "Light Gray",
icon = "fa-tv")
```
### **Golden Boot Winners**
```{r}
valueBox(paste("M. Salah,
S. Mane,
P. Aubameyang"),
color = "Light Gray",
icon = "fa-medal")
```
### **FPA Player of the Season**
```{r}
valueBox(paste("Virgil Van Dyke"),
color = "Light Gray",
icon = "fa-trophy")
```
Row
------------------------------------
### **Top Scoring Teams**
```{r}
epl %>%
group_by(team) %>%
tally(attack_scored) %>%
top_n(5) %>%
arrange(n) %>%
ggplot(aes(reorder(team,n),n))+
geom_col(fill = "#FAAB18", show.legend = FALSE) +
geom_text(aes(label = n), col = "white", size = 10,nudge_y = -6) +
coord_flip() +
theme_fivethirtyeight (base_size = 15) +
labs(title ="Highest Scoring Teams",
x = "",
y = "")
```
### **Sky Sports & BT Sports Payout**
```{r}
epl %>%
group_by(team) %>%
tally(finance_tv_revenue) %>%
top_n(5) %>%
arrange(n) %>%
ggplot(aes(reorder(team,n),n))+
geom_col(fill = "#FAAB18", show.legend = FALSE) +
#geom_text(aes(label = round(n/1000000,1)), col = "black", size = 10) +
coord_flip() +
theme_fivethirtyeight (base_size = 15) +
labs(title ="Top TV Revenue Earners(£)",
x = "",
y = "")+
scale_y_continuous(labels = comma)
```
Net Spend
========================================
### Net Spend
```{r}
NetSpendBar<- epl_mod %>%
ggplot(aes(period,amount,fill = amount))+
geom_col()+
scale_x_discrete(expand = c(0,0),labels = c("2010","2011","2012","2013","2014",
"2015","2016","2017","2018","2019"))+
scale_fill_continuous(high = "green",low = "red")+
labs(title = "Club Transfer Spend 2010 - 2019",
x = "End of Season",
y = "Amount in Millions (£)") +
geom_hline(yintercept=0, size=1, col = "grey")+
coord_flip()+
theme(legend.position="none",
panel.background = element_rect(fill = '#4682B4'),
plot.background=element_rect(fill="#4682B4"), ##4B6A94
panel.grid.minor = element_blank(),
#panel.grid.minor = element_line(colour = "white"),
panel.grid.major = element_line(colour = "white"),
panel.grid.major.y = element_blank(),
#panel.grid.major.x = element_blank(),
#panel.grid.minor = element_blank(),
plot.title=element_text(size=15,
face="bold",colour = "white",hjust=0.5,lineheight=1.2), # title
plot.subtitle=element_text(size=13, colour = "black",face="bold"), # subtitle
plot.caption=element_text(size=13,colour = "white"), # caption
axis.title.x=element_text(size=13,colour = "white", face = "bold",), # X axis title
axis.title.y=element_text(size=13,colour = "white", face = "bold"), # Y axis title
axis.text.x=element_text(size=10,colour = "white", face = "bold"), # X axis text
axis.text.y=element_text(size=10,colour="white",hjust=1, face="bold"),
axis.line.x = element_line(colour = "#FFFFFF", size=1, lineend = "butt"),
axis.line.y = element_line(colour = "#FFFFFF", size=1),
axis.ticks.x = element_line(colour = "#FFFFFF"),
axis.ticks.y = element_line(colour = "#FFFFFF"))+
facet_wrap(.~team)
NetSpendBar
```
Data Table
========================================
```{r}
datatable(epl,
caption = "Premier League 2018 2019",
rownames = T,
filter = "top",
options = list(pageLength = 25))
```