Data Source

https://raw.githubusercontent.com/amit-kapoor/r/master/data/hvisob.csv

Data Description

The Boston data frame has 506 rows and 14 columns.

theLink <- "https://raw.githubusercontent.com/amit-kapoor/r/master/data/hvisob.csv"

# load data into data frame
df_boston <- read.csv(file=theLink, header = TRUE, sep = ",")

# display header rows
head(df_boston)
##   X    crim zn indus chas   nox    rm  age    dis rad tax ptratio  black
## 1 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90
## 2 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90
## 3 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83
## 4 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63
## 5 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90
## 6 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12
##   lstat medv
## 1  4.98 24.0
## 2  9.14 21.6
## 3  4.03 34.7
## 4  2.94 33.4
## 5  5.33 36.2
## 6  5.21 28.7

1. Use the summary function to gain an overview of the data set. Then display the mean and median for at least two attributes.

Summary of dataset

# get summary of data set
summary(df_boston)
##        X              crim                zn             indus      
##  Min.   :  1.0   Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46  
##  1st Qu.:127.2   1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19  
##  Median :253.5   Median : 0.25651   Median :  0.00   Median : 9.69  
##  Mean   :253.5   Mean   : 3.61352   Mean   : 11.36   Mean   :11.14  
##  3rd Qu.:379.8   3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10  
##  Max.   :506.0   Max.   :88.97620   Max.   :100.00   Max.   :27.74  
##       chas              nox               rm             age        
##  Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90  
##  1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02  
##  Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50  
##  Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57  
##  3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08  
##  Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00  
##       dis              rad              tax           ptratio     
##  Min.   : 1.130   Min.   : 1.000   Min.   :187.0   Min.   :12.60  
##  1st Qu.: 2.100   1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40  
##  Median : 3.207   Median : 5.000   Median :330.0   Median :19.05  
##  Mean   : 3.795   Mean   : 9.549   Mean   :408.2   Mean   :18.46  
##  3rd Qu.: 5.188   3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20  
##  Max.   :12.127   Max.   :24.000   Max.   :711.0   Max.   :22.00  
##      black            lstat            medv      
##  Min.   :  0.32   Min.   : 1.73   Min.   : 5.00  
##  1st Qu.:375.38   1st Qu.: 6.95   1st Qu.:17.02  
##  Median :391.44   Median :11.36   Median :21.20  
##  Mean   :356.67   Mean   :12.65   Mean   :22.53  
##  3rd Qu.:396.23   3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :396.90   Max.   :37.97   Max.   :50.00

Mean and Median of rm attribute

# mean of rm
rm_mean <- mean(df_boston$rm)
rm_mean
## [1] 6.284634
# median of rm
rm_median <- median(df_boston$rm)
rm_median
## [1] 6.2085

Mean and Median of ptratio attribute

# mean of ptratio
ptratio_mean <- mean(df_boston$ptratio)
ptratio_mean
## [1] 18.45553
# median of ptratio
ptratio_median <- median(df_boston$ptratio)
ptratio_median
## [1] 19.05

2. Create a new data frame with a subset of the columns and rows. Make sure to rename it.

Subset of 50 rows with columns rm, age, dis, tax and ptratio

df_boston_subset <- df_boston[1:50, c(7,8,9,11,12)]
df_boston_subset
##       rm   age    dis tax ptratio
## 1  6.575  65.2 4.0900 296    15.3
## 2  6.421  78.9 4.9671 242    17.8
## 3  7.185  61.1 4.9671 242    17.8
## 4  6.998  45.8 6.0622 222    18.7
## 5  7.147  54.2 6.0622 222    18.7
## 6  6.430  58.7 6.0622 222    18.7
## 7  6.012  66.6 5.5605 311    15.2
## 8  6.172  96.1 5.9505 311    15.2
## 9  5.631 100.0 6.0821 311    15.2
## 10 6.004  85.9 6.5921 311    15.2
## 11 6.377  94.3 6.3467 311    15.2
## 12 6.009  82.9 6.2267 311    15.2
## 13 5.889  39.0 5.4509 311    15.2
## 14 5.949  61.8 4.7075 307    21.0
## 15 6.096  84.5 4.4619 307    21.0
## 16 5.834  56.5 4.4986 307    21.0
## 17 5.935  29.3 4.4986 307    21.0
## 18 5.990  81.7 4.2579 307    21.0
## 19 5.456  36.6 3.7965 307    21.0
## 20 5.727  69.5 3.7965 307    21.0
## 21 5.570  98.1 3.7979 307    21.0
## 22 5.965  89.2 4.0123 307    21.0
## 23 6.142  91.7 3.9769 307    21.0
## 24 5.813 100.0 4.0952 307    21.0
## 25 5.924  94.1 4.3996 307    21.0
## 26 5.599  85.7 4.4546 307    21.0
## 27 5.813  90.3 4.6820 307    21.0
## 28 6.047  88.8 4.4534 307    21.0
## 29 6.495  94.4 4.4547 307    21.0
## 30 6.674  87.3 4.2390 307    21.0
## 31 5.713  94.1 4.2330 307    21.0
## 32 6.072 100.0 4.1750 307    21.0
## 33 5.950  82.0 3.9900 307    21.0
## 34 5.701  95.0 3.7872 307    21.0
## 35 6.096  96.9 3.7598 307    21.0
## 36 5.933  68.2 3.3603 279    19.2
## 37 5.841  61.4 3.3779 279    19.2
## 38 5.850  41.5 3.9342 279    19.2
## 39 5.966  30.2 3.8473 279    19.2
## 40 6.595  21.8 5.4011 252    18.3
## 41 7.024  15.8 5.4011 252    18.3
## 42 6.770   2.9 5.7209 233    17.9
## 43 6.169   6.6 5.7209 233    17.9
## 44 6.211   6.5 5.7209 233    17.9
## 45 6.069  40.0 5.7209 233    17.9
## 46 5.682  33.8 5.1004 233    17.9
## 47 5.786  33.3 5.1004 233    17.9
## 48 6.030  85.5 5.6894 233    17.9
## 49 5.399  95.3 5.8700 233    17.9
## 50 5.602  62.0 6.0877 233    17.9

3. Create new column names for the new data frame.

Rename Columns

colnames(df_boston_subset)[1] <- "rooms_per_dwelling"
colnames(df_boston_subset)[2] <- "age_proportion"
colnames(df_boston_subset)[3] <- "wght_mean_dist"
colnames(df_boston_subset)[4] <- "property_tax"
colnames(df_boston_subset)[5] <- "pupil_teacher_ratio"

df_boston_subset
##    rooms_per_dwelling age_proportion wght_mean_dist property_tax
## 1               6.575           65.2         4.0900          296
## 2               6.421           78.9         4.9671          242
## 3               7.185           61.1         4.9671          242
## 4               6.998           45.8         6.0622          222
## 5               7.147           54.2         6.0622          222
## 6               6.430           58.7         6.0622          222
## 7               6.012           66.6         5.5605          311
## 8               6.172           96.1         5.9505          311
## 9               5.631          100.0         6.0821          311
## 10              6.004           85.9         6.5921          311
## 11              6.377           94.3         6.3467          311
## 12              6.009           82.9         6.2267          311
## 13              5.889           39.0         5.4509          311
## 14              5.949           61.8         4.7075          307
## 15              6.096           84.5         4.4619          307
## 16              5.834           56.5         4.4986          307
## 17              5.935           29.3         4.4986          307
## 18              5.990           81.7         4.2579          307
## 19              5.456           36.6         3.7965          307
## 20              5.727           69.5         3.7965          307
## 21              5.570           98.1         3.7979          307
## 22              5.965           89.2         4.0123          307
## 23              6.142           91.7         3.9769          307
## 24              5.813          100.0         4.0952          307
## 25              5.924           94.1         4.3996          307
## 26              5.599           85.7         4.4546          307
## 27              5.813           90.3         4.6820          307
## 28              6.047           88.8         4.4534          307
## 29              6.495           94.4         4.4547          307
## 30              6.674           87.3         4.2390          307
## 31              5.713           94.1         4.2330          307
## 32              6.072          100.0         4.1750          307
## 33              5.950           82.0         3.9900          307
## 34              5.701           95.0         3.7872          307
## 35              6.096           96.9         3.7598          307
## 36              5.933           68.2         3.3603          279
## 37              5.841           61.4         3.3779          279
## 38              5.850           41.5         3.9342          279
## 39              5.966           30.2         3.8473          279
## 40              6.595           21.8         5.4011          252
## 41              7.024           15.8         5.4011          252
## 42              6.770            2.9         5.7209          233
## 43              6.169            6.6         5.7209          233
## 44              6.211            6.5         5.7209          233
## 45              6.069           40.0         5.7209          233
## 46              5.682           33.8         5.1004          233
## 47              5.786           33.3         5.1004          233
## 48              6.030           85.5         5.6894          233
## 49              5.399           95.3         5.8700          233
## 50              5.602           62.0         6.0877          233
##    pupil_teacher_ratio
## 1                 15.3
## 2                 17.8
## 3                 17.8
## 4                 18.7
## 5                 18.7
## 6                 18.7
## 7                 15.2
## 8                 15.2
## 9                 15.2
## 10                15.2
## 11                15.2
## 12                15.2
## 13                15.2
## 14                21.0
## 15                21.0
## 16                21.0
## 17                21.0
## 18                21.0
## 19                21.0
## 20                21.0
## 21                21.0
## 22                21.0
## 23                21.0
## 24                21.0
## 25                21.0
## 26                21.0
## 27                21.0
## 28                21.0
## 29                21.0
## 30                21.0
## 31                21.0
## 32                21.0
## 33                21.0
## 34                21.0
## 35                21.0
## 36                19.2
## 37                19.2
## 38                19.2
## 39                19.2
## 40                18.3
## 41                18.3
## 42                17.9
## 43                17.9
## 44                17.9
## 45                17.9
## 46                17.9
## 47                17.9
## 48                17.9
## 49                17.9
## 50                17.9

4. Use the summary function to create an overview of your new data frame. The print the mean and median for the same two attributes. Please compare.

Summary of new dataset

# get summary of new data set
summary(df_boston_subset)
##  rooms_per_dwelling age_proportion   wght_mean_dist   property_tax  
##  Min.   :5.399      Min.   :  2.90   Min.   :3.360   Min.   :222.0  
##  1st Qu.:5.818      1st Qu.: 42.58   1st Qu.:4.091   1st Qu.:242.0  
##  Median :5.997      Median : 74.20   Median :4.590   Median :307.0  
##  Mean   :6.087      Mean   : 66.82   Mean   :4.860   Mean   :281.9  
##  3rd Qu.:6.201      3rd Qu.: 91.35   3rd Qu.:5.721   3rd Qu.:307.0  
##  Max.   :7.185      Max.   :100.00   Max.   :6.592   Max.   :311.0  
##  pupil_teacher_ratio
##  Min.   :15.2       
##  1st Qu.:17.9       
##  Median :19.2       
##  Mean   :19.0       
##  3rd Qu.:21.0       
##  Max.   :21.0

Mean and Median of rooms_per_dwelling attribute

# mean of rm
rooms_per_dwelling_mean <- mean(df_boston_subset$rooms_per_dwelling)
rooms_per_dwelling_mean
## [1] 6.08676
# median of rooms_per_dwelling
rooms_per_dwelling_median <- median(df_boston_subset$rooms_per_dwelling)
rooms_per_dwelling_median
## [1] 5.997

Mean and Median of pupil_teacher_ratio attribute

# mean of pupil_teacher_ratio
pupil_teacher_ratio_mean <- mean(df_boston_subset$pupil_teacher_ratio)
pupil_teacher_ratio_mean
## [1] 18.998
# median of pupil_teacher_ratio
pupil_teacher_ratio_median <- median(df_boston_subset$pupil_teacher_ratio)
pupil_teacher_ratio_median
## [1] 19.2

Compare mean and median of same two attributes in original dataset and its subset

paste("Mean rm of original dataset is ", rm_mean, "while its mean for subset is ", rooms_per_dwelling_mean)
## [1] "Mean rm of original dataset is  6.28463438735178 while its mean for subset is  6.08676"
paste("Median rm of original dataset is ", rm_median, "while its median for subset is ", rooms_per_dwelling_median)
## [1] "Median rm of original dataset is  6.2085 while its median for subset is  5.997"
paste("Mean ptratio of original dataset is ", ptratio_mean, "while its mean for subset is ", pupil_teacher_ratio_mean)
## [1] "Mean ptratio of original dataset is  18.4555335968379 while its mean for subset is  18.998"
paste("Mean ptratio of original dataset is ", ptratio_median, "while its mean for subset is ", pupil_teacher_ratio_median)
## [1] "Mean ptratio of original dataset is  19.05 while its mean for subset is  19.2"

5. For at least 3 values in a column please rename so that every value in that column is renamed. For example, suppose I have 20 values of the letter “e” in one column. Rename those values so that all 20 would show as “excellent”.

For column rad in original dataset, lets replace value 4 by 44

df_boston$rad[df_boston$rad == 4] <- 44
subset(df_boston, df_boston$rad == 44)
##       X    crim   zn indus chas    nox    rm   age     dis rad tax ptratio
## 14   14 0.62976  0.0  8.14    0 0.5380 5.949  61.8  4.7075  44 307    21.0
## 15   15 0.63796  0.0  8.14    0 0.5380 6.096  84.5  4.4619  44 307    21.0
## 16   16 0.62739  0.0  8.14    0 0.5380 5.834  56.5  4.4986  44 307    21.0
## 17   17 1.05393  0.0  8.14    0 0.5380 5.935  29.3  4.4986  44 307    21.0
## 18   18 0.78420  0.0  8.14    0 0.5380 5.990  81.7  4.2579  44 307    21.0
## 19   19 0.80271  0.0  8.14    0 0.5380 5.456  36.6  3.7965  44 307    21.0
## 20   20 0.72580  0.0  8.14    0 0.5380 5.727  69.5  3.7965  44 307    21.0
## 21   21 1.25179  0.0  8.14    0 0.5380 5.570  98.1  3.7979  44 307    21.0
## 22   22 0.85204  0.0  8.14    0 0.5380 5.965  89.2  4.0123  44 307    21.0
## 23   23 1.23247  0.0  8.14    0 0.5380 6.142  91.7  3.9769  44 307    21.0
## 24   24 0.98843  0.0  8.14    0 0.5380 5.813 100.0  4.0952  44 307    21.0
## 25   25 0.75026  0.0  8.14    0 0.5380 5.924  94.1  4.3996  44 307    21.0
## 26   26 0.84054  0.0  8.14    0 0.5380 5.599  85.7  4.4546  44 307    21.0
## 27   27 0.67191  0.0  8.14    0 0.5380 5.813  90.3  4.6820  44 307    21.0
## 28   28 0.95577  0.0  8.14    0 0.5380 6.047  88.8  4.4534  44 307    21.0
## 29   29 0.77299  0.0  8.14    0 0.5380 6.495  94.4  4.4547  44 307    21.0
## 30   30 1.00245  0.0  8.14    0 0.5380 6.674  87.3  4.2390  44 307    21.0
## 31   31 1.13081  0.0  8.14    0 0.5380 5.713  94.1  4.2330  44 307    21.0
## 32   32 1.35472  0.0  8.14    0 0.5380 6.072 100.0  4.1750  44 307    21.0
## 33   33 1.38799  0.0  8.14    0 0.5380 5.950  82.0  3.9900  44 307    21.0
## 34   34 1.15172  0.0  8.14    0 0.5380 5.701  95.0  3.7872  44 307    21.0
## 35   35 1.61282  0.0  8.14    0 0.5380 6.096  96.9  3.7598  44 307    21.0
## 51   51 0.08873 21.0  5.64    0 0.4390 5.963  45.7  6.8147  44 243    16.8
## 52   52 0.04337 21.0  5.64    0 0.4390 6.115  63.0  6.8147  44 243    16.8
## 53   53 0.05360 21.0  5.64    0 0.4390 6.511  21.1  6.8147  44 243    16.8
## 54   54 0.04981 21.0  5.64    0 0.4390 5.998  21.4  6.8147  44 243    16.8
## 66   66 0.03584 80.0  3.37    0 0.3980 6.290  17.8  6.6115  44 337    16.1
## 67   67 0.04379 80.0  3.37    0 0.3980 5.787  31.1  6.6115  44 337    16.1
## 68   68 0.05789 12.5  6.07    0 0.4090 5.878  21.4  6.4980  44 345    18.9
## 69   69 0.13554 12.5  6.07    0 0.4090 5.594  36.8  6.4980  44 345    18.9
## 70   70 0.12816 12.5  6.07    0 0.4090 5.885  33.0  6.4980  44 345    18.9
## 71   71 0.08826  0.0 10.81    0 0.4130 6.417   6.6  5.2873  44 305    19.2
## 72   72 0.15876  0.0 10.81    0 0.4130 5.961  17.5  5.2873  44 305    19.2
## 73   73 0.09164  0.0 10.81    0 0.4130 6.065   7.8  5.2873  44 305    19.2
## 74   74 0.19539  0.0 10.81    0 0.4130 6.245   6.2  5.2873  44 305    19.2
## 81   81 0.04113 25.0  4.86    0 0.4260 6.727  33.5  5.4007  44 281    19.0
## 82   82 0.04462 25.0  4.86    0 0.4260 6.619  70.4  5.4007  44 281    19.0
## 83   83 0.03659 25.0  4.86    0 0.4260 6.302  32.2  5.4007  44 281    19.0
## 84   84 0.03551 25.0  4.86    0 0.4260 6.167  46.7  5.4007  44 281    19.0
## 93   93 0.04203 28.0 15.04    0 0.4640 6.442  53.6  3.6659  44 270    18.2
## 94   94 0.02875 28.0 15.04    0 0.4640 6.211  28.9  3.6659  44 270    18.2
## 95   95 0.04294 28.0 15.04    0 0.4640 6.249  77.3  3.6150  44 270    18.2
## 128 128 0.25915  0.0 21.89    0 0.6240 5.693  96.0  1.7883  44 437    21.2
## 129 129 0.32543  0.0 21.89    0 0.6240 6.431  98.8  1.8125  44 437    21.2
## 130 130 0.88125  0.0 21.89    0 0.6240 5.637  94.7  1.9799  44 437    21.2
## 131 131 0.34006  0.0 21.89    0 0.6240 6.458  98.9  2.1185  44 437    21.2
## 132 132 1.19294  0.0 21.89    0 0.6240 6.326  97.7  2.2710  44 437    21.2
## 133 133 0.59005  0.0 21.89    0 0.6240 6.372  97.9  2.3274  44 437    21.2
## 134 134 0.32982  0.0 21.89    0 0.6240 5.822  95.4  2.4699  44 437    21.2
## 135 135 0.97617  0.0 21.89    0 0.6240 5.757  98.4  2.3460  44 437    21.2
## 136 136 0.55778  0.0 21.89    0 0.6240 6.335  98.2  2.1107  44 437    21.2
## 137 137 0.32264  0.0 21.89    0 0.6240 5.942  93.5  1.9669  44 437    21.2
## 138 138 0.35233  0.0 21.89    0 0.6240 6.454  98.4  1.8498  44 437    21.2
## 139 139 0.24980  0.0 21.89    0 0.6240 5.857  98.2  1.6686  44 437    21.2
## 140 140 0.54452  0.0 21.89    0 0.6240 6.151  97.9  1.6687  44 437    21.2
## 141 141 0.29090  0.0 21.89    0 0.6240 6.174  93.6  1.6119  44 437    21.2
## 142 142 1.62864  0.0 21.89    0 0.6240 5.019 100.0  1.4394  44 437    21.2
## 196 196 0.01381 80.0  0.46    0 0.4220 7.875  32.0  5.6484  44 255    14.4
## 204 204 0.03510 95.0  2.68    0 0.4161 7.853  33.2  5.1180  44 224    14.7
## 205 205 0.02009 95.0  2.68    0 0.4161 8.034  31.9  5.1180  44 224    14.7
## 206 206 0.13642  0.0 10.59    0 0.4890 5.891  22.3  3.9454  44 277    18.6
## 207 207 0.22969  0.0 10.59    0 0.4890 6.326  52.5  4.3549  44 277    18.6
## 208 208 0.25199  0.0 10.59    0 0.4890 5.783  72.7  4.3549  44 277    18.6
## 209 209 0.13587  0.0 10.59    1 0.4890 6.064  59.1  4.2392  44 277    18.6
## 210 210 0.43571  0.0 10.59    1 0.4890 5.344 100.0  3.8750  44 277    18.6
## 211 211 0.17446  0.0 10.59    1 0.4890 5.960  92.1  3.8771  44 277    18.6
## 212 212 0.37578  0.0 10.59    1 0.4890 5.404  88.6  3.6650  44 277    18.6
## 213 213 0.21719  0.0 10.59    1 0.4890 5.807  53.8  3.6526  44 277    18.6
## 214 214 0.14052  0.0 10.59    0 0.4890 6.375  32.3  3.9454  44 277    18.6
## 215 215 0.28955  0.0 10.59    0 0.4890 5.412   9.8  3.5875  44 277    18.6
## 216 216 0.19802  0.0 10.59    0 0.4890 6.182  42.4  3.9454  44 277    18.6
## 275 275 0.05644 40.0  6.41    1 0.4470 6.758  32.9  4.0776  44 254    17.6
## 276 276 0.09604 40.0  6.41    0 0.4470 6.854  42.8  4.2673  44 254    17.6
## 277 277 0.10469 40.0  6.41    1 0.4470 7.267  49.0  4.7872  44 254    17.6
## 278 278 0.06127 40.0  6.41    1 0.4470 6.826  27.6  4.8628  44 254    17.6
## 279 279 0.07978 40.0  6.41    0 0.4470 6.482  32.1  4.1403  44 254    17.6
## 291 291 0.03502 80.0  4.95    0 0.4110 6.861  27.9  5.1167  44 245    19.2
## 292 292 0.07886 80.0  4.95    0 0.4110 7.148  27.7  5.1167  44 245    19.2
## 293 293 0.03615 80.0  4.95    0 0.4110 6.630  23.4  5.1167  44 245    19.2
## 294 294 0.08265  0.0 13.92    0 0.4370 6.127  18.4  5.5027  44 289    16.0
## 295 295 0.08199  0.0 13.92    0 0.4370 6.009  42.3  5.5027  44 289    16.0
## 296 296 0.12932  0.0 13.92    0 0.4370 6.678  31.1  5.9604  44 289    16.0
## 297 297 0.05372  0.0 13.92    0 0.4370 6.549  51.0  5.9604  44 289    16.0
## 298 298 0.14103  0.0 13.92    0 0.4370 5.790  58.0  6.3200  44 289    16.0
## 309 309 0.49298  0.0  9.90    0 0.5440 6.635  82.5  3.3175  44 304    18.4
## 310 310 0.34940  0.0  9.90    0 0.5440 5.972  76.7  3.1025  44 304    18.4
## 311 311 2.63548  0.0  9.90    0 0.5440 4.973  37.8  2.5194  44 304    18.4
## 312 312 0.79041  0.0  9.90    0 0.5440 6.122  52.8  2.6403  44 304    18.4
## 313 313 0.26169  0.0  9.90    0 0.5440 6.023  90.4  2.8340  44 304    18.4
## 314 314 0.26938  0.0  9.90    0 0.5440 6.266  82.8  3.2628  44 304    18.4
## 315 315 0.36920  0.0  9.90    0 0.5440 6.567  87.3  3.6023  44 304    18.4
## 316 316 0.25356  0.0  9.90    0 0.5440 5.705  77.7  3.9450  44 304    18.4
## 317 317 0.31827  0.0  9.90    0 0.5440 5.914  83.2  3.9986  44 304    18.4
## 318 318 0.24522  0.0  9.90    0 0.5440 5.782  71.7  4.0317  44 304    18.4
## 319 319 0.40202  0.0  9.90    0 0.5440 6.382  67.2  3.5325  44 304    18.4
## 320 320 0.47547  0.0  9.90    0 0.5440 6.113  58.8  4.0019  44 304    18.4
## 329 329 0.06617  0.0  3.24    0 0.4600 5.868  25.8  5.2146  44 430    16.9
## 330 330 0.06724  0.0  3.24    0 0.4600 6.333  17.2  5.2146  44 430    16.9
## 331 331 0.04544  0.0  3.24    0 0.4600 6.144  32.2  5.8736  44 430    16.9
## 348 348 0.01870 85.0  4.15    0 0.4290 6.516  27.7  8.5353  44 351    17.9
## 349 349 0.01501 80.0  2.01    0 0.4350 6.635  29.7  8.3440  44 280    17.0
## 352 352 0.07950 60.0  1.69    0 0.4110 6.579  35.9 10.7103  44 411    18.3
## 353 353 0.07244 60.0  1.69    0 0.4110 5.884  18.5 10.7103  44 411    18.3
## 355 355 0.04301 80.0  1.91    0 0.4130 5.663  21.9 10.5857  44 334    22.0
## 356 356 0.10659 80.0  1.91    0 0.4130 5.936  19.5 10.5857  44 334    22.0
## 489 489 0.15086  0.0 27.74    0 0.6090 5.454  92.7  1.8209  44 711    20.1
## 490 490 0.18337  0.0 27.74    0 0.6090 5.414  98.3  1.7554  44 711    20.1
## 491 491 0.20746  0.0 27.74    0 0.6090 5.093  98.0  1.8226  44 711    20.1
## 492 492 0.10574  0.0 27.74    0 0.6090 5.983  98.8  1.8681  44 711    20.1
## 493 493 0.11132  0.0 27.74    0 0.6090 5.983  83.5  2.1099  44 711    20.1
##      black lstat medv
## 14  396.90  8.26 20.4
## 15  380.02 10.26 18.2
## 16  395.62  8.47 19.9
## 17  386.85  6.58 23.1
## 18  386.75 14.67 17.5
## 19  288.99 11.69 20.2
## 20  390.95 11.28 18.2
## 21  376.57 21.02 13.6
## 22  392.53 13.83 19.6
## 23  396.90 18.72 15.2
## 24  394.54 19.88 14.5
## 25  394.33 16.30 15.6
## 26  303.42 16.51 13.9
## 27  376.88 14.81 16.6
## 28  306.38 17.28 14.8
## 29  387.94 12.80 18.4
## 30  380.23 11.98 21.0
## 31  360.17 22.60 12.7
## 32  376.73 13.04 14.5
## 33  232.60 27.71 13.2
## 34  358.77 18.35 13.1
## 35  248.31 20.34 13.5
## 51  395.56 13.45 19.7
## 52  393.97  9.43 20.5
## 53  396.90  5.28 25.0
## 54  396.90  8.43 23.4
## 66  396.90  4.67 23.5
## 67  396.90 10.24 19.4
## 68  396.21  8.10 22.0
## 69  396.90 13.09 17.4
## 70  396.90  8.79 20.9
## 71  383.73  6.72 24.2
## 72  376.94  9.88 21.7
## 73  390.91  5.52 22.8
## 74  377.17  7.54 23.4
## 81  396.90  5.29 28.0
## 82  395.63  7.22 23.9
## 83  396.90  6.72 24.8
## 84  390.64  7.51 22.9
## 93  395.01  8.16 22.9
## 94  396.33  6.21 25.0
## 95  396.90 10.59 20.6
## 128 392.11 17.19 16.2
## 129 396.90 15.39 18.0
## 130 396.90 18.34 14.3
## 131 395.04 12.60 19.2
## 132 396.90 12.26 19.6
## 133 385.76 11.12 23.0
## 134 388.69 15.03 18.4
## 135 262.76 17.31 15.6
## 136 394.67 16.96 18.1
## 137 378.25 16.90 17.4
## 138 394.08 14.59 17.1
## 139 392.04 21.32 13.3
## 140 396.90 18.46 17.8
## 141 388.08 24.16 14.0
## 142 396.90 34.41 14.4
## 196 394.23  2.97 50.0
## 204 392.78  3.81 48.5
## 205 390.55  2.88 50.0
## 206 396.90 10.87 22.6
## 207 394.87 10.97 24.4
## 208 389.43 18.06 22.5
## 209 381.32 14.66 24.4
## 210 396.90 23.09 20.0
## 211 393.25 17.27 21.7
## 212 395.24 23.98 19.3
## 213 390.94 16.03 22.4
## 214 385.81  9.38 28.1
## 215 348.93 29.55 23.7
## 216 393.63  9.47 25.0
## 275 396.90  3.53 32.4
## 276 396.90  2.98 32.0
## 277 389.25  6.05 33.2
## 278 393.45  4.16 33.1
## 279 396.90  7.19 29.1
## 291 396.90  3.33 28.5
## 292 396.90  3.56 37.3
## 293 396.90  4.70 27.9
## 294 396.90  8.58 23.9
## 295 396.90 10.40 21.7
## 296 396.90  6.27 28.6
## 297 392.85  7.39 27.1
## 298 396.90 15.84 20.3
## 309 396.90  4.54 22.8
## 310 396.24  9.97 20.3
## 311 350.45 12.64 16.1
## 312 396.90  5.98 22.1
## 313 396.30 11.72 19.4
## 314 393.39  7.90 21.6
## 315 395.69  9.28 23.8
## 316 396.42 11.50 16.2
## 317 390.70 18.33 17.8
## 318 396.90 15.94 19.8
## 319 395.21 10.36 23.1
## 320 396.23 12.73 21.0
## 329 382.44  9.97 19.3
## 330 375.21  7.34 22.6
## 331 368.57  9.09 19.8
## 348 392.43  6.36 23.1
## 349 390.94  5.99 24.5
## 352 370.78  5.49 24.1
## 353 392.33  7.79 18.6
## 355 382.80  8.05 18.2
## 356 376.04  5.57 20.6
## 489 395.09 18.06 15.2
## 490 344.05 23.97  7.0
## 491 318.43 29.68  8.1
## 492 390.11 18.07 13.6
## 493 396.90 13.35 20.1

For column rad in original dataset, lets replace value 5 by 55

df_boston$rad[df_boston$rad == 5] <- 55
subset(df_boston, df_boston$rad == 55)
##       X    crim    zn indus chas    nox    rm   age     dis rad tax
## 7     7 0.08829  12.5  7.87    0 0.5240 6.012  66.6  5.5605  55 311
## 8     8 0.14455  12.5  7.87    0 0.5240 6.172  96.1  5.9505  55 311
## 9     9 0.21124  12.5  7.87    0 0.5240 5.631 100.0  6.0821  55 311
## 10   10 0.17004  12.5  7.87    0 0.5240 6.004  85.9  6.5921  55 311
## 11   11 0.22489  12.5  7.87    0 0.5240 6.377  94.3  6.3467  55 311
## 12   12 0.11747  12.5  7.87    0 0.5240 6.009  82.9  6.2267  55 311
## 13   13 0.09378  12.5  7.87    0 0.5240 5.889  39.0  5.4509  55 311
## 36   36 0.06417   0.0  5.96    0 0.4990 5.933  68.2  3.3603  55 279
## 37   37 0.09744   0.0  5.96    0 0.4990 5.841  61.4  3.3779  55 279
## 38   38 0.08014   0.0  5.96    0 0.4990 5.850  41.5  3.9342  55 279
## 39   39 0.17505   0.0  5.96    0 0.4990 5.966  30.2  3.8473  55 279
## 56   56 0.01311  90.0  1.22    0 0.4030 7.249  21.9  8.6966  55 226
## 58   58 0.01432 100.0  1.32    0 0.4110 6.816  40.5  8.3248  55 256
## 75   75 0.07896   0.0 12.83    0 0.4370 6.273   6.0  4.2515  55 398
## 76   76 0.09512   0.0 12.83    0 0.4370 6.286  45.0  4.5026  55 398
## 77   77 0.10153   0.0 12.83    0 0.4370 6.279  74.5  4.0522  55 398
## 78   78 0.08707   0.0 12.83    0 0.4370 6.140  45.8  4.0905  55 398
## 79   79 0.05646   0.0 12.83    0 0.4370 6.232  53.7  5.0141  55 398
## 80   80 0.08387   0.0 12.83    0 0.4370 5.874  36.6  4.5026  55 398
## 101 101 0.14866   0.0  8.56    0 0.5200 6.727  79.9  2.7778  55 384
## 102 102 0.11432   0.0  8.56    0 0.5200 6.781  71.3  2.8561  55 384
## 103 103 0.22876   0.0  8.56    0 0.5200 6.405  85.4  2.7147  55 384
## 104 104 0.21161   0.0  8.56    0 0.5200 6.137  87.4  2.7147  55 384
## 105 105 0.13960   0.0  8.56    0 0.5200 6.167  90.0  2.4210  55 384
## 106 106 0.13262   0.0  8.56    0 0.5200 5.851  96.7  2.1069  55 384
## 107 107 0.17120   0.0  8.56    0 0.5200 5.836  91.9  2.2110  55 384
## 108 108 0.13117   0.0  8.56    0 0.5200 6.127  85.2  2.1224  55 384
## 109 109 0.12802   0.0  8.56    0 0.5200 6.474  97.1  2.4329  55 384
## 110 110 0.26363   0.0  8.56    0 0.5200 6.229  91.2  2.5451  55 384
## 111 111 0.10793   0.0  8.56    0 0.5200 6.195  54.4  2.7778  55 384
## 143 143 3.32105   0.0 19.58    1 0.8710 5.403 100.0  1.3216  55 403
## 144 144 4.09740   0.0 19.58    0 0.8710 5.468 100.0  1.4118  55 403
## 145 145 2.77974   0.0 19.58    0 0.8710 4.903  97.8  1.3459  55 403
## 146 146 2.37934   0.0 19.58    0 0.8710 6.130 100.0  1.4191  55 403
## 147 147 2.15505   0.0 19.58    0 0.8710 5.628 100.0  1.5166  55 403
## 148 148 2.36862   0.0 19.58    0 0.8710 4.926  95.7  1.4608  55 403
## 149 149 2.33099   0.0 19.58    0 0.8710 5.186  93.8  1.5296  55 403
## 150 150 2.73397   0.0 19.58    0 0.8710 5.597  94.9  1.5257  55 403
## 151 151 1.65660   0.0 19.58    0 0.8710 6.122  97.3  1.6180  55 403
## 152 152 1.49632   0.0 19.58    0 0.8710 5.404 100.0  1.5916  55 403
## 153 153 1.12658   0.0 19.58    1 0.8710 5.012  88.0  1.6102  55 403
## 154 154 2.14918   0.0 19.58    0 0.8710 5.709  98.5  1.6232  55 403
## 155 155 1.41385   0.0 19.58    1 0.8710 6.129  96.0  1.7494  55 403
## 156 156 3.53501   0.0 19.58    1 0.8710 6.152  82.6  1.7455  55 403
## 157 157 2.44668   0.0 19.58    0 0.8710 5.272  94.0  1.7364  55 403
## 158 158 1.22358   0.0 19.58    0 0.6050 6.943  97.4  1.8773  55 403
## 159 159 1.34284   0.0 19.58    0 0.6050 6.066 100.0  1.7573  55 403
## 160 160 1.42502   0.0 19.58    0 0.8710 6.510 100.0  1.7659  55 403
## 161 161 1.27346   0.0 19.58    1 0.6050 6.250  92.6  1.7984  55 403
## 162 162 1.46336   0.0 19.58    0 0.6050 7.489  90.8  1.9709  55 403
## 163 163 1.83377   0.0 19.58    1 0.6050 7.802  98.2  2.0407  55 403
## 164 164 1.51902   0.0 19.58    1 0.6050 8.375  93.9  2.1620  55 403
## 165 165 2.24236   0.0 19.58    0 0.6050 5.854  91.8  2.4220  55 403
## 166 166 2.92400   0.0 19.58    0 0.6050 6.101  93.0  2.2834  55 403
## 167 167 2.01019   0.0 19.58    0 0.6050 7.929  96.2  2.0459  55 403
## 168 168 1.80028   0.0 19.58    0 0.6050 5.877  79.2  2.4259  55 403
## 169 169 2.30040   0.0 19.58    0 0.6050 6.319  96.1  2.1000  55 403
## 170 170 2.44953   0.0 19.58    0 0.6050 6.402  95.2  2.2625  55 403
## 171 171 1.20742   0.0 19.58    0 0.6050 5.875  94.6  2.4259  55 403
## 172 172 2.31390   0.0 19.58    0 0.6050 5.880  97.3  2.3887  55 403
## 173 173 0.13914   0.0  4.05    0 0.5100 5.572  88.5  2.5961  55 296
## 174 174 0.09178   0.0  4.05    0 0.5100 6.416  84.1  2.6463  55 296
## 175 175 0.08447   0.0  4.05    0 0.5100 5.859  68.7  2.7019  55 296
## 176 176 0.06664   0.0  4.05    0 0.5100 6.546  33.1  3.1323  55 296
## 177 177 0.07022   0.0  4.05    0 0.5100 6.020  47.2  3.5549  55 296
## 178 178 0.05425   0.0  4.05    0 0.5100 6.315  73.4  3.3175  55 296
## 179 179 0.06642   0.0  4.05    0 0.5100 6.860  74.4  2.9153  55 296
## 188 188 0.07875  45.0  3.44    0 0.4370 6.782  41.1  3.7886  55 398
## 189 189 0.12579  45.0  3.44    0 0.4370 6.556  29.1  4.5667  55 398
## 190 190 0.08370  45.0  3.44    0 0.4370 7.185  38.9  4.5667  55 398
## 191 191 0.09068  45.0  3.44    0 0.4370 6.951  21.5  6.4798  55 398
## 192 192 0.06911  45.0  3.44    0 0.4370 6.739  30.8  6.4798  55 398
## 193 193 0.08664  45.0  3.44    0 0.4370 7.178  26.3  6.4798  55 398
## 217 217 0.04560   0.0 13.89    1 0.5500 5.888  56.0  3.1121  55 276
## 218 218 0.07013   0.0 13.89    0 0.5500 6.642  85.1  3.4211  55 276
## 219 219 0.11069   0.0 13.89    1 0.5500 5.951  93.8  2.8893  55 276
## 220 220 0.11425   0.0 13.89    1 0.5500 6.373  92.4  3.3633  55 276
## 258 258 0.61154  20.0  3.97    0 0.6470 8.704  86.9  1.8010  55 264
## 259 259 0.66351  20.0  3.97    0 0.6470 7.333 100.0  1.8946  55 264
## 260 260 0.65665  20.0  3.97    0 0.6470 6.842 100.0  2.0107  55 264
## 261 261 0.54011  20.0  3.97    0 0.6470 7.203  81.8  2.1121  55 264
## 262 262 0.53412  20.0  3.97    0 0.6470 7.520  89.4  2.1398  55 264
## 263 263 0.52014  20.0  3.97    0 0.6470 8.398  91.5  2.2885  55 264
## 264 264 0.82526  20.0  3.97    0 0.6470 7.327  94.5  2.0788  55 264
## 265 265 0.55007  20.0  3.97    0 0.6470 7.206  91.6  1.9301  55 264
## 266 266 0.76162  20.0  3.97    0 0.6470 5.560  62.8  1.9865  55 264
## 267 267 0.78570  20.0  3.97    0 0.6470 7.014  84.6  2.1329  55 264
## 268 268 0.57834  20.0  3.97    0 0.5750 8.297  67.0  2.4216  55 264
## 269 269 0.54050  20.0  3.97    0 0.5750 7.470  52.6  2.8720  55 264
## 280 280 0.21038  20.0  3.33    0 0.4429 6.812  32.2  4.1007  55 216
## 281 281 0.03578  20.0  3.33    0 0.4429 7.820  64.5  4.6947  55 216
## 282 282 0.03705  20.0  3.33    0 0.4429 6.968  37.2  5.2447  55 216
## 283 283 0.06129  20.0  3.33    1 0.4429 7.645  49.7  5.2119  55 216
## 299 299 0.06466  70.0  2.24    0 0.4000 6.345  20.1  7.8278  55 358
## 300 300 0.05561  70.0  2.24    0 0.4000 7.041  10.0  7.8278  55 358
## 301 301 0.04417  70.0  2.24    0 0.4000 6.871  47.4  7.8278  55 358
## 321 321 0.16760   0.0  7.38    0 0.4930 6.426  52.3  4.5404  55 287
## 322 322 0.18159   0.0  7.38    0 0.4930 6.376  54.3  4.5404  55 287
## 323 323 0.35114   0.0  7.38    0 0.4930 6.041  49.9  4.7211  55 287
## 324 324 0.28392   0.0  7.38    0 0.4930 5.708  74.3  4.7211  55 287
## 325 325 0.34109   0.0  7.38    0 0.4930 6.415  40.1  4.7211  55 287
## 326 326 0.19186   0.0  7.38    0 0.4930 6.431  14.7  5.4159  55 287
## 327 327 0.30347   0.0  7.38    0 0.4930 6.312  28.9  5.4159  55 287
## 328 328 0.24103   0.0  7.38    0 0.4930 6.083  43.7  5.4159  55 287
## 334 334 0.05083   0.0  5.19    0 0.5150 6.316  38.1  6.4584  55 224
## 335 335 0.03738   0.0  5.19    0 0.5150 6.310  38.5  6.4584  55 224
## 336 336 0.03961   0.0  5.19    0 0.5150 6.037  34.5  5.9853  55 224
## 337 337 0.03427   0.0  5.19    0 0.5150 5.869  46.3  5.2311  55 224
## 338 338 0.03041   0.0  5.19    0 0.5150 5.895  59.6  5.6150  55 224
## 339 339 0.03306   0.0  5.19    0 0.5150 6.059  37.3  4.8122  55 224
## 340 340 0.05497   0.0  5.19    0 0.5150 5.985  45.4  4.8122  55 224
## 341 341 0.06151   0.0  5.19    0 0.5150 5.968  58.5  4.8122  55 224
## 344 344 0.02543  55.0  3.78    0 0.4840 6.696  56.4  5.7321  55 370
## 345 345 0.03049  55.0  3.78    0 0.4840 6.874  28.1  6.4654  55 370
## 354 354 0.01709  90.0  2.02    0 0.4100 6.728  36.1 12.1265  55 187
##     ptratio  black lstat medv
## 7      15.2 395.60 12.43 22.9
## 8      15.2 396.90 19.15 27.1
## 9      15.2 386.63 29.93 16.5
## 10     15.2 386.71 17.10 18.9
## 11     15.2 392.52 20.45 15.0
## 12     15.2 396.90 13.27 18.9
## 13     15.2 390.50 15.71 21.7
## 36     19.2 396.90  9.68 18.9
## 37     19.2 377.56 11.41 20.0
## 38     19.2 396.90  8.77 21.0
## 39     19.2 393.43 10.13 24.7
## 56     17.9 395.93  4.81 35.4
## 58     15.1 392.90  3.95 31.6
## 75     18.7 394.92  6.78 24.1
## 76     18.7 383.23  8.94 21.4
## 77     18.7 373.66 11.97 20.0
## 78     18.7 386.96 10.27 20.8
## 79     18.7 386.40 12.34 21.2
## 80     18.7 396.06  9.10 20.3
## 101    20.9 394.76  9.42 27.5
## 102    20.9 395.58  7.67 26.5
## 103    20.9  70.80 10.63 18.6
## 104    20.9 394.47 13.44 19.3
## 105    20.9 392.69 12.33 20.1
## 106    20.9 394.05 16.47 19.5
## 107    20.9 395.67 18.66 19.5
## 108    20.9 387.69 14.09 20.4
## 109    20.9 395.24 12.27 19.8
## 110    20.9 391.23 15.55 19.4
## 111    20.9 393.49 13.00 21.7
## 143    14.7 396.90 26.82 13.4
## 144    14.7 396.90 26.42 15.6
## 145    14.7 396.90 29.29 11.8
## 146    14.7 172.91 27.80 13.8
## 147    14.7 169.27 16.65 15.6
## 148    14.7 391.71 29.53 14.6
## 149    14.7 356.99 28.32 17.8
## 150    14.7 351.85 21.45 15.4
## 151    14.7 372.80 14.10 21.5
## 152    14.7 341.60 13.28 19.6
## 153    14.7 343.28 12.12 15.3
## 154    14.7 261.95 15.79 19.4
## 155    14.7 321.02 15.12 17.0
## 156    14.7  88.01 15.02 15.6
## 157    14.7  88.63 16.14 13.1
## 158    14.7 363.43  4.59 41.3
## 159    14.7 353.89  6.43 24.3
## 160    14.7 364.31  7.39 23.3
## 161    14.7 338.92  5.50 27.0
## 162    14.7 374.43  1.73 50.0
## 163    14.7 389.61  1.92 50.0
## 164    14.7 388.45  3.32 50.0
## 165    14.7 395.11 11.64 22.7
## 166    14.7 240.16  9.81 25.0
## 167    14.7 369.30  3.70 50.0
## 168    14.7 227.61 12.14 23.8
## 169    14.7 297.09 11.10 23.8
## 170    14.7 330.04 11.32 22.3
## 171    14.7 292.29 14.43 17.4
## 172    14.7 348.13 12.03 19.1
## 173    16.6 396.90 14.69 23.1
## 174    16.6 395.50  9.04 23.6
## 175    16.6 393.23  9.64 22.6
## 176    16.6 390.96  5.33 29.4
## 177    16.6 393.23 10.11 23.2
## 178    16.6 395.60  6.29 24.6
## 179    16.6 391.27  6.92 29.9
## 188    15.2 393.87  6.68 32.0
## 189    15.2 382.84  4.56 29.8
## 190    15.2 396.90  5.39 34.9
## 191    15.2 377.68  5.10 37.0
## 192    15.2 389.71  4.69 30.5
## 193    15.2 390.49  2.87 36.4
## 217    16.4 392.80 13.51 23.3
## 218    16.4 392.78  9.69 28.7
## 219    16.4 396.90 17.92 21.5
## 220    16.4 393.74 10.50 23.0
## 258    13.0 389.70  5.12 50.0
## 259    13.0 383.29  7.79 36.0
## 260    13.0 391.93  6.90 30.1
## 261    13.0 392.80  9.59 33.8
## 262    13.0 388.37  7.26 43.1
## 263    13.0 386.86  5.91 48.8
## 264    13.0 393.42 11.25 31.0
## 265    13.0 387.89  8.10 36.5
## 266    13.0 392.40 10.45 22.8
## 267    13.0 384.07 14.79 30.7
## 268    13.0 384.54  7.44 50.0
## 269    13.0 390.30  3.16 43.5
## 280    14.9 396.90  4.85 35.1
## 281    14.9 387.31  3.76 45.4
## 282    14.9 392.23  4.59 35.4
## 283    14.9 377.07  3.01 46.0
## 299    14.8 368.24  4.97 22.5
## 300    14.8 371.58  4.74 29.0
## 301    14.8 390.86  6.07 24.8
## 321    19.6 396.90  7.20 23.8
## 322    19.6 396.90  6.87 23.1
## 323    19.6 396.90  7.70 20.4
## 324    19.6 391.13 11.74 18.5
## 325    19.6 396.90  6.12 25.0
## 326    19.6 393.68  5.08 24.6
## 327    19.6 396.90  6.15 23.0
## 328    19.6 396.90 12.79 22.2
## 334    20.2 389.71  5.68 22.2
## 335    20.2 389.40  6.75 20.7
## 336    20.2 396.90  8.01 21.1
## 337    20.2 396.90  9.80 19.5
## 338    20.2 394.81 10.56 18.5
## 339    20.2 396.14  8.51 20.6
## 340    20.2 396.90  9.74 19.0
## 341    20.2 396.90  9.29 18.7
## 344    17.6 396.90  7.18 23.9
## 345    17.6 387.97  4.61 31.2
## 354    17.0 384.46  4.50 30.1

For column rad in original dataset, lets replace value 6 by 66

df_boston$rad[df_boston$rad == 6] <- 66
subset(df_boston, df_boston$rad == 66)
##       X    crim   zn indus chas   nox    rm  age    dis rad tax ptratio
## 112 112 0.10084  0.0 10.01    0 0.547 6.715 81.6 2.6775  66 432    17.8
## 113 113 0.12329  0.0 10.01    0 0.547 5.913 92.9 2.3534  66 432    17.8
## 114 114 0.22212  0.0 10.01    0 0.547 6.092 95.4 2.5480  66 432    17.8
## 115 115 0.14231  0.0 10.01    0 0.547 6.254 84.2 2.2565  66 432    17.8
## 116 116 0.17134  0.0 10.01    0 0.547 5.928 88.2 2.4631  66 432    17.8
## 117 117 0.13158  0.0 10.01    0 0.547 6.176 72.5 2.7301  66 432    17.8
## 118 118 0.15098  0.0 10.01    0 0.547 6.021 82.6 2.7474  66 432    17.8
## 119 119 0.13058  0.0 10.01    0 0.547 5.872 73.1 2.4775  66 432    17.8
## 120 120 0.14476  0.0 10.01    0 0.547 5.731 65.2 2.7592  66 432    17.8
## 239 239 0.08244 30.0  4.93    0 0.428 6.481 18.5 6.1899  66 300    16.6
## 240 240 0.09252 30.0  4.93    0 0.428 6.606 42.2 6.1899  66 300    16.6
## 241 241 0.11329 30.0  4.93    0 0.428 6.897 54.3 6.3361  66 300    16.6
## 242 242 0.10612 30.0  4.93    0 0.428 6.095 65.1 6.3361  66 300    16.6
## 243 243 0.10290 30.0  4.93    0 0.428 6.358 52.9 7.0355  66 300    16.6
## 244 244 0.12757 30.0  4.93    0 0.428 6.393  7.8 7.0355  66 300    16.6
## 288 288 0.03871 52.5  5.32    0 0.405 6.209 31.3 7.3172  66 293    16.6
## 289 289 0.04590 52.5  5.32    0 0.405 6.315 45.6 7.3172  66 293    16.6
## 290 290 0.04297 52.5  5.32    0 0.405 6.565 22.9 7.3172  66 293    16.6
## 494 494 0.17331  0.0  9.69    0 0.585 5.707 54.0 2.3817  66 391    19.2
## 495 495 0.27957  0.0  9.69    0 0.585 5.926 42.6 2.3817  66 391    19.2
## 496 496 0.17899  0.0  9.69    0 0.585 5.670 28.8 2.7986  66 391    19.2
## 497 497 0.28960  0.0  9.69    0 0.585 5.390 72.9 2.7986  66 391    19.2
## 498 498 0.26838  0.0  9.69    0 0.585 5.794 70.6 2.8927  66 391    19.2
## 499 499 0.23912  0.0  9.69    0 0.585 6.019 65.3 2.4091  66 391    19.2
## 500 500 0.17783  0.0  9.69    0 0.585 5.569 73.5 2.3999  66 391    19.2
## 501 501 0.22438  0.0  9.69    0 0.585 6.027 79.7 2.4982  66 391    19.2
##      black lstat medv
## 112 395.59 10.16 22.8
## 113 394.95 16.21 18.8
## 114 396.90 17.09 18.7
## 115 388.74 10.45 18.5
## 116 344.91 15.76 18.3
## 117 393.30 12.04 21.2
## 118 394.51 10.30 19.2
## 119 338.63 15.37 20.4
## 120 391.50 13.61 19.3
## 239 379.41  6.36 23.7
## 240 383.78  7.37 23.3
## 241 391.25 11.38 22.0
## 242 394.62 12.40 20.1
## 243 372.75 11.22 22.2
## 244 374.71  5.19 23.7
## 288 396.90  7.14 23.2
## 289 396.90  7.60 22.3
## 290 371.72  9.51 24.8
## 494 396.90 12.01 21.8
## 495 396.90 13.59 24.5
## 496 393.29 17.60 23.1
## 497 396.90 21.14 19.7
## 498 396.90 14.10 18.3
## 499 396.90 12.92 21.2
## 500 395.77 15.10 17.5
## 501 396.90 14.33 16.8

6. Display enough rows to see examples of all of steps 1-5 above

df_boston[1:100,]
##       X    crim    zn indus chas    nox    rm   age    dis rad tax ptratio
## 1     1 0.00632  18.0  2.31    0 0.5380 6.575  65.2 4.0900   1 296    15.3
## 2     2 0.02731   0.0  7.07    0 0.4690 6.421  78.9 4.9671   2 242    17.8
## 3     3 0.02729   0.0  7.07    0 0.4690 7.185  61.1 4.9671   2 242    17.8
## 4     4 0.03237   0.0  2.18    0 0.4580 6.998  45.8 6.0622   3 222    18.7
## 5     5 0.06905   0.0  2.18    0 0.4580 7.147  54.2 6.0622   3 222    18.7
## 6     6 0.02985   0.0  2.18    0 0.4580 6.430  58.7 6.0622   3 222    18.7
## 7     7 0.08829  12.5  7.87    0 0.5240 6.012  66.6 5.5605  55 311    15.2
## 8     8 0.14455  12.5  7.87    0 0.5240 6.172  96.1 5.9505  55 311    15.2
## 9     9 0.21124  12.5  7.87    0 0.5240 5.631 100.0 6.0821  55 311    15.2
## 10   10 0.17004  12.5  7.87    0 0.5240 6.004  85.9 6.5921  55 311    15.2
## 11   11 0.22489  12.5  7.87    0 0.5240 6.377  94.3 6.3467  55 311    15.2
## 12   12 0.11747  12.5  7.87    0 0.5240 6.009  82.9 6.2267  55 311    15.2
## 13   13 0.09378  12.5  7.87    0 0.5240 5.889  39.0 5.4509  55 311    15.2
## 14   14 0.62976   0.0  8.14    0 0.5380 5.949  61.8 4.7075  44 307    21.0
## 15   15 0.63796   0.0  8.14    0 0.5380 6.096  84.5 4.4619  44 307    21.0
## 16   16 0.62739   0.0  8.14    0 0.5380 5.834  56.5 4.4986  44 307    21.0
## 17   17 1.05393   0.0  8.14    0 0.5380 5.935  29.3 4.4986  44 307    21.0
## 18   18 0.78420   0.0  8.14    0 0.5380 5.990  81.7 4.2579  44 307    21.0
## 19   19 0.80271   0.0  8.14    0 0.5380 5.456  36.6 3.7965  44 307    21.0
## 20   20 0.72580   0.0  8.14    0 0.5380 5.727  69.5 3.7965  44 307    21.0
## 21   21 1.25179   0.0  8.14    0 0.5380 5.570  98.1 3.7979  44 307    21.0
## 22   22 0.85204   0.0  8.14    0 0.5380 5.965  89.2 4.0123  44 307    21.0
## 23   23 1.23247   0.0  8.14    0 0.5380 6.142  91.7 3.9769  44 307    21.0
## 24   24 0.98843   0.0  8.14    0 0.5380 5.813 100.0 4.0952  44 307    21.0
## 25   25 0.75026   0.0  8.14    0 0.5380 5.924  94.1 4.3996  44 307    21.0
## 26   26 0.84054   0.0  8.14    0 0.5380 5.599  85.7 4.4546  44 307    21.0
## 27   27 0.67191   0.0  8.14    0 0.5380 5.813  90.3 4.6820  44 307    21.0
## 28   28 0.95577   0.0  8.14    0 0.5380 6.047  88.8 4.4534  44 307    21.0
## 29   29 0.77299   0.0  8.14    0 0.5380 6.495  94.4 4.4547  44 307    21.0
## 30   30 1.00245   0.0  8.14    0 0.5380 6.674  87.3 4.2390  44 307    21.0
## 31   31 1.13081   0.0  8.14    0 0.5380 5.713  94.1 4.2330  44 307    21.0
## 32   32 1.35472   0.0  8.14    0 0.5380 6.072 100.0 4.1750  44 307    21.0
## 33   33 1.38799   0.0  8.14    0 0.5380 5.950  82.0 3.9900  44 307    21.0
## 34   34 1.15172   0.0  8.14    0 0.5380 5.701  95.0 3.7872  44 307    21.0
## 35   35 1.61282   0.0  8.14    0 0.5380 6.096  96.9 3.7598  44 307    21.0
## 36   36 0.06417   0.0  5.96    0 0.4990 5.933  68.2 3.3603  55 279    19.2
## 37   37 0.09744   0.0  5.96    0 0.4990 5.841  61.4 3.3779  55 279    19.2
## 38   38 0.08014   0.0  5.96    0 0.4990 5.850  41.5 3.9342  55 279    19.2
## 39   39 0.17505   0.0  5.96    0 0.4990 5.966  30.2 3.8473  55 279    19.2
## 40   40 0.02763  75.0  2.95    0 0.4280 6.595  21.8 5.4011   3 252    18.3
## 41   41 0.03359  75.0  2.95    0 0.4280 7.024  15.8 5.4011   3 252    18.3
## 42   42 0.12744   0.0  6.91    0 0.4480 6.770   2.9 5.7209   3 233    17.9
## 43   43 0.14150   0.0  6.91    0 0.4480 6.169   6.6 5.7209   3 233    17.9
## 44   44 0.15936   0.0  6.91    0 0.4480 6.211   6.5 5.7209   3 233    17.9
## 45   45 0.12269   0.0  6.91    0 0.4480 6.069  40.0 5.7209   3 233    17.9
## 46   46 0.17142   0.0  6.91    0 0.4480 5.682  33.8 5.1004   3 233    17.9
## 47   47 0.18836   0.0  6.91    0 0.4480 5.786  33.3 5.1004   3 233    17.9
## 48   48 0.22927   0.0  6.91    0 0.4480 6.030  85.5 5.6894   3 233    17.9
## 49   49 0.25387   0.0  6.91    0 0.4480 5.399  95.3 5.8700   3 233    17.9
## 50   50 0.21977   0.0  6.91    0 0.4480 5.602  62.0 6.0877   3 233    17.9
## 51   51 0.08873  21.0  5.64    0 0.4390 5.963  45.7 6.8147  44 243    16.8
## 52   52 0.04337  21.0  5.64    0 0.4390 6.115  63.0 6.8147  44 243    16.8
## 53   53 0.05360  21.0  5.64    0 0.4390 6.511  21.1 6.8147  44 243    16.8
## 54   54 0.04981  21.0  5.64    0 0.4390 5.998  21.4 6.8147  44 243    16.8
## 55   55 0.01360  75.0  4.00    0 0.4100 5.888  47.6 7.3197   3 469    21.1
## 56   56 0.01311  90.0  1.22    0 0.4030 7.249  21.9 8.6966  55 226    17.9
## 57   57 0.02055  85.0  0.74    0 0.4100 6.383  35.7 9.1876   2 313    17.3
## 58   58 0.01432 100.0  1.32    0 0.4110 6.816  40.5 8.3248  55 256    15.1
## 59   59 0.15445  25.0  5.13    0 0.4530 6.145  29.2 7.8148   8 284    19.7
## 60   60 0.10328  25.0  5.13    0 0.4530 5.927  47.2 6.9320   8 284    19.7
## 61   61 0.14932  25.0  5.13    0 0.4530 5.741  66.2 7.2254   8 284    19.7
## 62   62 0.17171  25.0  5.13    0 0.4530 5.966  93.4 6.8185   8 284    19.7
## 63   63 0.11027  25.0  5.13    0 0.4530 6.456  67.8 7.2255   8 284    19.7
## 64   64 0.12650  25.0  5.13    0 0.4530 6.762  43.4 7.9809   8 284    19.7
## 65   65 0.01951  17.5  1.38    0 0.4161 7.104  59.5 9.2229   3 216    18.6
## 66   66 0.03584  80.0  3.37    0 0.3980 6.290  17.8 6.6115  44 337    16.1
## 67   67 0.04379  80.0  3.37    0 0.3980 5.787  31.1 6.6115  44 337    16.1
## 68   68 0.05789  12.5  6.07    0 0.4090 5.878  21.4 6.4980  44 345    18.9
## 69   69 0.13554  12.5  6.07    0 0.4090 5.594  36.8 6.4980  44 345    18.9
## 70   70 0.12816  12.5  6.07    0 0.4090 5.885  33.0 6.4980  44 345    18.9
## 71   71 0.08826   0.0 10.81    0 0.4130 6.417   6.6 5.2873  44 305    19.2
## 72   72 0.15876   0.0 10.81    0 0.4130 5.961  17.5 5.2873  44 305    19.2
## 73   73 0.09164   0.0 10.81    0 0.4130 6.065   7.8 5.2873  44 305    19.2
## 74   74 0.19539   0.0 10.81    0 0.4130 6.245   6.2 5.2873  44 305    19.2
## 75   75 0.07896   0.0 12.83    0 0.4370 6.273   6.0 4.2515  55 398    18.7
## 76   76 0.09512   0.0 12.83    0 0.4370 6.286  45.0 4.5026  55 398    18.7
## 77   77 0.10153   0.0 12.83    0 0.4370 6.279  74.5 4.0522  55 398    18.7
## 78   78 0.08707   0.0 12.83    0 0.4370 6.140  45.8 4.0905  55 398    18.7
## 79   79 0.05646   0.0 12.83    0 0.4370 6.232  53.7 5.0141  55 398    18.7
## 80   80 0.08387   0.0 12.83    0 0.4370 5.874  36.6 4.5026  55 398    18.7
## 81   81 0.04113  25.0  4.86    0 0.4260 6.727  33.5 5.4007  44 281    19.0
## 82   82 0.04462  25.0  4.86    0 0.4260 6.619  70.4 5.4007  44 281    19.0
## 83   83 0.03659  25.0  4.86    0 0.4260 6.302  32.2 5.4007  44 281    19.0
## 84   84 0.03551  25.0  4.86    0 0.4260 6.167  46.7 5.4007  44 281    19.0
## 85   85 0.05059   0.0  4.49    0 0.4490 6.389  48.0 4.7794   3 247    18.5
## 86   86 0.05735   0.0  4.49    0 0.4490 6.630  56.1 4.4377   3 247    18.5
## 87   87 0.05188   0.0  4.49    0 0.4490 6.015  45.1 4.4272   3 247    18.5
## 88   88 0.07151   0.0  4.49    0 0.4490 6.121  56.8 3.7476   3 247    18.5
## 89   89 0.05660   0.0  3.41    0 0.4890 7.007  86.3 3.4217   2 270    17.8
## 90   90 0.05302   0.0  3.41    0 0.4890 7.079  63.1 3.4145   2 270    17.8
## 91   91 0.04684   0.0  3.41    0 0.4890 6.417  66.1 3.0923   2 270    17.8
## 92   92 0.03932   0.0  3.41    0 0.4890 6.405  73.9 3.0921   2 270    17.8
## 93   93 0.04203  28.0 15.04    0 0.4640 6.442  53.6 3.6659  44 270    18.2
## 94   94 0.02875  28.0 15.04    0 0.4640 6.211  28.9 3.6659  44 270    18.2
## 95   95 0.04294  28.0 15.04    0 0.4640 6.249  77.3 3.6150  44 270    18.2
## 96   96 0.12204   0.0  2.89    0 0.4450 6.625  57.8 3.4952   2 276    18.0
## 97   97 0.11504   0.0  2.89    0 0.4450 6.163  69.6 3.4952   2 276    18.0
## 98   98 0.12083   0.0  2.89    0 0.4450 8.069  76.0 3.4952   2 276    18.0
## 99   99 0.08187   0.0  2.89    0 0.4450 7.820  36.9 3.4952   2 276    18.0
## 100 100 0.06860   0.0  2.89    0 0.4450 7.416  62.5 3.4952   2 276    18.0
##      black lstat medv
## 1   396.90  4.98 24.0
## 2   396.90  9.14 21.6
## 3   392.83  4.03 34.7
## 4   394.63  2.94 33.4
## 5   396.90  5.33 36.2
## 6   394.12  5.21 28.7
## 7   395.60 12.43 22.9
## 8   396.90 19.15 27.1
## 9   386.63 29.93 16.5
## 10  386.71 17.10 18.9
## 11  392.52 20.45 15.0
## 12  396.90 13.27 18.9
## 13  390.50 15.71 21.7
## 14  396.90  8.26 20.4
## 15  380.02 10.26 18.2
## 16  395.62  8.47 19.9
## 17  386.85  6.58 23.1
## 18  386.75 14.67 17.5
## 19  288.99 11.69 20.2
## 20  390.95 11.28 18.2
## 21  376.57 21.02 13.6
## 22  392.53 13.83 19.6
## 23  396.90 18.72 15.2
## 24  394.54 19.88 14.5
## 25  394.33 16.30 15.6
## 26  303.42 16.51 13.9
## 27  376.88 14.81 16.6
## 28  306.38 17.28 14.8
## 29  387.94 12.80 18.4
## 30  380.23 11.98 21.0
## 31  360.17 22.60 12.7
## 32  376.73 13.04 14.5
## 33  232.60 27.71 13.2
## 34  358.77 18.35 13.1
## 35  248.31 20.34 13.5
## 36  396.90  9.68 18.9
## 37  377.56 11.41 20.0
## 38  396.90  8.77 21.0
## 39  393.43 10.13 24.7
## 40  395.63  4.32 30.8
## 41  395.62  1.98 34.9
## 42  385.41  4.84 26.6
## 43  383.37  5.81 25.3
## 44  394.46  7.44 24.7
## 45  389.39  9.55 21.2
## 46  396.90 10.21 19.3
## 47  396.90 14.15 20.0
## 48  392.74 18.80 16.6
## 49  396.90 30.81 14.4
## 50  396.90 16.20 19.4
## 51  395.56 13.45 19.7
## 52  393.97  9.43 20.5
## 53  396.90  5.28 25.0
## 54  396.90  8.43 23.4
## 55  396.90 14.80 18.9
## 56  395.93  4.81 35.4
## 57  396.90  5.77 24.7
## 58  392.90  3.95 31.6
## 59  390.68  6.86 23.3
## 60  396.90  9.22 19.6
## 61  395.11 13.15 18.7
## 62  378.08 14.44 16.0
## 63  396.90  6.73 22.2
## 64  395.58  9.50 25.0
## 65  393.24  8.05 33.0
## 66  396.90  4.67 23.5
## 67  396.90 10.24 19.4
## 68  396.21  8.10 22.0
## 69  396.90 13.09 17.4
## 70  396.90  8.79 20.9
## 71  383.73  6.72 24.2
## 72  376.94  9.88 21.7
## 73  390.91  5.52 22.8
## 74  377.17  7.54 23.4
## 75  394.92  6.78 24.1
## 76  383.23  8.94 21.4
## 77  373.66 11.97 20.0
## 78  386.96 10.27 20.8
## 79  386.40 12.34 21.2
## 80  396.06  9.10 20.3
## 81  396.90  5.29 28.0
## 82  395.63  7.22 23.9
## 83  396.90  6.72 24.8
## 84  390.64  7.51 22.9
## 85  396.90  9.62 23.9
## 86  392.30  6.53 26.6
## 87  395.99 12.86 22.5
## 88  395.15  8.44 22.2
## 89  396.90  5.50 23.6
## 90  396.06  5.70 28.7
## 91  392.18  8.81 22.6
## 92  393.55  8.20 22.0
## 93  395.01  8.16 22.9
## 94  396.33  6.21 25.0
## 95  396.90 10.59 20.6
## 96  357.98  6.65 28.4
## 97  391.83 11.34 21.4
## 98  396.90  4.21 38.7
## 99  393.53  3.57 43.8
## 100 396.90  6.19 33.2