The Boston data frame has 506 rows and 14 columns.
theLink <- "https://raw.githubusercontent.com/amit-kapoor/r/master/data/hvisob.csv"
# load data into data frame
df_boston <- read.csv(file=theLink, header = TRUE, sep = ",")
# display header rows
head(df_boston)
## X crim zn indus chas nox rm age dis rad tax ptratio black
## 1 1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90
## 2 2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90
## 3 3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83
## 4 4 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63
## 5 5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90
## 6 6 0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12
## lstat medv
## 1 4.98 24.0
## 2 9.14 21.6
## 3 4.03 34.7
## 4 2.94 33.4
## 5 5.33 36.2
## 6 5.21 28.7
# get summary of data set
summary(df_boston)
## X crim zn indus
## Min. : 1.0 Min. : 0.00632 Min. : 0.00 Min. : 0.46
## 1st Qu.:127.2 1st Qu.: 0.08204 1st Qu.: 0.00 1st Qu.: 5.19
## Median :253.5 Median : 0.25651 Median : 0.00 Median : 9.69
## Mean :253.5 Mean : 3.61352 Mean : 11.36 Mean :11.14
## 3rd Qu.:379.8 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10
## Max. :506.0 Max. :88.97620 Max. :100.00 Max. :27.74
## chas nox rm age
## Min. :0.00000 Min. :0.3850 Min. :3.561 Min. : 2.90
## 1st Qu.:0.00000 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02
## Median :0.00000 Median :0.5380 Median :6.208 Median : 77.50
## Mean :0.06917 Mean :0.5547 Mean :6.285 Mean : 68.57
## 3rd Qu.:0.00000 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08
## Max. :1.00000 Max. :0.8710 Max. :8.780 Max. :100.00
## dis rad tax ptratio
## Min. : 1.130 Min. : 1.000 Min. :187.0 Min. :12.60
## 1st Qu.: 2.100 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40
## Median : 3.207 Median : 5.000 Median :330.0 Median :19.05
## Mean : 3.795 Mean : 9.549 Mean :408.2 Mean :18.46
## 3rd Qu.: 5.188 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20
## Max. :12.127 Max. :24.000 Max. :711.0 Max. :22.00
## black lstat medv
## Min. : 0.32 Min. : 1.73 Min. : 5.00
## 1st Qu.:375.38 1st Qu.: 6.95 1st Qu.:17.02
## Median :391.44 Median :11.36 Median :21.20
## Mean :356.67 Mean :12.65 Mean :22.53
## 3rd Qu.:396.23 3rd Qu.:16.95 3rd Qu.:25.00
## Max. :396.90 Max. :37.97 Max. :50.00
# mean of rm
rm_mean <- mean(df_boston$rm)
rm_mean
## [1] 6.284634
# median of rm
rm_median <- median(df_boston$rm)
rm_median
## [1] 6.2085
# mean of ptratio
ptratio_mean <- mean(df_boston$ptratio)
ptratio_mean
## [1] 18.45553
# median of ptratio
ptratio_median <- median(df_boston$ptratio)
ptratio_median
## [1] 19.05
df_boston_subset <- df_boston[1:50, c(7,8,9,11,12)]
df_boston_subset
## rm age dis tax ptratio
## 1 6.575 65.2 4.0900 296 15.3
## 2 6.421 78.9 4.9671 242 17.8
## 3 7.185 61.1 4.9671 242 17.8
## 4 6.998 45.8 6.0622 222 18.7
## 5 7.147 54.2 6.0622 222 18.7
## 6 6.430 58.7 6.0622 222 18.7
## 7 6.012 66.6 5.5605 311 15.2
## 8 6.172 96.1 5.9505 311 15.2
## 9 5.631 100.0 6.0821 311 15.2
## 10 6.004 85.9 6.5921 311 15.2
## 11 6.377 94.3 6.3467 311 15.2
## 12 6.009 82.9 6.2267 311 15.2
## 13 5.889 39.0 5.4509 311 15.2
## 14 5.949 61.8 4.7075 307 21.0
## 15 6.096 84.5 4.4619 307 21.0
## 16 5.834 56.5 4.4986 307 21.0
## 17 5.935 29.3 4.4986 307 21.0
## 18 5.990 81.7 4.2579 307 21.0
## 19 5.456 36.6 3.7965 307 21.0
## 20 5.727 69.5 3.7965 307 21.0
## 21 5.570 98.1 3.7979 307 21.0
## 22 5.965 89.2 4.0123 307 21.0
## 23 6.142 91.7 3.9769 307 21.0
## 24 5.813 100.0 4.0952 307 21.0
## 25 5.924 94.1 4.3996 307 21.0
## 26 5.599 85.7 4.4546 307 21.0
## 27 5.813 90.3 4.6820 307 21.0
## 28 6.047 88.8 4.4534 307 21.0
## 29 6.495 94.4 4.4547 307 21.0
## 30 6.674 87.3 4.2390 307 21.0
## 31 5.713 94.1 4.2330 307 21.0
## 32 6.072 100.0 4.1750 307 21.0
## 33 5.950 82.0 3.9900 307 21.0
## 34 5.701 95.0 3.7872 307 21.0
## 35 6.096 96.9 3.7598 307 21.0
## 36 5.933 68.2 3.3603 279 19.2
## 37 5.841 61.4 3.3779 279 19.2
## 38 5.850 41.5 3.9342 279 19.2
## 39 5.966 30.2 3.8473 279 19.2
## 40 6.595 21.8 5.4011 252 18.3
## 41 7.024 15.8 5.4011 252 18.3
## 42 6.770 2.9 5.7209 233 17.9
## 43 6.169 6.6 5.7209 233 17.9
## 44 6.211 6.5 5.7209 233 17.9
## 45 6.069 40.0 5.7209 233 17.9
## 46 5.682 33.8 5.1004 233 17.9
## 47 5.786 33.3 5.1004 233 17.9
## 48 6.030 85.5 5.6894 233 17.9
## 49 5.399 95.3 5.8700 233 17.9
## 50 5.602 62.0 6.0877 233 17.9
colnames(df_boston_subset)[1] <- "rooms_per_dwelling"
colnames(df_boston_subset)[2] <- "age_proportion"
colnames(df_boston_subset)[3] <- "wght_mean_dist"
colnames(df_boston_subset)[4] <- "property_tax"
colnames(df_boston_subset)[5] <- "pupil_teacher_ratio"
df_boston_subset
## rooms_per_dwelling age_proportion wght_mean_dist property_tax
## 1 6.575 65.2 4.0900 296
## 2 6.421 78.9 4.9671 242
## 3 7.185 61.1 4.9671 242
## 4 6.998 45.8 6.0622 222
## 5 7.147 54.2 6.0622 222
## 6 6.430 58.7 6.0622 222
## 7 6.012 66.6 5.5605 311
## 8 6.172 96.1 5.9505 311
## 9 5.631 100.0 6.0821 311
## 10 6.004 85.9 6.5921 311
## 11 6.377 94.3 6.3467 311
## 12 6.009 82.9 6.2267 311
## 13 5.889 39.0 5.4509 311
## 14 5.949 61.8 4.7075 307
## 15 6.096 84.5 4.4619 307
## 16 5.834 56.5 4.4986 307
## 17 5.935 29.3 4.4986 307
## 18 5.990 81.7 4.2579 307
## 19 5.456 36.6 3.7965 307
## 20 5.727 69.5 3.7965 307
## 21 5.570 98.1 3.7979 307
## 22 5.965 89.2 4.0123 307
## 23 6.142 91.7 3.9769 307
## 24 5.813 100.0 4.0952 307
## 25 5.924 94.1 4.3996 307
## 26 5.599 85.7 4.4546 307
## 27 5.813 90.3 4.6820 307
## 28 6.047 88.8 4.4534 307
## 29 6.495 94.4 4.4547 307
## 30 6.674 87.3 4.2390 307
## 31 5.713 94.1 4.2330 307
## 32 6.072 100.0 4.1750 307
## 33 5.950 82.0 3.9900 307
## 34 5.701 95.0 3.7872 307
## 35 6.096 96.9 3.7598 307
## 36 5.933 68.2 3.3603 279
## 37 5.841 61.4 3.3779 279
## 38 5.850 41.5 3.9342 279
## 39 5.966 30.2 3.8473 279
## 40 6.595 21.8 5.4011 252
## 41 7.024 15.8 5.4011 252
## 42 6.770 2.9 5.7209 233
## 43 6.169 6.6 5.7209 233
## 44 6.211 6.5 5.7209 233
## 45 6.069 40.0 5.7209 233
## 46 5.682 33.8 5.1004 233
## 47 5.786 33.3 5.1004 233
## 48 6.030 85.5 5.6894 233
## 49 5.399 95.3 5.8700 233
## 50 5.602 62.0 6.0877 233
## pupil_teacher_ratio
## 1 15.3
## 2 17.8
## 3 17.8
## 4 18.7
## 5 18.7
## 6 18.7
## 7 15.2
## 8 15.2
## 9 15.2
## 10 15.2
## 11 15.2
## 12 15.2
## 13 15.2
## 14 21.0
## 15 21.0
## 16 21.0
## 17 21.0
## 18 21.0
## 19 21.0
## 20 21.0
## 21 21.0
## 22 21.0
## 23 21.0
## 24 21.0
## 25 21.0
## 26 21.0
## 27 21.0
## 28 21.0
## 29 21.0
## 30 21.0
## 31 21.0
## 32 21.0
## 33 21.0
## 34 21.0
## 35 21.0
## 36 19.2
## 37 19.2
## 38 19.2
## 39 19.2
## 40 18.3
## 41 18.3
## 42 17.9
## 43 17.9
## 44 17.9
## 45 17.9
## 46 17.9
## 47 17.9
## 48 17.9
## 49 17.9
## 50 17.9
# get summary of new data set
summary(df_boston_subset)
## rooms_per_dwelling age_proportion wght_mean_dist property_tax
## Min. :5.399 Min. : 2.90 Min. :3.360 Min. :222.0
## 1st Qu.:5.818 1st Qu.: 42.58 1st Qu.:4.091 1st Qu.:242.0
## Median :5.997 Median : 74.20 Median :4.590 Median :307.0
## Mean :6.087 Mean : 66.82 Mean :4.860 Mean :281.9
## 3rd Qu.:6.201 3rd Qu.: 91.35 3rd Qu.:5.721 3rd Qu.:307.0
## Max. :7.185 Max. :100.00 Max. :6.592 Max. :311.0
## pupil_teacher_ratio
## Min. :15.2
## 1st Qu.:17.9
## Median :19.2
## Mean :19.0
## 3rd Qu.:21.0
## Max. :21.0
# mean of rm
rooms_per_dwelling_mean <- mean(df_boston_subset$rooms_per_dwelling)
rooms_per_dwelling_mean
## [1] 6.08676
# median of rooms_per_dwelling
rooms_per_dwelling_median <- median(df_boston_subset$rooms_per_dwelling)
rooms_per_dwelling_median
## [1] 5.997
# mean of pupil_teacher_ratio
pupil_teacher_ratio_mean <- mean(df_boston_subset$pupil_teacher_ratio)
pupil_teacher_ratio_mean
## [1] 18.998
# median of pupil_teacher_ratio
pupil_teacher_ratio_median <- median(df_boston_subset$pupil_teacher_ratio)
pupil_teacher_ratio_median
## [1] 19.2
paste("Mean rm of original dataset is ", rm_mean, "while its mean for subset is ", rooms_per_dwelling_mean)
## [1] "Mean rm of original dataset is 6.28463438735178 while its mean for subset is 6.08676"
paste("Median rm of original dataset is ", rm_median, "while its median for subset is ", rooms_per_dwelling_median)
## [1] "Median rm of original dataset is 6.2085 while its median for subset is 5.997"
paste("Mean ptratio of original dataset is ", ptratio_mean, "while its mean for subset is ", pupil_teacher_ratio_mean)
## [1] "Mean ptratio of original dataset is 18.4555335968379 while its mean for subset is 18.998"
paste("Mean ptratio of original dataset is ", ptratio_median, "while its mean for subset is ", pupil_teacher_ratio_median)
## [1] "Mean ptratio of original dataset is 19.05 while its mean for subset is 19.2"
df_boston$rad[df_boston$rad == 4] <- 44
subset(df_boston, df_boston$rad == 44)
## X crim zn indus chas nox rm age dis rad tax ptratio
## 14 14 0.62976 0.0 8.14 0 0.5380 5.949 61.8 4.7075 44 307 21.0
## 15 15 0.63796 0.0 8.14 0 0.5380 6.096 84.5 4.4619 44 307 21.0
## 16 16 0.62739 0.0 8.14 0 0.5380 5.834 56.5 4.4986 44 307 21.0
## 17 17 1.05393 0.0 8.14 0 0.5380 5.935 29.3 4.4986 44 307 21.0
## 18 18 0.78420 0.0 8.14 0 0.5380 5.990 81.7 4.2579 44 307 21.0
## 19 19 0.80271 0.0 8.14 0 0.5380 5.456 36.6 3.7965 44 307 21.0
## 20 20 0.72580 0.0 8.14 0 0.5380 5.727 69.5 3.7965 44 307 21.0
## 21 21 1.25179 0.0 8.14 0 0.5380 5.570 98.1 3.7979 44 307 21.0
## 22 22 0.85204 0.0 8.14 0 0.5380 5.965 89.2 4.0123 44 307 21.0
## 23 23 1.23247 0.0 8.14 0 0.5380 6.142 91.7 3.9769 44 307 21.0
## 24 24 0.98843 0.0 8.14 0 0.5380 5.813 100.0 4.0952 44 307 21.0
## 25 25 0.75026 0.0 8.14 0 0.5380 5.924 94.1 4.3996 44 307 21.0
## 26 26 0.84054 0.0 8.14 0 0.5380 5.599 85.7 4.4546 44 307 21.0
## 27 27 0.67191 0.0 8.14 0 0.5380 5.813 90.3 4.6820 44 307 21.0
## 28 28 0.95577 0.0 8.14 0 0.5380 6.047 88.8 4.4534 44 307 21.0
## 29 29 0.77299 0.0 8.14 0 0.5380 6.495 94.4 4.4547 44 307 21.0
## 30 30 1.00245 0.0 8.14 0 0.5380 6.674 87.3 4.2390 44 307 21.0
## 31 31 1.13081 0.0 8.14 0 0.5380 5.713 94.1 4.2330 44 307 21.0
## 32 32 1.35472 0.0 8.14 0 0.5380 6.072 100.0 4.1750 44 307 21.0
## 33 33 1.38799 0.0 8.14 0 0.5380 5.950 82.0 3.9900 44 307 21.0
## 34 34 1.15172 0.0 8.14 0 0.5380 5.701 95.0 3.7872 44 307 21.0
## 35 35 1.61282 0.0 8.14 0 0.5380 6.096 96.9 3.7598 44 307 21.0
## 51 51 0.08873 21.0 5.64 0 0.4390 5.963 45.7 6.8147 44 243 16.8
## 52 52 0.04337 21.0 5.64 0 0.4390 6.115 63.0 6.8147 44 243 16.8
## 53 53 0.05360 21.0 5.64 0 0.4390 6.511 21.1 6.8147 44 243 16.8
## 54 54 0.04981 21.0 5.64 0 0.4390 5.998 21.4 6.8147 44 243 16.8
## 66 66 0.03584 80.0 3.37 0 0.3980 6.290 17.8 6.6115 44 337 16.1
## 67 67 0.04379 80.0 3.37 0 0.3980 5.787 31.1 6.6115 44 337 16.1
## 68 68 0.05789 12.5 6.07 0 0.4090 5.878 21.4 6.4980 44 345 18.9
## 69 69 0.13554 12.5 6.07 0 0.4090 5.594 36.8 6.4980 44 345 18.9
## 70 70 0.12816 12.5 6.07 0 0.4090 5.885 33.0 6.4980 44 345 18.9
## 71 71 0.08826 0.0 10.81 0 0.4130 6.417 6.6 5.2873 44 305 19.2
## 72 72 0.15876 0.0 10.81 0 0.4130 5.961 17.5 5.2873 44 305 19.2
## 73 73 0.09164 0.0 10.81 0 0.4130 6.065 7.8 5.2873 44 305 19.2
## 74 74 0.19539 0.0 10.81 0 0.4130 6.245 6.2 5.2873 44 305 19.2
## 81 81 0.04113 25.0 4.86 0 0.4260 6.727 33.5 5.4007 44 281 19.0
## 82 82 0.04462 25.0 4.86 0 0.4260 6.619 70.4 5.4007 44 281 19.0
## 83 83 0.03659 25.0 4.86 0 0.4260 6.302 32.2 5.4007 44 281 19.0
## 84 84 0.03551 25.0 4.86 0 0.4260 6.167 46.7 5.4007 44 281 19.0
## 93 93 0.04203 28.0 15.04 0 0.4640 6.442 53.6 3.6659 44 270 18.2
## 94 94 0.02875 28.0 15.04 0 0.4640 6.211 28.9 3.6659 44 270 18.2
## 95 95 0.04294 28.0 15.04 0 0.4640 6.249 77.3 3.6150 44 270 18.2
## 128 128 0.25915 0.0 21.89 0 0.6240 5.693 96.0 1.7883 44 437 21.2
## 129 129 0.32543 0.0 21.89 0 0.6240 6.431 98.8 1.8125 44 437 21.2
## 130 130 0.88125 0.0 21.89 0 0.6240 5.637 94.7 1.9799 44 437 21.2
## 131 131 0.34006 0.0 21.89 0 0.6240 6.458 98.9 2.1185 44 437 21.2
## 132 132 1.19294 0.0 21.89 0 0.6240 6.326 97.7 2.2710 44 437 21.2
## 133 133 0.59005 0.0 21.89 0 0.6240 6.372 97.9 2.3274 44 437 21.2
## 134 134 0.32982 0.0 21.89 0 0.6240 5.822 95.4 2.4699 44 437 21.2
## 135 135 0.97617 0.0 21.89 0 0.6240 5.757 98.4 2.3460 44 437 21.2
## 136 136 0.55778 0.0 21.89 0 0.6240 6.335 98.2 2.1107 44 437 21.2
## 137 137 0.32264 0.0 21.89 0 0.6240 5.942 93.5 1.9669 44 437 21.2
## 138 138 0.35233 0.0 21.89 0 0.6240 6.454 98.4 1.8498 44 437 21.2
## 139 139 0.24980 0.0 21.89 0 0.6240 5.857 98.2 1.6686 44 437 21.2
## 140 140 0.54452 0.0 21.89 0 0.6240 6.151 97.9 1.6687 44 437 21.2
## 141 141 0.29090 0.0 21.89 0 0.6240 6.174 93.6 1.6119 44 437 21.2
## 142 142 1.62864 0.0 21.89 0 0.6240 5.019 100.0 1.4394 44 437 21.2
## 196 196 0.01381 80.0 0.46 0 0.4220 7.875 32.0 5.6484 44 255 14.4
## 204 204 0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 44 224 14.7
## 205 205 0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 44 224 14.7
## 206 206 0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 44 277 18.6
## 207 207 0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 44 277 18.6
## 208 208 0.25199 0.0 10.59 0 0.4890 5.783 72.7 4.3549 44 277 18.6
## 209 209 0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 44 277 18.6
## 210 210 0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 44 277 18.6
## 211 211 0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 44 277 18.6
## 212 212 0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 44 277 18.6
## 213 213 0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 44 277 18.6
## 214 214 0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 44 277 18.6
## 215 215 0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 44 277 18.6
## 216 216 0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 44 277 18.6
## 275 275 0.05644 40.0 6.41 1 0.4470 6.758 32.9 4.0776 44 254 17.6
## 276 276 0.09604 40.0 6.41 0 0.4470 6.854 42.8 4.2673 44 254 17.6
## 277 277 0.10469 40.0 6.41 1 0.4470 7.267 49.0 4.7872 44 254 17.6
## 278 278 0.06127 40.0 6.41 1 0.4470 6.826 27.6 4.8628 44 254 17.6
## 279 279 0.07978 40.0 6.41 0 0.4470 6.482 32.1 4.1403 44 254 17.6
## 291 291 0.03502 80.0 4.95 0 0.4110 6.861 27.9 5.1167 44 245 19.2
## 292 292 0.07886 80.0 4.95 0 0.4110 7.148 27.7 5.1167 44 245 19.2
## 293 293 0.03615 80.0 4.95 0 0.4110 6.630 23.4 5.1167 44 245 19.2
## 294 294 0.08265 0.0 13.92 0 0.4370 6.127 18.4 5.5027 44 289 16.0
## 295 295 0.08199 0.0 13.92 0 0.4370 6.009 42.3 5.5027 44 289 16.0
## 296 296 0.12932 0.0 13.92 0 0.4370 6.678 31.1 5.9604 44 289 16.0
## 297 297 0.05372 0.0 13.92 0 0.4370 6.549 51.0 5.9604 44 289 16.0
## 298 298 0.14103 0.0 13.92 0 0.4370 5.790 58.0 6.3200 44 289 16.0
## 309 309 0.49298 0.0 9.90 0 0.5440 6.635 82.5 3.3175 44 304 18.4
## 310 310 0.34940 0.0 9.90 0 0.5440 5.972 76.7 3.1025 44 304 18.4
## 311 311 2.63548 0.0 9.90 0 0.5440 4.973 37.8 2.5194 44 304 18.4
## 312 312 0.79041 0.0 9.90 0 0.5440 6.122 52.8 2.6403 44 304 18.4
## 313 313 0.26169 0.0 9.90 0 0.5440 6.023 90.4 2.8340 44 304 18.4
## 314 314 0.26938 0.0 9.90 0 0.5440 6.266 82.8 3.2628 44 304 18.4
## 315 315 0.36920 0.0 9.90 0 0.5440 6.567 87.3 3.6023 44 304 18.4
## 316 316 0.25356 0.0 9.90 0 0.5440 5.705 77.7 3.9450 44 304 18.4
## 317 317 0.31827 0.0 9.90 0 0.5440 5.914 83.2 3.9986 44 304 18.4
## 318 318 0.24522 0.0 9.90 0 0.5440 5.782 71.7 4.0317 44 304 18.4
## 319 319 0.40202 0.0 9.90 0 0.5440 6.382 67.2 3.5325 44 304 18.4
## 320 320 0.47547 0.0 9.90 0 0.5440 6.113 58.8 4.0019 44 304 18.4
## 329 329 0.06617 0.0 3.24 0 0.4600 5.868 25.8 5.2146 44 430 16.9
## 330 330 0.06724 0.0 3.24 0 0.4600 6.333 17.2 5.2146 44 430 16.9
## 331 331 0.04544 0.0 3.24 0 0.4600 6.144 32.2 5.8736 44 430 16.9
## 348 348 0.01870 85.0 4.15 0 0.4290 6.516 27.7 8.5353 44 351 17.9
## 349 349 0.01501 80.0 2.01 0 0.4350 6.635 29.7 8.3440 44 280 17.0
## 352 352 0.07950 60.0 1.69 0 0.4110 6.579 35.9 10.7103 44 411 18.3
## 353 353 0.07244 60.0 1.69 0 0.4110 5.884 18.5 10.7103 44 411 18.3
## 355 355 0.04301 80.0 1.91 0 0.4130 5.663 21.9 10.5857 44 334 22.0
## 356 356 0.10659 80.0 1.91 0 0.4130 5.936 19.5 10.5857 44 334 22.0
## 489 489 0.15086 0.0 27.74 0 0.6090 5.454 92.7 1.8209 44 711 20.1
## 490 490 0.18337 0.0 27.74 0 0.6090 5.414 98.3 1.7554 44 711 20.1
## 491 491 0.20746 0.0 27.74 0 0.6090 5.093 98.0 1.8226 44 711 20.1
## 492 492 0.10574 0.0 27.74 0 0.6090 5.983 98.8 1.8681 44 711 20.1
## 493 493 0.11132 0.0 27.74 0 0.6090 5.983 83.5 2.1099 44 711 20.1
## black lstat medv
## 14 396.90 8.26 20.4
## 15 380.02 10.26 18.2
## 16 395.62 8.47 19.9
## 17 386.85 6.58 23.1
## 18 386.75 14.67 17.5
## 19 288.99 11.69 20.2
## 20 390.95 11.28 18.2
## 21 376.57 21.02 13.6
## 22 392.53 13.83 19.6
## 23 396.90 18.72 15.2
## 24 394.54 19.88 14.5
## 25 394.33 16.30 15.6
## 26 303.42 16.51 13.9
## 27 376.88 14.81 16.6
## 28 306.38 17.28 14.8
## 29 387.94 12.80 18.4
## 30 380.23 11.98 21.0
## 31 360.17 22.60 12.7
## 32 376.73 13.04 14.5
## 33 232.60 27.71 13.2
## 34 358.77 18.35 13.1
## 35 248.31 20.34 13.5
## 51 395.56 13.45 19.7
## 52 393.97 9.43 20.5
## 53 396.90 5.28 25.0
## 54 396.90 8.43 23.4
## 66 396.90 4.67 23.5
## 67 396.90 10.24 19.4
## 68 396.21 8.10 22.0
## 69 396.90 13.09 17.4
## 70 396.90 8.79 20.9
## 71 383.73 6.72 24.2
## 72 376.94 9.88 21.7
## 73 390.91 5.52 22.8
## 74 377.17 7.54 23.4
## 81 396.90 5.29 28.0
## 82 395.63 7.22 23.9
## 83 396.90 6.72 24.8
## 84 390.64 7.51 22.9
## 93 395.01 8.16 22.9
## 94 396.33 6.21 25.0
## 95 396.90 10.59 20.6
## 128 392.11 17.19 16.2
## 129 396.90 15.39 18.0
## 130 396.90 18.34 14.3
## 131 395.04 12.60 19.2
## 132 396.90 12.26 19.6
## 133 385.76 11.12 23.0
## 134 388.69 15.03 18.4
## 135 262.76 17.31 15.6
## 136 394.67 16.96 18.1
## 137 378.25 16.90 17.4
## 138 394.08 14.59 17.1
## 139 392.04 21.32 13.3
## 140 396.90 18.46 17.8
## 141 388.08 24.16 14.0
## 142 396.90 34.41 14.4
## 196 394.23 2.97 50.0
## 204 392.78 3.81 48.5
## 205 390.55 2.88 50.0
## 206 396.90 10.87 22.6
## 207 394.87 10.97 24.4
## 208 389.43 18.06 22.5
## 209 381.32 14.66 24.4
## 210 396.90 23.09 20.0
## 211 393.25 17.27 21.7
## 212 395.24 23.98 19.3
## 213 390.94 16.03 22.4
## 214 385.81 9.38 28.1
## 215 348.93 29.55 23.7
## 216 393.63 9.47 25.0
## 275 396.90 3.53 32.4
## 276 396.90 2.98 32.0
## 277 389.25 6.05 33.2
## 278 393.45 4.16 33.1
## 279 396.90 7.19 29.1
## 291 396.90 3.33 28.5
## 292 396.90 3.56 37.3
## 293 396.90 4.70 27.9
## 294 396.90 8.58 23.9
## 295 396.90 10.40 21.7
## 296 396.90 6.27 28.6
## 297 392.85 7.39 27.1
## 298 396.90 15.84 20.3
## 309 396.90 4.54 22.8
## 310 396.24 9.97 20.3
## 311 350.45 12.64 16.1
## 312 396.90 5.98 22.1
## 313 396.30 11.72 19.4
## 314 393.39 7.90 21.6
## 315 395.69 9.28 23.8
## 316 396.42 11.50 16.2
## 317 390.70 18.33 17.8
## 318 396.90 15.94 19.8
## 319 395.21 10.36 23.1
## 320 396.23 12.73 21.0
## 329 382.44 9.97 19.3
## 330 375.21 7.34 22.6
## 331 368.57 9.09 19.8
## 348 392.43 6.36 23.1
## 349 390.94 5.99 24.5
## 352 370.78 5.49 24.1
## 353 392.33 7.79 18.6
## 355 382.80 8.05 18.2
## 356 376.04 5.57 20.6
## 489 395.09 18.06 15.2
## 490 344.05 23.97 7.0
## 491 318.43 29.68 8.1
## 492 390.11 18.07 13.6
## 493 396.90 13.35 20.1
df_boston$rad[df_boston$rad == 5] <- 55
subset(df_boston, df_boston$rad == 55)
## X crim zn indus chas nox rm age dis rad tax
## 7 7 0.08829 12.5 7.87 0 0.5240 6.012 66.6 5.5605 55 311
## 8 8 0.14455 12.5 7.87 0 0.5240 6.172 96.1 5.9505 55 311
## 9 9 0.21124 12.5 7.87 0 0.5240 5.631 100.0 6.0821 55 311
## 10 10 0.17004 12.5 7.87 0 0.5240 6.004 85.9 6.5921 55 311
## 11 11 0.22489 12.5 7.87 0 0.5240 6.377 94.3 6.3467 55 311
## 12 12 0.11747 12.5 7.87 0 0.5240 6.009 82.9 6.2267 55 311
## 13 13 0.09378 12.5 7.87 0 0.5240 5.889 39.0 5.4509 55 311
## 36 36 0.06417 0.0 5.96 0 0.4990 5.933 68.2 3.3603 55 279
## 37 37 0.09744 0.0 5.96 0 0.4990 5.841 61.4 3.3779 55 279
## 38 38 0.08014 0.0 5.96 0 0.4990 5.850 41.5 3.9342 55 279
## 39 39 0.17505 0.0 5.96 0 0.4990 5.966 30.2 3.8473 55 279
## 56 56 0.01311 90.0 1.22 0 0.4030 7.249 21.9 8.6966 55 226
## 58 58 0.01432 100.0 1.32 0 0.4110 6.816 40.5 8.3248 55 256
## 75 75 0.07896 0.0 12.83 0 0.4370 6.273 6.0 4.2515 55 398
## 76 76 0.09512 0.0 12.83 0 0.4370 6.286 45.0 4.5026 55 398
## 77 77 0.10153 0.0 12.83 0 0.4370 6.279 74.5 4.0522 55 398
## 78 78 0.08707 0.0 12.83 0 0.4370 6.140 45.8 4.0905 55 398
## 79 79 0.05646 0.0 12.83 0 0.4370 6.232 53.7 5.0141 55 398
## 80 80 0.08387 0.0 12.83 0 0.4370 5.874 36.6 4.5026 55 398
## 101 101 0.14866 0.0 8.56 0 0.5200 6.727 79.9 2.7778 55 384
## 102 102 0.11432 0.0 8.56 0 0.5200 6.781 71.3 2.8561 55 384
## 103 103 0.22876 0.0 8.56 0 0.5200 6.405 85.4 2.7147 55 384
## 104 104 0.21161 0.0 8.56 0 0.5200 6.137 87.4 2.7147 55 384
## 105 105 0.13960 0.0 8.56 0 0.5200 6.167 90.0 2.4210 55 384
## 106 106 0.13262 0.0 8.56 0 0.5200 5.851 96.7 2.1069 55 384
## 107 107 0.17120 0.0 8.56 0 0.5200 5.836 91.9 2.2110 55 384
## 108 108 0.13117 0.0 8.56 0 0.5200 6.127 85.2 2.1224 55 384
## 109 109 0.12802 0.0 8.56 0 0.5200 6.474 97.1 2.4329 55 384
## 110 110 0.26363 0.0 8.56 0 0.5200 6.229 91.2 2.5451 55 384
## 111 111 0.10793 0.0 8.56 0 0.5200 6.195 54.4 2.7778 55 384
## 143 143 3.32105 0.0 19.58 1 0.8710 5.403 100.0 1.3216 55 403
## 144 144 4.09740 0.0 19.58 0 0.8710 5.468 100.0 1.4118 55 403
## 145 145 2.77974 0.0 19.58 0 0.8710 4.903 97.8 1.3459 55 403
## 146 146 2.37934 0.0 19.58 0 0.8710 6.130 100.0 1.4191 55 403
## 147 147 2.15505 0.0 19.58 0 0.8710 5.628 100.0 1.5166 55 403
## 148 148 2.36862 0.0 19.58 0 0.8710 4.926 95.7 1.4608 55 403
## 149 149 2.33099 0.0 19.58 0 0.8710 5.186 93.8 1.5296 55 403
## 150 150 2.73397 0.0 19.58 0 0.8710 5.597 94.9 1.5257 55 403
## 151 151 1.65660 0.0 19.58 0 0.8710 6.122 97.3 1.6180 55 403
## 152 152 1.49632 0.0 19.58 0 0.8710 5.404 100.0 1.5916 55 403
## 153 153 1.12658 0.0 19.58 1 0.8710 5.012 88.0 1.6102 55 403
## 154 154 2.14918 0.0 19.58 0 0.8710 5.709 98.5 1.6232 55 403
## 155 155 1.41385 0.0 19.58 1 0.8710 6.129 96.0 1.7494 55 403
## 156 156 3.53501 0.0 19.58 1 0.8710 6.152 82.6 1.7455 55 403
## 157 157 2.44668 0.0 19.58 0 0.8710 5.272 94.0 1.7364 55 403
## 158 158 1.22358 0.0 19.58 0 0.6050 6.943 97.4 1.8773 55 403
## 159 159 1.34284 0.0 19.58 0 0.6050 6.066 100.0 1.7573 55 403
## 160 160 1.42502 0.0 19.58 0 0.8710 6.510 100.0 1.7659 55 403
## 161 161 1.27346 0.0 19.58 1 0.6050 6.250 92.6 1.7984 55 403
## 162 162 1.46336 0.0 19.58 0 0.6050 7.489 90.8 1.9709 55 403
## 163 163 1.83377 0.0 19.58 1 0.6050 7.802 98.2 2.0407 55 403
## 164 164 1.51902 0.0 19.58 1 0.6050 8.375 93.9 2.1620 55 403
## 165 165 2.24236 0.0 19.58 0 0.6050 5.854 91.8 2.4220 55 403
## 166 166 2.92400 0.0 19.58 0 0.6050 6.101 93.0 2.2834 55 403
## 167 167 2.01019 0.0 19.58 0 0.6050 7.929 96.2 2.0459 55 403
## 168 168 1.80028 0.0 19.58 0 0.6050 5.877 79.2 2.4259 55 403
## 169 169 2.30040 0.0 19.58 0 0.6050 6.319 96.1 2.1000 55 403
## 170 170 2.44953 0.0 19.58 0 0.6050 6.402 95.2 2.2625 55 403
## 171 171 1.20742 0.0 19.58 0 0.6050 5.875 94.6 2.4259 55 403
## 172 172 2.31390 0.0 19.58 0 0.6050 5.880 97.3 2.3887 55 403
## 173 173 0.13914 0.0 4.05 0 0.5100 5.572 88.5 2.5961 55 296
## 174 174 0.09178 0.0 4.05 0 0.5100 6.416 84.1 2.6463 55 296
## 175 175 0.08447 0.0 4.05 0 0.5100 5.859 68.7 2.7019 55 296
## 176 176 0.06664 0.0 4.05 0 0.5100 6.546 33.1 3.1323 55 296
## 177 177 0.07022 0.0 4.05 0 0.5100 6.020 47.2 3.5549 55 296
## 178 178 0.05425 0.0 4.05 0 0.5100 6.315 73.4 3.3175 55 296
## 179 179 0.06642 0.0 4.05 0 0.5100 6.860 74.4 2.9153 55 296
## 188 188 0.07875 45.0 3.44 0 0.4370 6.782 41.1 3.7886 55 398
## 189 189 0.12579 45.0 3.44 0 0.4370 6.556 29.1 4.5667 55 398
## 190 190 0.08370 45.0 3.44 0 0.4370 7.185 38.9 4.5667 55 398
## 191 191 0.09068 45.0 3.44 0 0.4370 6.951 21.5 6.4798 55 398
## 192 192 0.06911 45.0 3.44 0 0.4370 6.739 30.8 6.4798 55 398
## 193 193 0.08664 45.0 3.44 0 0.4370 7.178 26.3 6.4798 55 398
## 217 217 0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 55 276
## 218 218 0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 55 276
## 219 219 0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 55 276
## 220 220 0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 55 276
## 258 258 0.61154 20.0 3.97 0 0.6470 8.704 86.9 1.8010 55 264
## 259 259 0.66351 20.0 3.97 0 0.6470 7.333 100.0 1.8946 55 264
## 260 260 0.65665 20.0 3.97 0 0.6470 6.842 100.0 2.0107 55 264
## 261 261 0.54011 20.0 3.97 0 0.6470 7.203 81.8 2.1121 55 264
## 262 262 0.53412 20.0 3.97 0 0.6470 7.520 89.4 2.1398 55 264
## 263 263 0.52014 20.0 3.97 0 0.6470 8.398 91.5 2.2885 55 264
## 264 264 0.82526 20.0 3.97 0 0.6470 7.327 94.5 2.0788 55 264
## 265 265 0.55007 20.0 3.97 0 0.6470 7.206 91.6 1.9301 55 264
## 266 266 0.76162 20.0 3.97 0 0.6470 5.560 62.8 1.9865 55 264
## 267 267 0.78570 20.0 3.97 0 0.6470 7.014 84.6 2.1329 55 264
## 268 268 0.57834 20.0 3.97 0 0.5750 8.297 67.0 2.4216 55 264
## 269 269 0.54050 20.0 3.97 0 0.5750 7.470 52.6 2.8720 55 264
## 280 280 0.21038 20.0 3.33 0 0.4429 6.812 32.2 4.1007 55 216
## 281 281 0.03578 20.0 3.33 0 0.4429 7.820 64.5 4.6947 55 216
## 282 282 0.03705 20.0 3.33 0 0.4429 6.968 37.2 5.2447 55 216
## 283 283 0.06129 20.0 3.33 1 0.4429 7.645 49.7 5.2119 55 216
## 299 299 0.06466 70.0 2.24 0 0.4000 6.345 20.1 7.8278 55 358
## 300 300 0.05561 70.0 2.24 0 0.4000 7.041 10.0 7.8278 55 358
## 301 301 0.04417 70.0 2.24 0 0.4000 6.871 47.4 7.8278 55 358
## 321 321 0.16760 0.0 7.38 0 0.4930 6.426 52.3 4.5404 55 287
## 322 322 0.18159 0.0 7.38 0 0.4930 6.376 54.3 4.5404 55 287
## 323 323 0.35114 0.0 7.38 0 0.4930 6.041 49.9 4.7211 55 287
## 324 324 0.28392 0.0 7.38 0 0.4930 5.708 74.3 4.7211 55 287
## 325 325 0.34109 0.0 7.38 0 0.4930 6.415 40.1 4.7211 55 287
## 326 326 0.19186 0.0 7.38 0 0.4930 6.431 14.7 5.4159 55 287
## 327 327 0.30347 0.0 7.38 0 0.4930 6.312 28.9 5.4159 55 287
## 328 328 0.24103 0.0 7.38 0 0.4930 6.083 43.7 5.4159 55 287
## 334 334 0.05083 0.0 5.19 0 0.5150 6.316 38.1 6.4584 55 224
## 335 335 0.03738 0.0 5.19 0 0.5150 6.310 38.5 6.4584 55 224
## 336 336 0.03961 0.0 5.19 0 0.5150 6.037 34.5 5.9853 55 224
## 337 337 0.03427 0.0 5.19 0 0.5150 5.869 46.3 5.2311 55 224
## 338 338 0.03041 0.0 5.19 0 0.5150 5.895 59.6 5.6150 55 224
## 339 339 0.03306 0.0 5.19 0 0.5150 6.059 37.3 4.8122 55 224
## 340 340 0.05497 0.0 5.19 0 0.5150 5.985 45.4 4.8122 55 224
## 341 341 0.06151 0.0 5.19 0 0.5150 5.968 58.5 4.8122 55 224
## 344 344 0.02543 55.0 3.78 0 0.4840 6.696 56.4 5.7321 55 370
## 345 345 0.03049 55.0 3.78 0 0.4840 6.874 28.1 6.4654 55 370
## 354 354 0.01709 90.0 2.02 0 0.4100 6.728 36.1 12.1265 55 187
## ptratio black lstat medv
## 7 15.2 395.60 12.43 22.9
## 8 15.2 396.90 19.15 27.1
## 9 15.2 386.63 29.93 16.5
## 10 15.2 386.71 17.10 18.9
## 11 15.2 392.52 20.45 15.0
## 12 15.2 396.90 13.27 18.9
## 13 15.2 390.50 15.71 21.7
## 36 19.2 396.90 9.68 18.9
## 37 19.2 377.56 11.41 20.0
## 38 19.2 396.90 8.77 21.0
## 39 19.2 393.43 10.13 24.7
## 56 17.9 395.93 4.81 35.4
## 58 15.1 392.90 3.95 31.6
## 75 18.7 394.92 6.78 24.1
## 76 18.7 383.23 8.94 21.4
## 77 18.7 373.66 11.97 20.0
## 78 18.7 386.96 10.27 20.8
## 79 18.7 386.40 12.34 21.2
## 80 18.7 396.06 9.10 20.3
## 101 20.9 394.76 9.42 27.5
## 102 20.9 395.58 7.67 26.5
## 103 20.9 70.80 10.63 18.6
## 104 20.9 394.47 13.44 19.3
## 105 20.9 392.69 12.33 20.1
## 106 20.9 394.05 16.47 19.5
## 107 20.9 395.67 18.66 19.5
## 108 20.9 387.69 14.09 20.4
## 109 20.9 395.24 12.27 19.8
## 110 20.9 391.23 15.55 19.4
## 111 20.9 393.49 13.00 21.7
## 143 14.7 396.90 26.82 13.4
## 144 14.7 396.90 26.42 15.6
## 145 14.7 396.90 29.29 11.8
## 146 14.7 172.91 27.80 13.8
## 147 14.7 169.27 16.65 15.6
## 148 14.7 391.71 29.53 14.6
## 149 14.7 356.99 28.32 17.8
## 150 14.7 351.85 21.45 15.4
## 151 14.7 372.80 14.10 21.5
## 152 14.7 341.60 13.28 19.6
## 153 14.7 343.28 12.12 15.3
## 154 14.7 261.95 15.79 19.4
## 155 14.7 321.02 15.12 17.0
## 156 14.7 88.01 15.02 15.6
## 157 14.7 88.63 16.14 13.1
## 158 14.7 363.43 4.59 41.3
## 159 14.7 353.89 6.43 24.3
## 160 14.7 364.31 7.39 23.3
## 161 14.7 338.92 5.50 27.0
## 162 14.7 374.43 1.73 50.0
## 163 14.7 389.61 1.92 50.0
## 164 14.7 388.45 3.32 50.0
## 165 14.7 395.11 11.64 22.7
## 166 14.7 240.16 9.81 25.0
## 167 14.7 369.30 3.70 50.0
## 168 14.7 227.61 12.14 23.8
## 169 14.7 297.09 11.10 23.8
## 170 14.7 330.04 11.32 22.3
## 171 14.7 292.29 14.43 17.4
## 172 14.7 348.13 12.03 19.1
## 173 16.6 396.90 14.69 23.1
## 174 16.6 395.50 9.04 23.6
## 175 16.6 393.23 9.64 22.6
## 176 16.6 390.96 5.33 29.4
## 177 16.6 393.23 10.11 23.2
## 178 16.6 395.60 6.29 24.6
## 179 16.6 391.27 6.92 29.9
## 188 15.2 393.87 6.68 32.0
## 189 15.2 382.84 4.56 29.8
## 190 15.2 396.90 5.39 34.9
## 191 15.2 377.68 5.10 37.0
## 192 15.2 389.71 4.69 30.5
## 193 15.2 390.49 2.87 36.4
## 217 16.4 392.80 13.51 23.3
## 218 16.4 392.78 9.69 28.7
## 219 16.4 396.90 17.92 21.5
## 220 16.4 393.74 10.50 23.0
## 258 13.0 389.70 5.12 50.0
## 259 13.0 383.29 7.79 36.0
## 260 13.0 391.93 6.90 30.1
## 261 13.0 392.80 9.59 33.8
## 262 13.0 388.37 7.26 43.1
## 263 13.0 386.86 5.91 48.8
## 264 13.0 393.42 11.25 31.0
## 265 13.0 387.89 8.10 36.5
## 266 13.0 392.40 10.45 22.8
## 267 13.0 384.07 14.79 30.7
## 268 13.0 384.54 7.44 50.0
## 269 13.0 390.30 3.16 43.5
## 280 14.9 396.90 4.85 35.1
## 281 14.9 387.31 3.76 45.4
## 282 14.9 392.23 4.59 35.4
## 283 14.9 377.07 3.01 46.0
## 299 14.8 368.24 4.97 22.5
## 300 14.8 371.58 4.74 29.0
## 301 14.8 390.86 6.07 24.8
## 321 19.6 396.90 7.20 23.8
## 322 19.6 396.90 6.87 23.1
## 323 19.6 396.90 7.70 20.4
## 324 19.6 391.13 11.74 18.5
## 325 19.6 396.90 6.12 25.0
## 326 19.6 393.68 5.08 24.6
## 327 19.6 396.90 6.15 23.0
## 328 19.6 396.90 12.79 22.2
## 334 20.2 389.71 5.68 22.2
## 335 20.2 389.40 6.75 20.7
## 336 20.2 396.90 8.01 21.1
## 337 20.2 396.90 9.80 19.5
## 338 20.2 394.81 10.56 18.5
## 339 20.2 396.14 8.51 20.6
## 340 20.2 396.90 9.74 19.0
## 341 20.2 396.90 9.29 18.7
## 344 17.6 396.90 7.18 23.9
## 345 17.6 387.97 4.61 31.2
## 354 17.0 384.46 4.50 30.1
df_boston$rad[df_boston$rad == 6] <- 66
subset(df_boston, df_boston$rad == 66)
## X crim zn indus chas nox rm age dis rad tax ptratio
## 112 112 0.10084 0.0 10.01 0 0.547 6.715 81.6 2.6775 66 432 17.8
## 113 113 0.12329 0.0 10.01 0 0.547 5.913 92.9 2.3534 66 432 17.8
## 114 114 0.22212 0.0 10.01 0 0.547 6.092 95.4 2.5480 66 432 17.8
## 115 115 0.14231 0.0 10.01 0 0.547 6.254 84.2 2.2565 66 432 17.8
## 116 116 0.17134 0.0 10.01 0 0.547 5.928 88.2 2.4631 66 432 17.8
## 117 117 0.13158 0.0 10.01 0 0.547 6.176 72.5 2.7301 66 432 17.8
## 118 118 0.15098 0.0 10.01 0 0.547 6.021 82.6 2.7474 66 432 17.8
## 119 119 0.13058 0.0 10.01 0 0.547 5.872 73.1 2.4775 66 432 17.8
## 120 120 0.14476 0.0 10.01 0 0.547 5.731 65.2 2.7592 66 432 17.8
## 239 239 0.08244 30.0 4.93 0 0.428 6.481 18.5 6.1899 66 300 16.6
## 240 240 0.09252 30.0 4.93 0 0.428 6.606 42.2 6.1899 66 300 16.6
## 241 241 0.11329 30.0 4.93 0 0.428 6.897 54.3 6.3361 66 300 16.6
## 242 242 0.10612 30.0 4.93 0 0.428 6.095 65.1 6.3361 66 300 16.6
## 243 243 0.10290 30.0 4.93 0 0.428 6.358 52.9 7.0355 66 300 16.6
## 244 244 0.12757 30.0 4.93 0 0.428 6.393 7.8 7.0355 66 300 16.6
## 288 288 0.03871 52.5 5.32 0 0.405 6.209 31.3 7.3172 66 293 16.6
## 289 289 0.04590 52.5 5.32 0 0.405 6.315 45.6 7.3172 66 293 16.6
## 290 290 0.04297 52.5 5.32 0 0.405 6.565 22.9 7.3172 66 293 16.6
## 494 494 0.17331 0.0 9.69 0 0.585 5.707 54.0 2.3817 66 391 19.2
## 495 495 0.27957 0.0 9.69 0 0.585 5.926 42.6 2.3817 66 391 19.2
## 496 496 0.17899 0.0 9.69 0 0.585 5.670 28.8 2.7986 66 391 19.2
## 497 497 0.28960 0.0 9.69 0 0.585 5.390 72.9 2.7986 66 391 19.2
## 498 498 0.26838 0.0 9.69 0 0.585 5.794 70.6 2.8927 66 391 19.2
## 499 499 0.23912 0.0 9.69 0 0.585 6.019 65.3 2.4091 66 391 19.2
## 500 500 0.17783 0.0 9.69 0 0.585 5.569 73.5 2.3999 66 391 19.2
## 501 501 0.22438 0.0 9.69 0 0.585 6.027 79.7 2.4982 66 391 19.2
## black lstat medv
## 112 395.59 10.16 22.8
## 113 394.95 16.21 18.8
## 114 396.90 17.09 18.7
## 115 388.74 10.45 18.5
## 116 344.91 15.76 18.3
## 117 393.30 12.04 21.2
## 118 394.51 10.30 19.2
## 119 338.63 15.37 20.4
## 120 391.50 13.61 19.3
## 239 379.41 6.36 23.7
## 240 383.78 7.37 23.3
## 241 391.25 11.38 22.0
## 242 394.62 12.40 20.1
## 243 372.75 11.22 22.2
## 244 374.71 5.19 23.7
## 288 396.90 7.14 23.2
## 289 396.90 7.60 22.3
## 290 371.72 9.51 24.8
## 494 396.90 12.01 21.8
## 495 396.90 13.59 24.5
## 496 393.29 17.60 23.1
## 497 396.90 21.14 19.7
## 498 396.90 14.10 18.3
## 499 396.90 12.92 21.2
## 500 395.77 15.10 17.5
## 501 396.90 14.33 16.8
df_boston[1:100,]
## X crim zn indus chas nox rm age dis rad tax ptratio
## 1 1 0.00632 18.0 2.31 0 0.5380 6.575 65.2 4.0900 1 296 15.3
## 2 2 0.02731 0.0 7.07 0 0.4690 6.421 78.9 4.9671 2 242 17.8
## 3 3 0.02729 0.0 7.07 0 0.4690 7.185 61.1 4.9671 2 242 17.8
## 4 4 0.03237 0.0 2.18 0 0.4580 6.998 45.8 6.0622 3 222 18.7
## 5 5 0.06905 0.0 2.18 0 0.4580 7.147 54.2 6.0622 3 222 18.7
## 6 6 0.02985 0.0 2.18 0 0.4580 6.430 58.7 6.0622 3 222 18.7
## 7 7 0.08829 12.5 7.87 0 0.5240 6.012 66.6 5.5605 55 311 15.2
## 8 8 0.14455 12.5 7.87 0 0.5240 6.172 96.1 5.9505 55 311 15.2
## 9 9 0.21124 12.5 7.87 0 0.5240 5.631 100.0 6.0821 55 311 15.2
## 10 10 0.17004 12.5 7.87 0 0.5240 6.004 85.9 6.5921 55 311 15.2
## 11 11 0.22489 12.5 7.87 0 0.5240 6.377 94.3 6.3467 55 311 15.2
## 12 12 0.11747 12.5 7.87 0 0.5240 6.009 82.9 6.2267 55 311 15.2
## 13 13 0.09378 12.5 7.87 0 0.5240 5.889 39.0 5.4509 55 311 15.2
## 14 14 0.62976 0.0 8.14 0 0.5380 5.949 61.8 4.7075 44 307 21.0
## 15 15 0.63796 0.0 8.14 0 0.5380 6.096 84.5 4.4619 44 307 21.0
## 16 16 0.62739 0.0 8.14 0 0.5380 5.834 56.5 4.4986 44 307 21.0
## 17 17 1.05393 0.0 8.14 0 0.5380 5.935 29.3 4.4986 44 307 21.0
## 18 18 0.78420 0.0 8.14 0 0.5380 5.990 81.7 4.2579 44 307 21.0
## 19 19 0.80271 0.0 8.14 0 0.5380 5.456 36.6 3.7965 44 307 21.0
## 20 20 0.72580 0.0 8.14 0 0.5380 5.727 69.5 3.7965 44 307 21.0
## 21 21 1.25179 0.0 8.14 0 0.5380 5.570 98.1 3.7979 44 307 21.0
## 22 22 0.85204 0.0 8.14 0 0.5380 5.965 89.2 4.0123 44 307 21.0
## 23 23 1.23247 0.0 8.14 0 0.5380 6.142 91.7 3.9769 44 307 21.0
## 24 24 0.98843 0.0 8.14 0 0.5380 5.813 100.0 4.0952 44 307 21.0
## 25 25 0.75026 0.0 8.14 0 0.5380 5.924 94.1 4.3996 44 307 21.0
## 26 26 0.84054 0.0 8.14 0 0.5380 5.599 85.7 4.4546 44 307 21.0
## 27 27 0.67191 0.0 8.14 0 0.5380 5.813 90.3 4.6820 44 307 21.0
## 28 28 0.95577 0.0 8.14 0 0.5380 6.047 88.8 4.4534 44 307 21.0
## 29 29 0.77299 0.0 8.14 0 0.5380 6.495 94.4 4.4547 44 307 21.0
## 30 30 1.00245 0.0 8.14 0 0.5380 6.674 87.3 4.2390 44 307 21.0
## 31 31 1.13081 0.0 8.14 0 0.5380 5.713 94.1 4.2330 44 307 21.0
## 32 32 1.35472 0.0 8.14 0 0.5380 6.072 100.0 4.1750 44 307 21.0
## 33 33 1.38799 0.0 8.14 0 0.5380 5.950 82.0 3.9900 44 307 21.0
## 34 34 1.15172 0.0 8.14 0 0.5380 5.701 95.0 3.7872 44 307 21.0
## 35 35 1.61282 0.0 8.14 0 0.5380 6.096 96.9 3.7598 44 307 21.0
## 36 36 0.06417 0.0 5.96 0 0.4990 5.933 68.2 3.3603 55 279 19.2
## 37 37 0.09744 0.0 5.96 0 0.4990 5.841 61.4 3.3779 55 279 19.2
## 38 38 0.08014 0.0 5.96 0 0.4990 5.850 41.5 3.9342 55 279 19.2
## 39 39 0.17505 0.0 5.96 0 0.4990 5.966 30.2 3.8473 55 279 19.2
## 40 40 0.02763 75.0 2.95 0 0.4280 6.595 21.8 5.4011 3 252 18.3
## 41 41 0.03359 75.0 2.95 0 0.4280 7.024 15.8 5.4011 3 252 18.3
## 42 42 0.12744 0.0 6.91 0 0.4480 6.770 2.9 5.7209 3 233 17.9
## 43 43 0.14150 0.0 6.91 0 0.4480 6.169 6.6 5.7209 3 233 17.9
## 44 44 0.15936 0.0 6.91 0 0.4480 6.211 6.5 5.7209 3 233 17.9
## 45 45 0.12269 0.0 6.91 0 0.4480 6.069 40.0 5.7209 3 233 17.9
## 46 46 0.17142 0.0 6.91 0 0.4480 5.682 33.8 5.1004 3 233 17.9
## 47 47 0.18836 0.0 6.91 0 0.4480 5.786 33.3 5.1004 3 233 17.9
## 48 48 0.22927 0.0 6.91 0 0.4480 6.030 85.5 5.6894 3 233 17.9
## 49 49 0.25387 0.0 6.91 0 0.4480 5.399 95.3 5.8700 3 233 17.9
## 50 50 0.21977 0.0 6.91 0 0.4480 5.602 62.0 6.0877 3 233 17.9
## 51 51 0.08873 21.0 5.64 0 0.4390 5.963 45.7 6.8147 44 243 16.8
## 52 52 0.04337 21.0 5.64 0 0.4390 6.115 63.0 6.8147 44 243 16.8
## 53 53 0.05360 21.0 5.64 0 0.4390 6.511 21.1 6.8147 44 243 16.8
## 54 54 0.04981 21.0 5.64 0 0.4390 5.998 21.4 6.8147 44 243 16.8
## 55 55 0.01360 75.0 4.00 0 0.4100 5.888 47.6 7.3197 3 469 21.1
## 56 56 0.01311 90.0 1.22 0 0.4030 7.249 21.9 8.6966 55 226 17.9
## 57 57 0.02055 85.0 0.74 0 0.4100 6.383 35.7 9.1876 2 313 17.3
## 58 58 0.01432 100.0 1.32 0 0.4110 6.816 40.5 8.3248 55 256 15.1
## 59 59 0.15445 25.0 5.13 0 0.4530 6.145 29.2 7.8148 8 284 19.7
## 60 60 0.10328 25.0 5.13 0 0.4530 5.927 47.2 6.9320 8 284 19.7
## 61 61 0.14932 25.0 5.13 0 0.4530 5.741 66.2 7.2254 8 284 19.7
## 62 62 0.17171 25.0 5.13 0 0.4530 5.966 93.4 6.8185 8 284 19.7
## 63 63 0.11027 25.0 5.13 0 0.4530 6.456 67.8 7.2255 8 284 19.7
## 64 64 0.12650 25.0 5.13 0 0.4530 6.762 43.4 7.9809 8 284 19.7
## 65 65 0.01951 17.5 1.38 0 0.4161 7.104 59.5 9.2229 3 216 18.6
## 66 66 0.03584 80.0 3.37 0 0.3980 6.290 17.8 6.6115 44 337 16.1
## 67 67 0.04379 80.0 3.37 0 0.3980 5.787 31.1 6.6115 44 337 16.1
## 68 68 0.05789 12.5 6.07 0 0.4090 5.878 21.4 6.4980 44 345 18.9
## 69 69 0.13554 12.5 6.07 0 0.4090 5.594 36.8 6.4980 44 345 18.9
## 70 70 0.12816 12.5 6.07 0 0.4090 5.885 33.0 6.4980 44 345 18.9
## 71 71 0.08826 0.0 10.81 0 0.4130 6.417 6.6 5.2873 44 305 19.2
## 72 72 0.15876 0.0 10.81 0 0.4130 5.961 17.5 5.2873 44 305 19.2
## 73 73 0.09164 0.0 10.81 0 0.4130 6.065 7.8 5.2873 44 305 19.2
## 74 74 0.19539 0.0 10.81 0 0.4130 6.245 6.2 5.2873 44 305 19.2
## 75 75 0.07896 0.0 12.83 0 0.4370 6.273 6.0 4.2515 55 398 18.7
## 76 76 0.09512 0.0 12.83 0 0.4370 6.286 45.0 4.5026 55 398 18.7
## 77 77 0.10153 0.0 12.83 0 0.4370 6.279 74.5 4.0522 55 398 18.7
## 78 78 0.08707 0.0 12.83 0 0.4370 6.140 45.8 4.0905 55 398 18.7
## 79 79 0.05646 0.0 12.83 0 0.4370 6.232 53.7 5.0141 55 398 18.7
## 80 80 0.08387 0.0 12.83 0 0.4370 5.874 36.6 4.5026 55 398 18.7
## 81 81 0.04113 25.0 4.86 0 0.4260 6.727 33.5 5.4007 44 281 19.0
## 82 82 0.04462 25.0 4.86 0 0.4260 6.619 70.4 5.4007 44 281 19.0
## 83 83 0.03659 25.0 4.86 0 0.4260 6.302 32.2 5.4007 44 281 19.0
## 84 84 0.03551 25.0 4.86 0 0.4260 6.167 46.7 5.4007 44 281 19.0
## 85 85 0.05059 0.0 4.49 0 0.4490 6.389 48.0 4.7794 3 247 18.5
## 86 86 0.05735 0.0 4.49 0 0.4490 6.630 56.1 4.4377 3 247 18.5
## 87 87 0.05188 0.0 4.49 0 0.4490 6.015 45.1 4.4272 3 247 18.5
## 88 88 0.07151 0.0 4.49 0 0.4490 6.121 56.8 3.7476 3 247 18.5
## 89 89 0.05660 0.0 3.41 0 0.4890 7.007 86.3 3.4217 2 270 17.8
## 90 90 0.05302 0.0 3.41 0 0.4890 7.079 63.1 3.4145 2 270 17.8
## 91 91 0.04684 0.0 3.41 0 0.4890 6.417 66.1 3.0923 2 270 17.8
## 92 92 0.03932 0.0 3.41 0 0.4890 6.405 73.9 3.0921 2 270 17.8
## 93 93 0.04203 28.0 15.04 0 0.4640 6.442 53.6 3.6659 44 270 18.2
## 94 94 0.02875 28.0 15.04 0 0.4640 6.211 28.9 3.6659 44 270 18.2
## 95 95 0.04294 28.0 15.04 0 0.4640 6.249 77.3 3.6150 44 270 18.2
## 96 96 0.12204 0.0 2.89 0 0.4450 6.625 57.8 3.4952 2 276 18.0
## 97 97 0.11504 0.0 2.89 0 0.4450 6.163 69.6 3.4952 2 276 18.0
## 98 98 0.12083 0.0 2.89 0 0.4450 8.069 76.0 3.4952 2 276 18.0
## 99 99 0.08187 0.0 2.89 0 0.4450 7.820 36.9 3.4952 2 276 18.0
## 100 100 0.06860 0.0 2.89 0 0.4450 7.416 62.5 3.4952 2 276 18.0
## black lstat medv
## 1 396.90 4.98 24.0
## 2 396.90 9.14 21.6
## 3 392.83 4.03 34.7
## 4 394.63 2.94 33.4
## 5 396.90 5.33 36.2
## 6 394.12 5.21 28.7
## 7 395.60 12.43 22.9
## 8 396.90 19.15 27.1
## 9 386.63 29.93 16.5
## 10 386.71 17.10 18.9
## 11 392.52 20.45 15.0
## 12 396.90 13.27 18.9
## 13 390.50 15.71 21.7
## 14 396.90 8.26 20.4
## 15 380.02 10.26 18.2
## 16 395.62 8.47 19.9
## 17 386.85 6.58 23.1
## 18 386.75 14.67 17.5
## 19 288.99 11.69 20.2
## 20 390.95 11.28 18.2
## 21 376.57 21.02 13.6
## 22 392.53 13.83 19.6
## 23 396.90 18.72 15.2
## 24 394.54 19.88 14.5
## 25 394.33 16.30 15.6
## 26 303.42 16.51 13.9
## 27 376.88 14.81 16.6
## 28 306.38 17.28 14.8
## 29 387.94 12.80 18.4
## 30 380.23 11.98 21.0
## 31 360.17 22.60 12.7
## 32 376.73 13.04 14.5
## 33 232.60 27.71 13.2
## 34 358.77 18.35 13.1
## 35 248.31 20.34 13.5
## 36 396.90 9.68 18.9
## 37 377.56 11.41 20.0
## 38 396.90 8.77 21.0
## 39 393.43 10.13 24.7
## 40 395.63 4.32 30.8
## 41 395.62 1.98 34.9
## 42 385.41 4.84 26.6
## 43 383.37 5.81 25.3
## 44 394.46 7.44 24.7
## 45 389.39 9.55 21.2
## 46 396.90 10.21 19.3
## 47 396.90 14.15 20.0
## 48 392.74 18.80 16.6
## 49 396.90 30.81 14.4
## 50 396.90 16.20 19.4
## 51 395.56 13.45 19.7
## 52 393.97 9.43 20.5
## 53 396.90 5.28 25.0
## 54 396.90 8.43 23.4
## 55 396.90 14.80 18.9
## 56 395.93 4.81 35.4
## 57 396.90 5.77 24.7
## 58 392.90 3.95 31.6
## 59 390.68 6.86 23.3
## 60 396.90 9.22 19.6
## 61 395.11 13.15 18.7
## 62 378.08 14.44 16.0
## 63 396.90 6.73 22.2
## 64 395.58 9.50 25.0
## 65 393.24 8.05 33.0
## 66 396.90 4.67 23.5
## 67 396.90 10.24 19.4
## 68 396.21 8.10 22.0
## 69 396.90 13.09 17.4
## 70 396.90 8.79 20.9
## 71 383.73 6.72 24.2
## 72 376.94 9.88 21.7
## 73 390.91 5.52 22.8
## 74 377.17 7.54 23.4
## 75 394.92 6.78 24.1
## 76 383.23 8.94 21.4
## 77 373.66 11.97 20.0
## 78 386.96 10.27 20.8
## 79 386.40 12.34 21.2
## 80 396.06 9.10 20.3
## 81 396.90 5.29 28.0
## 82 395.63 7.22 23.9
## 83 396.90 6.72 24.8
## 84 390.64 7.51 22.9
## 85 396.90 9.62 23.9
## 86 392.30 6.53 26.6
## 87 395.99 12.86 22.5
## 88 395.15 8.44 22.2
## 89 396.90 5.50 23.6
## 90 396.06 5.70 28.7
## 91 392.18 8.81 22.6
## 92 393.55 8.20 22.0
## 93 395.01 8.16 22.9
## 94 396.33 6.21 25.0
## 95 396.90 10.59 20.6
## 96 357.98 6.65 28.4
## 97 391.83 11.34 21.4
## 98 396.90 4.21 38.7
## 99 393.53 3.57 43.8
## 100 396.90 6.19 33.2