The objective of this assignment is to introduce you to R and R markdown and to complete some basic data simulation exercises.
Please include all code needed to perform the tasks. This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Moodle. Please make sure that this link is hyperlinked and that I can see the visualization and the code required to create it.
# place the code to simulate the data here
set.seed(1)
rnorm(30,mean=c(0,1,10),sd=c(1,10,100))
## [1] -0.62645381 2.83643324 -73.56286124 1.59528080 4.29507772
## [6] -72.04683841 0.48742905 8.38324705 67.57813517 -0.30538839
## [11] 16.11781168 48.98432364 -0.62124058 -21.14699887 122.49309181
## [16] -0.04493361 0.83809737 104.38362107 0.82122120 6.93901321
## [21] 101.89773716 0.78213630 1.74564983 -188.93516959 0.61982575
## [26] 0.43871260 -5.57955067 -1.47075238 -3.78150055 51.79415602
# place the code to simulate the data here
set.seed(2)
x=rnorm(20,0,1)
set.seed(3)
y=rnorm(20,0,1)
plot(y~x)
# place the code to simulate the data here
set.seed(4)
x1=runif(100,1,10)
x2=runif(100,100,200)
y=rnorm(100,0,1)
z=lm(y~x1+x2)
summary(z)
##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.26719 -0.64226 0.00468 0.81089 2.01481
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.597013 0.584765 -1.021 0.310
## x1 0.023268 0.038059 0.611 0.542
## x2 0.002585 0.003606 0.717 0.475
##
## Residual standard error: 1.019 on 97 degrees of freedom
## Multiple R-squared: 0.009247, Adjusted R-squared: -0.01118
## F-statistic: 0.4526 on 2 and 97 DF, p-value: 0.6373
plot(z)
# place the code to simulate the data here
rep(letters[1:3],each=2,times=2)
## [1] "a" "a" "b" "b" "c" "c" "a" "a" "b" "b" "c" "c"
# place the code to simulate the data here
a=data.frame(group=rep(letters[1:3]),factor=rep(letters[4:5]),
x=rnorm(6,0,1),y=rnorm(6,1,2))
a
## group factor x y
## 1 a d 1.2147301 -3.8441746
## 2 b e -1.5478003 2.1126566
## 3 c d -0.3022460 3.2110678
## 4 a e 1.0392077 1.3328736
## 5 b d -0.7678417 0.5490754
## 6 c e 1.5246726 0.5431753