download.file("https://spark-public.s3.amazonaws.com/dataanalysis/loansData.csv",
destfile = "./loansData.csv", method = "curl")
loansData <- read.csv("./loansData.csv")
save(list = ls(all = T), file = "loansData.rda")
download.file("https://spark-public.s3.amazonaws.com/dataanalysis/loansCodebook.pdf",
destfile = "./loansCodebook.pdf", method = "curl")
library(car)
## Loading required package: MASS
## Loading required package: nnet
library(stats)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 2.15.2
Data already converted to .csv file. Entered into Workspace.
names(loansData)
## [1] "Amount.Requested" "Amount.Funded.By.Investors"
## [3] "Interest.Rate" "Loan.Length"
## [5] "Loan.Purpose" "Debt.To.Income.Ratio"
## [7] "State" "Home.Ownership"
## [9] "Monthly.Income" "FICO.Range"
## [11] "Open.CREDIT.Lines" "Revolving.CREDIT.Balance"
## [13] "Inquiries.in.the.Last.6.Months" "Employment.Length"
head(loansData)
## Amount.Requested Amount.Funded.By.Investors Interest.Rate
## 81174 20000 20000 8.90%
## 99592 19200 19200 12.12%
## 80059 35000 35000 21.98%
## 15825 10000 9975 9.99%
## 33182 12000 12000 11.71%
## 62403 6000 6000 15.31%
## Loan.Length Loan.Purpose Debt.To.Income.Ratio State
## 81174 36 months debt_consolidation 14.90% SC
## 99592 36 months debt_consolidation 28.36% TX
## 80059 60 months debt_consolidation 23.81% CA
## 15825 36 months debt_consolidation 14.30% KS
## 33182 36 months credit_card 18.78% NJ
## 62403 36 months other 20.05% CT
## Home.Ownership Monthly.Income FICO.Range Open.CREDIT.Lines
## 81174 MORTGAGE 6542 735-739 14
## 99592 MORTGAGE 4583 715-719 12
## 80059 MORTGAGE 11500 690-694 14
## 15825 MORTGAGE 3833 695-699 10
## 33182 RENT 3195 695-699 11
## 62403 OWN 4892 670-674 17
## Revolving.CREDIT.Balance Inquiries.in.the.Last.6.Months
## 81174 14272 2
## 99592 11140 1
## 80059 21977 1
## 15825 9346 0
## 33182 14469 0
## 62403 10391 2
## Employment.Length
## 81174 < 1 year
## 99592 2 years
## 80059 2 years
## 15825 5 years
## 33182 9 years
## 62403 3 years
summary(loansData)
## Amount.Requested Amount.Funded.By.Investors Interest.Rate
## Min. : 1000 Min. : 0 12.12% : 122
## 1st Qu.: 6000 1st Qu.: 6000 7.90% : 119
## Median :10000 Median :10000 13.11% : 115
## Mean :12406 Mean :12002 15.31% : 76
## 3rd Qu.:17000 3rd Qu.:16000 14.09% : 72
## Max. :35000 Max. :35000 14.33% : 69
## (Other):1927
## Loan.Length Loan.Purpose Debt.To.Income.Ratio
## 36 months:1952 debt_consolidation:1307 0% : 8
## 60 months: 548 credit_card : 444 12.54% : 6
## other : 201 12.20% : 5
## home_improvement : 152 12.85% : 5
## major_purchase : 101 14.22% : 5
## small_business : 87 14.66% : 5
## (Other) : 208 (Other):2466
## State Home.Ownership Monthly.Income FICO.Range
## CA : 433 MORTGAGE:1148 Min. : 588 670-674: 171
## NY : 255 NONE : 1 1st Qu.: 3500 675-679: 166
## TX : 174 OTHER : 5 Median : 5000 680-684: 157
## FL : 169 OWN : 200 Mean : 5689 695-699: 153
## IL : 101 RENT :1146 3rd Qu.: 6800 665-669: 145
## GA : 98 Max. :102750 690-694: 140
## (Other):1270 NA's :1 (Other):1568
## Open.CREDIT.Lines Revolving.CREDIT.Balance Inquiries.in.the.Last.6.Months
## Min. : 2.0 Min. : 0 Min. :0.000
## 1st Qu.: 7.0 1st Qu.: 5586 1st Qu.:0.000
## Median : 9.0 Median : 10962 Median :0.000
## Mean :10.1 Mean : 15245 Mean :0.906
## 3rd Qu.:13.0 3rd Qu.: 18889 3rd Qu.:1.000
## Max. :38.0 Max. :270800 Max. :9.000
## NA's :2 NA's :2 NA's :2
## Employment.Length
## 10+ years:653
## < 1 year :250
## 2 years :244
## 3 years :235
## 5 years :202
## 4 years :192
## (Other) :724
sapply(loansData[1, ], class)
## Amount.Requested Amount.Funded.By.Investors
## "integer" "numeric"
## Interest.Rate Loan.Length
## "factor" "factor"
## Loan.Purpose Debt.To.Income.Ratio
## "factor" "factor"
## State Home.Ownership
## "factor" "factor"
## Monthly.Income FICO.Range
## "numeric" "factor"
## Open.CREDIT.Lines Revolving.CREDIT.Balance
## "integer" "integer"
## Inquiries.in.the.Last.6.Months Employment.Length
## "integer" "factor"
sum(is.na(loansData))
## [1] 7
which(matrix(is.na(loansData), nrow = 2500, ncol = 14), arr.ind = T)
## row col
## [1,] 367 9
## [2,] 367 11
## [3,] 1595 11
## [4,] 367 12
## [5,] 1595 12
## [6,] 367 13
## [7,] 1595 13
summary(loansData$Interest)
## 12.12% 7.90% 13.11% 15.31% 14.09% 14.33% 8.90% 11.14% 6.03%
## 122 119 115 76 72 69 64 58 57
## 17.27% 16.29% 6.62% 10.16% 15.80% 17.77% 11.71% 7.62% 18.49%
## 56 51 49 48 39 38 36 34 33
## 13.99% 14.65% 19.05% 13.49% 10.74% 13.67% 7.49% 11.49% 12.69%
## 29 29 26 25 24 23 23 21 21
## 7.51% 9.76% 10.99% 18.25% 19.72% 14.27% 20.49% 12.42% 18.75%
## 21 21 20 19 19 18 18 17 17
## 7.88% 22.47% 10.65% 11.99% 5.79% 10.59% 9.91% 10.38% 17.99%
## 17 15 14 14 14 13 13 12 12
## 21.00% 21.49% 10.75% 16.77% 5.42% 9.63% 9.99% 12.53% 15.27%
## 12 12 11 11 11 11 11 10 10
## 15.81% 15.96% 17.49% 21.98% 5.99% 7.29% 8.49% 11.89% 16.89%
## 10 10 10 10 10 10 10 9 9
## 19.22% 6.91% 6.99% 10.00% 10.25% 10.36% 10.37% 11.12% 11.83%
## 9 9 9 8 8 8 8 8 8
## 13.06% 13.98% 16.32% 16.49% 18.64% 22.95% 7.66% 11.86% 12.68%
## 8 8 8 8 8 8 8 7 7
## 14.11% 15.23% 15.99% 18.55% 19.03% 19.99% 23.28% 23.76% 7.14%
## 7 7 7 7 7 7 7 7 7
## 8.59% 8.94% 11.11% 11.48% 12.99% 14.96% 17.58% 20.50% 6.54%
## 7 7 6 6 6 6 6 6 6
## (Other)
## 398
levels(loansData$Interest)
## [1] "10.00%" "10.08%" "10.16%" "10.20%" "10.25%" "10.28%" "10.36%"
## [8] "10.37%" "10.38%" "10.46%" "10.59%" "10.62%" "10.65%" "10.74%"
## [15] "10.75%" "10.83%" "10.91%" "10.95%" "10.99%" "11.03%" "11.09%"
## [22] "11.11%" "11.12%" "11.14%" "11.26%" "11.36%" "11.48%" "11.49%"
## [29] "11.54%" "11.58%" "11.59%" "11.66%" "11.71%" "11.78%" "11.83%"
## [36] "11.86%" "11.89%" "11.97%" "11.99%" "12.12%" "12.18%" "12.21%"
## [43] "12.23%" "12.29%" "12.41%" "12.42%" "12.49%" "12.53%" "12.61%"
## [50] "12.68%" "12.69%" "12.73%" "12.84%" "12.86%" "12.87%" "12.92%"
## [57] "12.98%" "12.99%" "13.06%" "13.11%" "13.12%" "13.16%" "13.17%"
## [64] "13.22%" "13.23%" "13.24%" "13.30%" "13.35%" "13.43%" "13.47%"
## [71] "13.48%" "13.49%" "13.55%" "13.57%" "13.61%" "13.67%" "13.72%"
## [78] "13.75%" "13.79%" "13.80%" "13.85%" "13.87%" "13.92%" "13.93%"
## [85] "13.98%" "13.99%" "14.07%" "14.09%" "14.11%" "14.12%" "14.17%"
## [92] "14.18%" "14.22%" "14.26%" "14.27%" "14.33%" "14.35%" "14.42%"
## [99] "14.46%" "14.50%" "14.59%" "14.61%" "14.65%" "14.70%" "14.72%"
## [106] "14.74%" "14.79%" "14.82%" "14.83%" "14.84%" "14.91%" "14.96%"
## [113] "15.01%" "15.05%" "15.13%" "15.20%" "15.21%" "15.23%" "15.27%"
## [120] "15.28%" "15.31%" "15.33%" "15.37%" "15.45%" "15.57%" "15.58%"
## [127] "15.62%" "15.65%" "15.68%" "15.70%" "15.80%" "15.81%" "15.95%"
## [134] "15.96%" "15.99%" "16.00%" "16.02%" "16.07%" "16.29%" "16.32%"
## [141] "16.35%" "16.40%" "16.45%" "16.49%" "16.63%" "16.69%" "16.70%"
## [148] "16.71%" "16.77%" "16.82%" "16.83%" "16.89%" "17.04%" "17.14%"
## [155] "17.15%" "17.19%" "17.27%" "17.43%" "17.44%" "17.49%" "17.51%"
## [162] "17.54%" "17.56%" "17.58%" "17.77%" "17.80%" "17.88%" "17.90%"
## [169] "17.93%" "17.99%" "18.17%" "18.25%" "18.29%" "18.30%" "18.39%"
## [176] "18.49%" "18.55%" "18.62%" "18.64%" "18.67%" "18.75%" "18.79%"
## [183] "19.03%" "19.04%" "19.05%" "19.13%" "19.22%" "19.41%" "19.42%"
## [190] "19.47%" "19.69%" "19.72%" "19.74%" "19.91%" "19.99%" "20.25%"
## [197] "20.30%" "20.49%" "20.50%" "20.52%" "20.53%" "20.77%" "20.89%"
## [204] "20.99%" "21.00%" "21.14%" "21.27%" "21.28%" "21.48%" "21.49%"
## [211] "21.67%" "21.74%" "21.97%" "21.98%" "22.11%" "22.45%" "22.47%"
## [218] "22.78%" "22.95%" "23.28%" "23.33%" "23.63%" "23.76%" "23.83%"
## [225] "23.91%" "24.20%" "24.33%" "24.70%" "24.89%" "5.42%" "5.79%"
## [232] "5.99%" "6.00%" "6.03%" "6.17%" "6.54%" "6.62%" "6.76%"
## [239] "6.91%" "6.92%" "6.99%" "7.14%" "7.29%" "7.40%" "7.43%"
## [246] "7.49%" "7.51%" "7.62%" "7.66%" "7.68%" "7.74%" "7.75%"
## [253] "7.88%" "7.90%" "7.91%" "8.00%" "8.07%" "8.32%" "8.49%"
## [260] "8.59%" "8.63%" "8.88%" "8.90%" "8.94%" "9.07%" "9.20%"
## [267] "9.25%" "9.32%" "9.33%" "9.62%" "9.63%" "9.76%" "9.88%"
## [274] "9.91%" "9.99%"
Interest <- loansData$Interest
levelsI <- levels(Interest)
levelsN <- c(levelsI[230:275], levelsI[1:229])
InterestN <- factor(Interest, levelsN)
loansDataCorrection <- loansData
loansDataCorrection$Interest.Rate <- InterestN
par(mfrow = c(1, 2))
barplot(table(loansDataCorrection$Interest), col = "blue", main = "loansDataCorrection$Interest")
barplot(table(loansData$Interest), col = "blue", main = "loansData$Interest")
par(mfrow = c(1, 1))
plot(as.numeric(loansDataCorrection$FICO), as.numeric(loansDataCorrection$Interest),
xlab = "FICO RANGE", ylab = "Interest RATE", pch = 1, cex = 0.8, main = "Interest Rate Vs. FICO Range")
par(mfrow = c(1, 2))
plot(as.numeric(loansDataCorrection$FICO), as.numeric(loansDataCorrection$Interest),
xlab = "FICO range", ylab = "Interest Rate", cex = 0.5, main = "Interest Rate Vs. FICO Range, Colored by Loan Length",
cex.main = 0.75, pch = 19, col = as.numeric(loansDataCorrection$Loan.L))
legend(27, 275, col = unique(as.numeric(loansDataCorrection$Loan.L)), legend = unique(loansDataCorrection$Loan.L),
pch = 19, cex = 0.5)
boxplot(as.numeric(loansDataCorrection$Interest) ~ loansDataCorrection$Loan.L,
xlab = "Loan Length, 36 or 60 month Loan", ylab = "Interest Rate")
t.test(as.numeric(loansDataCorrection$Interest) ~ as.factor(loansDataCorrection$Loan.L),
alternative = "less", conf.level = 0.99)
##
## Welch Two Sample t-test
##
## data: as.numeric(loansDataCorrection$Interest) by as.factor(loansDataCorrection$Loan.L)
## t = -21.72, df = 832.1, p-value < 2.2e-16
## alternative hypothesis: true difference in means is less than 0
## 99 percent confidence interval:
## -Inf -67.54
## sample estimates:
## mean in group 36 months mean in group 60 months
## 97.69 173.34
p-value < 2.2e-16
boxplot(as.numeric(loansDataCorrection$Interest) ~ loansDataCorrection$Inquiries,
loansDataCorrection, xlab = "Number of Inquiries in the past 6 Months",
ylab = "Interest Rate", main = "Ineterest Rate Vs. Inquiries")
plot(as.numeric(loansDataCorrection$Amount.R), as.numeric(loansDataCorrection$Interest),
xlab = "Amount Requested", ylab = "Interest Rate", main = "Interest Rate vs. Amount Requested")
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 2.15.1
## Loading required package: survival
## Loading required package: splines
## Hmisc library by Frank E Harrell Jr
##
## Type library(help='Hmisc'), ?Overview, or ?Hmisc.Overview') to see overall
## documentation.
##
## NOTE:Hmisc no longer redefines [.factor to drop unused levels when
## subsetting. To get the old behavior of Hmisc type dropUnusedLevels().
## Attaching package: 'Hmisc'
## The following object(s) are masked from 'package:survival':
##
## untangle.specials
## The following object(s) are masked from 'package:car':
##
## recode
## The following object(s) are masked from 'package:base':
##
## format.pval, round.POSIXt, trunc.POSIXt, units
AmountRange <- cut2(loansDataCorrection$Amount.R, g = 4)
boxplot(as.numeric(loansDataCorrection$Interest) ~ AmountRange, xlab = "Amount Requested, in 4 Groupings",
ylab = "Interest Rate", main = "Interest Rate vs. Amount Requested")
TukeyHSD(aov(as.numeric(loansDataCorrection$Interest) ~ AmountRange))
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = as.numeric(loansDataCorrection$Interest) ~ AmountRange)
##
## $AmountRange
## diff lwr upr p adj
## [ 6075,10050)-[ 1000, 6075) 10.10 -0.3290 20.52 0.0618
## [10050,17200)-[ 1000, 6075) 20.26 9.7892 30.73 0.0000
## [17200,35000]-[ 1000, 6075) 62.16 51.6438 72.67 0.0000
## [10050,17200)-[ 6075,10050) 10.16 -0.3524 20.68 0.0626
## [17200,35000]-[ 6075,10050) 52.06 41.5024 62.61 0.0000
## [17200,35000]-[10050,17200) 41.89 31.2915 52.50 0.0000
boxplot(as.numeric(loansDataCorrection$Interest) ~ loansDataCorrection$Loan.P,
xlab = "Loan Purpose", ylab = "Interest Rate", main = "Interest Rate vs. Loan Purpose")
hist(loansDataCorrection$Monthly, breaks = 50, col = "blue", xlab = "Monthly Income",
main = "Monthly Income")
par(mfrow = c(1, 2))
hist(log(loansDataCorrection$Monthly), breaks = 50, col = "blue", xlab = "log(Monthly Income)",
main = "monthly Income, log")
plot(log(loansDataCorrection$Monthly), as.numeric(loansDataCorrection$Interest),
xlab = "log(Monthly Income)", ylab = "Interest Rate", cex = 0.6, main = "Interest Rate vs. log(Monthly Income")
levels(loansDataCorrection$Debt)
## [1] "0%" "0.04%" "0.17%" "0.18%" "0.24%" "0.26%" "0.33%"
## [8] "0.34%" "0.47%" "0.48%" "0.51%" "0.52%" "0.53%" "0.56%"
## [15] "0.58%" "0.60%" "0.62%" "0.72%" "0.94%" "1%" "1.02%"
## [22] "1.03%" "1.05%" "1.06%" "1.08%" "1.20%" "1.23%" "1.24%"
## [29] "1.28%" "1.30%" "1.31%" "1.34%" "1.37%" "1.41%" "1.43%"
## [36] "1.49%" "1.50%" "1.51%" "1.58%" "1.59%" "1.62%" "1.63%"
## [43] "1.68%" "1.69%" "1.70%" "1.73%" "1.78%" "1.79%" "1.82%"
## [50] "1.83%" "1.84%" "1.88%" "1.92%" "1.97%" "1.98%" "1.99%"
## [57] "10%" "10.01%" "10.02%" "10.05%" "10.08%" "10.10%" "10.11%"
## [64] "10.12%" "10.16%" "10.17%" "10.19%" "10.20%" "10.21%" "10.22%"
## [71] "10.23%" "10.25%" "10.27%" "10.28%" "10.29%" "10.30%" "10.32%"
## [78] "10.34%" "10.35%" "10.36%" "10.37%" "10.38%" "10.39%" "10.40%"
## [85] "10.41%" "10.42%" "10.43%" "10.45%" "10.46%" "10.47%" "10.53%"
## [92] "10.55%" "10.56%" "10.58%" "10.59%" "10.61%" "10.63%" "10.65%"
## [99] "10.67%" "10.68%" "10.69%" "10.71%" "10.72%" "10.73%" "10.74%"
## [106] "10.75%" "10.76%" "10.77%" "10.79%" "10.80%" "10.81%" "10.84%"
## [113] "10.86%" "10.87%" "10.88%" "10.89%" "10.93%" "10.94%" "10.96%"
## [120] "10.97%" "10.98%" "10.99%" "11.01%" "11.02%" "11.03%" "11.04%"
## [127] "11.05%" "11.07%" "11.08%" "11.12%" "11.15%" "11.16%" "11.17%"
## [134] "11.18%" "11.19%" "11.20%" "11.21%" "11.22%" "11.23%" "11.24%"
## [141] "11.27%" "11.29%" "11.31%" "11.32%" "11.34%" "11.35%" "11.37%"
## [148] "11.38%" "11.39%" "11.40%" "11.41%" "11.42%" "11.44%" "11.45%"
## [155] "11.46%" "11.48%" "11.50%" "11.52%" "11.53%" "11.55%" "11.59%"
## [162] "11.61%" "11.63%" "11.64%" "11.66%" "11.67%" "11.68%" "11.70%"
## [169] "11.71%" "11.72%" "11.73%" "11.74%" "11.77%" "11.78%" "11.79%"
## [176] "11.80%" "11.81%" "11.84%" "11.85%" "11.86%" "11.89%" "11.91%"
## [183] "11.92%" "11.93%" "11.94%" "11.95%" "11.96%" "11.98%" "11.99%"
## [190] "12%" "12.02%" "12.03%" "12.04%" "12.05%" "12.06%" "12.07%"
## [197] "12.10%" "12.11%" "12.13%" "12.15%" "12.19%" "12.20%" "12.21%"
## [204] "12.23%" "12.24%" "12.26%" "12.27%" "12.29%" "12.30%" "12.32%"
## [211] "12.33%" "12.35%" "12.36%" "12.39%" "12.40%" "12.41%" "12.42%"
## [218] "12.44%" "12.46%" "12.47%" "12.49%" "12.50%" "12.51%" "12.52%"
## [225] "12.54%" "12.56%" "12.58%" "12.59%" "12.60%" "12.61%" "12.63%"
## [232] "12.67%" "12.68%" "12.69%" "12.70%" "12.72%" "12.73%" "12.77%"
## [239] "12.78%" "12.79%" "12.80%" "12.81%" "12.82%" "12.83%" "12.85%"
## [246] "12.86%" "12.89%" "12.90%" "12.92%" "12.93%" "12.94%" "12.96%"
## [253] "12.98%" "12.99%" "13%" "13.02%" "13.03%" "13.06%" "13.07%"
## [260] "13.08%" "13.09%" "13.10%" "13.11%" "13.13%" "13.14%" "13.16%"
## [267] "13.17%" "13.18%" "13.19%" "13.26%" "13.27%" "13.28%" "13.29%"
## [274] "13.30%" "13.31%" "13.32%" "13.34%" "13.37%" "13.38%" "13.39%"
## [281] "13.40%" "13.41%" "13.42%" "13.44%" "13.45%" "13.48%" "13.49%"
## [288] "13.50%" "13.52%" "13.53%" "13.55%" "13.56%" "13.57%" "13.58%"
## [295] "13.59%" "13.61%" "13.62%" "13.64%" "13.65%" "13.67%" "13.69%"
## [302] "13.71%" "13.72%" "13.73%" "13.74%" "13.75%" "13.76%" "13.77%"
## [309] "13.78%" "13.79%" "13.80%" "13.81%" "13.82%" "13.83%" "13.85%"
## [316] "13.86%" "13.87%" "13.88%" "13.89%" "13.90%" "13.91%" "13.93%"
## [323] "13.94%" "13.96%" "13.98%" "13.99%" "14.01%" "14.02%" "14.05%"
## [330] "14.06%" "14.07%" "14.08%" "14.11%" "14.12%" "14.13%" "14.15%"
## [337] "14.16%" "14.18%" "14.19%" "14.20%" "14.22%" "14.25%" "14.26%"
## [344] "14.27%" "14.29%" "14.30%" "14.31%" "14.32%" "14.33%" "14.34%"
## [351] "14.36%" "14.37%" "14.40%" "14.41%" "14.43%" "14.44%" "14.45%"
## [358] "14.48%" "14.49%" "14.50%" "14.51%" "14.52%" "14.57%" "14.59%"
## [365] "14.60%" "14.61%" "14.62%" "14.63%" "14.65%" "14.66%" "14.67%"
## [372] "14.68%" "14.69%" "14.70%" "14.72%" "14.74%" "14.75%" "14.76%"
## [379] "14.77%" "14.78%" "14.79%" "14.80%" "14.82%" "14.84%" "14.85%"
## [386] "14.86%" "14.87%" "14.88%" "14.89%" "14.90%" "14.92%" "14.93%"
## [393] "14.95%" "14.96%" "14.98%" "14.99%" "15%" "15.02%" "15.03%"
## [400] "15.04%" "15.05%" "15.07%" "15.08%" "15.09%" "15.10%" "15.11%"
## [407] "15.12%" "15.13%" "15.14%" "15.16%" "15.17%" "15.19%" "15.20%"
## [414] "15.21%" "15.22%" "15.23%" "15.24%" "15.28%" "15.29%" "15.30%"
## [421] "15.32%" "15.33%" "15.34%" "15.35%" "15.36%" "15.37%" "15.38%"
## [428] "15.41%" "15.42%" "15.43%" "15.45%" "15.46%" "15.47%" "15.50%"
## [435] "15.51%" "15.53%" "15.54%" "15.55%" "15.56%" "15.58%" "15.60%"
## [442] "15.61%" "15.64%" "15.66%" "15.68%" "15.69%" "15.70%" "15.71%"
## [449] "15.72%" "15.74%" "15.75%" "15.76%" "15.79%" "15.80%" "15.82%"
## [456] "15.83%" "15.86%" "15.87%" "15.88%" "15.89%" "15.90%" "15.91%"
## [463] "15.92%" "15.93%" "15.94%" "15.95%" "15.96%" "15.97%" "15.98%"
## [470] "16%" "16.01%" "16.02%" "16.03%" "16.04%" "16.06%" "16.07%"
## [477] "16.08%" "16.09%" "16.14%" "16.15%" "16.16%" "16.17%" "16.18%"
## [484] "16.20%" "16.21%" "16.22%" "16.23%" "16.24%" "16.26%" "16.28%"
## [491] "16.29%" "16.32%" "16.33%" "16.35%" "16.36%" "16.38%" "16.39%"
## [498] "16.40%" "16.41%" "16.42%" "16.43%" "16.44%" "16.45%" "16.46%"
## [505] "16.47%" "16.48%" "16.49%" "16.52%" "16.53%" "16.54%" "16.55%"
## [512] "16.56%" "16.57%" "16.58%" "16.59%" "16.61%" "16.62%" "16.64%"
## [519] "16.66%" "16.67%" "16.68%" "16.69%" "16.70%" "16.71%" "16.72%"
## [526] "16.73%" "16.74%" "16.75%" "16.76%" "16.77%" "16.78%" "16.80%"
## [533] "16.84%" "16.85%" "16.87%" "16.89%" "16.92%" "16.93%" "16.94%"
## [540] "16.97%" "16.98%" "16.99%" "17%" "17.01%" "17.04%" "17.05%"
## [547] "17.07%" "17.08%" "17.10%" "17.11%" "17.12%" "17.15%" "17.16%"
## [554] "17.17%" "17.19%" "17.21%" "17.22%" "17.27%" "17.29%" "17.31%"
## [561] "17.32%" "17.34%" "17.35%" "17.36%" "17.37%" "17.39%" "17.40%"
## [568] "17.41%" "17.43%" "17.44%" "17.45%" "17.46%" "17.47%" "17.48%"
## [575] "17.49%" "17.50%" "17.51%" "17.55%" "17.58%" "17.59%" "17.61%"
## [582] "17.62%" "17.63%" "17.65%" "17.67%" "17.68%" "17.70%" "17.71%"
## [589] "17.72%" "17.73%" "17.76%" "17.77%" "17.78%" "17.79%" "17.80%"
## [596] "17.82%" "17.86%" "17.88%" "17.89%" "17.90%" "17.91%" "17.92%"
## [603] "17.93%" "17.94%" "17.95%" "17.96%" "17.97%" "17.98%" "17.99%"
## [610] "18%" "18.02%" "18.04%" "18.05%" "18.07%" "18.08%" "18.10%"
## [617] "18.14%" "18.15%" "18.16%" "18.17%" "18.18%" "18.20%" "18.21%"
## [624] "18.23%" "18.24%" "18.28%" "18.30%" "18.31%" "18.32%" "18.33%"
## [631] "18.35%" "18.36%" "18.37%" "18.38%" "18.39%" "18.40%" "18.41%"
## [638] "18.42%" "18.44%" "18.45%" "18.46%" "18.48%" "18.50%" "18.52%"
## [645] "18.55%" "18.57%" "18.60%" "18.61%" "18.62%" "18.63%" "18.66%"
## [652] "18.67%" "18.72%" "18.73%" "18.74%" "18.75%" "18.78%" "18.81%"
## [659] "18.82%" "18.83%" "18.84%" "18.85%" "18.86%" "18.89%" "18.90%"
## [666] "18.91%" "18.92%" "18.93%" "18.95%" "18.96%" "18.99%" "19%"
## [673] "19.01%" "19.02%" "19.05%" "19.06%" "19.07%" "19.10%" "19.11%"
## [680] "19.12%" "19.13%" "19.15%" "19.16%" "19.17%" "19.20%" "19.21%"
## [687] "19.22%" "19.23%" "19.24%" "19.25%" "19.26%" "19.27%" "19.28%"
## [694] "19.29%" "19.30%" "19.32%" "19.33%" "19.35%" "19.36%" "19.37%"
## [701] "19.38%" "19.41%" "19.43%" "19.45%" "19.46%" "19.47%" "19.48%"
## [708] "19.49%" "19.52%" "19.53%" "19.55%" "19.56%" "19.57%" "19.58%"
## [715] "19.59%" "19.60%" "19.61%" "19.62%" "19.63%" "19.64%" "19.65%"
## [722] "19.68%" "19.70%" "19.71%" "19.77%" "19.78%" "19.81%" "19.82%"
## [729] "19.83%" "19.85%" "19.86%" "19.88%" "19.89%" "19.90%" "19.92%"
## [736] "19.93%" "19.94%" "19.97%" "19.98%" "2%" "2.13%" "2.14%"
## [743] "2.15%" "2.18%" "2.19%" "2.21%" "2.23%" "2.25%" "2.33%"
## [750] "2.37%" "2.38%" "2.44%" "2.48%" "2.50%" "2.51%" "2.52%"
## [757] "2.54%" "2.55%" "2.63%" "2.67%" "2.68%" "2.77%" "2.83%"
## [764] "2.84%" "2.85%" "2.86%" "2.88%" "2.89%" "2.92%" "2.93%"
## [771] "2.95%" "2.98%" "20.03%" "20.04%" "20.05%" "20.06%" "20.07%"
## [778] "20.09%" "20.10%" "20.11%" "20.13%" "20.14%" "20.15%" "20.16%"
## [785] "20.17%" "20.18%" "20.21%" "20.23%" "20.24%" "20.25%" "20.26%"
## [792] "20.27%" "20.28%" "20.30%" "20.31%" "20.32%" "20.34%" "20.35%"
## [799] "20.37%" "20.38%" "20.40%" "20.44%" "20.46%" "20.48%" "20.49%"
## [806] "20.50%" "20.51%" "20.52%" "20.54%" "20.55%" "20.56%" "20.57%"
## [813] "20.58%" "20.59%" "20.60%" "20.62%" "20.67%" "20.68%" "20.69%"
## [820] "20.70%" "20.71%" "20.72%" "20.73%" "20.74%" "20.75%" "20.76%"
## [827] "20.77%" "20.80%" "20.81%" "20.82%" "20.83%" "20.85%" "20.87%"
## [834] "20.89%" "20.91%" "20.92%" "20.93%" "20.94%" "20.95%" "20.96%"
## [841] "20.98%" "20.99%" "21%" "21.03%" "21.04%" "21.11%" "21.12%"
## [848] "21.16%" "21.17%" "21.18%" "21.20%" "21.21%" "21.22%" "21.23%"
## [855] "21.24%" "21.25%" "21.28%" "21.30%" "21.31%" "21.32%" "21.33%"
## [862] "21.34%" "21.35%" "21.36%" "21.42%" "21.43%" "21.44%" "21.45%"
## [869] "21.46%" "21.47%" "21.49%" "21.50%" "21.51%" "21.52%" "21.53%"
## [876] "21.54%" "21.58%" "21.59%" "21.61%" "21.63%" "21.66%" "21.67%"
## [883] "21.69%" "21.70%" "21.73%" "21.74%" "21.75%" "21.77%" "21.80%"
## [890] "21.81%" "21.82%" "21.83%" "21.84%" "21.88%" "21.89%" "21.90%"
## [897] "21.92%" "21.93%" "21.94%" "21.95%" "21.98%" "21.99%" "22%"
## [904] "22.01%" "22.03%" "22.04%" "22.06%" "22.08%" "22.09%" "22.10%"
## [911] "22.13%" "22.14%" "22.15%" "22.19%" "22.20%" "22.21%" "22.22%"
## [918] "22.24%" "22.26%" "22.29%" "22.30%" "22.31%" "22.32%" "22.34%"
## [925] "22.35%" "22.36%" "22.38%" "22.39%" "22.41%" "22.42%" "22.45%"
## [932] "22.47%" "22.48%" "22.49%" "22.50%" "22.52%" "22.53%" "22.55%"
## [939] "22.57%" "22.58%" "22.60%" "22.61%" "22.63%" "22.64%" "22.65%"
## [946] "22.66%" "22.67%" "22.69%" "22.70%" "22.72%" "22.74%" "22.76%"
## [953] "22.81%" "22.83%" "22.84%" "22.87%" "22.93%" "22.95%" "22.98%"
## [960] "22.99%" "23.02%" "23.03%" "23.04%" "23.05%" "23.06%" "23.07%"
## [967] "23.12%" "23.15%" "23.18%" "23.24%" "23.25%" "23.27%" "23.29%"
## [974] "23.30%" "23.34%" "23.35%" "23.36%" "23.37%" "23.38%" "23.40%"
## [981] "23.41%" "23.44%" "23.48%" "23.50%" "23.51%" "23.52%" "23.54%"
## [988] "23.56%" "23.58%" "23.59%" "23.60%" "23.62%" "23.63%" "23.64%"
## [995] "23.69%" "23.70%" "23.75%" "23.79%" "23.80%" "23.81%" "23.84%"
## [1002] "23.85%" "23.88%" "23.89%" "23.93%" "23.94%" "23.95%" "23.97%"
## [1009] "23.99%" "24.01%" "24.02%" "24.04%" "24.05%" "24.06%" "24.07%"
## [1016] "24.09%" "24.11%" "24.12%" "24.14%" "24.15%" "24.16%" "24.17%"
## [1023] "24.19%" "24.20%" "24.21%" "24.22%" "24.23%" "24.24%" "24.25%"
## [1030] "24.29%" "24.30%" "24.36%" "24.40%" "24.41%" "24.42%" "24.43%"
## [1037] "24.45%" "24.47%" "24.48%" "24.50%" "24.51%" "24.53%" "24.57%"
## [1044] "24.58%" "24.59%" "24.63%" "24.64%" "24.65%" "24.66%" "24.68%"
## [1051] "24.69%" "24.71%" "24.74%" "24.75%" "24.77%" "24.78%" "24.80%"
## [1058] "24.82%" "24.85%" "24.88%" "24.90%" "24.93%" "24.95%" "24.96%"
## [1065] "24.97%" "24.98%" "25.01%" "25.03%" "25.07%" "25.13%" "25.16%"
## [1072] "25.22%" "25.23%" "25.29%" "25.32%" "25.33%" "25.35%" "25.36%"
## [1079] "25.40%" "25.41%" "25.48%" "25.49%" "25.53%" "25.56%" "25.58%"
## [1086] "25.59%" "25.67%" "25.70%" "25.76%" "25.77%" "25.80%" "25.84%"
## [1093] "25.86%" "25.87%" "25.89%" "25.91%" "25.95%" "26.02%" "26.03%"
## [1100] "26.06%" "26.08%" "26.09%" "26.11%" "26.14%" "26.18%" "26.19%"
## [1107] "26.21%" "26.29%" "26.32%" "26.33%" "26.35%" "26.36%" "26.38%"
## [1114] "26.42%" "26.44%" "26.50%" "26.53%" "26.54%" "26.56%" "26.62%"
## [1121] "26.65%" "26.68%" "26.70%" "26.72%" "26.74%" "26.75%" "26.84%"
## [1128] "26.87%" "26.92%" "26.95%" "26.96%" "26.98%" "27.06%" "27.07%"
## [1135] "27.13%" "27.14%" "27.15%" "27.16%" "27.23%" "27.25%" "27.28%"
## [1142] "27.32%" "27.34%" "27.35%" "27.41%" "27.47%" "27.48%" "27.50%"
## [1149] "27.53%" "27.54%" "27.56%" "27.59%" "27.60%" "27.63%" "27.64%"
## [1156] "27.65%" "27.69%" "27.71%" "27.72%" "27.74%" "27.76%" "27.78%"
## [1163] "27.80%" "27.83%" "27.88%" "27.89%" "27.92%" "27.96%" "28.01%"
## [1170] "28.08%" "28.15%" "28.20%" "28.25%" "28.27%" "28.28%" "28.29%"
## [1177] "28.35%" "28.36%" "28.39%" "28.46%" "28.51%" "28.54%" "28.56%"
## [1184] "28.61%" "28.63%" "28.64%" "28.74%" "28.75%" "28.76%" "28.77%"
## [1191] "28.80%" "28.81%" "28.82%" "28.84%" "28.87%" "28.89%" "28.91%"
## [1198] "29.01%" "29.02%" "29.03%" "29.05%" "29.10%" "29.11%" "29.13%"
## [1205] "29.18%" "29.19%" "29.25%" "29.26%" "29.38%" "29.40%" "29.45%"
## [1212] "29.46%" "29.48%" "29.51%" "29.55%" "29.58%" "29.62%" "29.63%"
## [1219] "29.82%" "29.83%" "29.86%" "29.94%" "3%" "3.01%" "3.04%"
## [1226] "3.05%" "3.07%" "3.09%" "3.11%" "3.12%" "3.16%" "3.18%"
## [1233] "3.23%" "3.25%" "3.27%" "3.30%" "3.31%" "3.33%" "3.34%"
## [1240] "3.37%" "3.38%" "3.40%" "3.41%" "3.44%" "3.45%" "3.47%"
## [1247] "3.48%" "3.50%" "3.58%" "3.63%" "3.65%" "3.66%" "3.67%"
## [1254] "3.72%" "3.78%" "3.80%" "3.82%" "3.83%" "3.87%" "3.88%"
## [1261] "3.89%" "3.90%" "3.94%" "3.96%" "3.98%" "30.15%" "30.24%"
## [1268] "30.30%" "30.36%" "30.40%" "30.46%" "30.56%" "30.58%" "30.61%"
## [1275] "30.62%" "30.71%" "30.77%" "30.82%" "30.95%" "30.96%" "30.97%"
## [1282] "31%" "31.02%" "31.12%" "31.20%" "31.34%" "31.45%" "31.46%"
## [1289] "31.48%" "31.70%" "31.71%" "31.79%" "31.84%" "32%" "32.10%"
## [1296] "32.13%" "32.16%" "32.19%" "32.20%" "32.21%" "32.25%" "32.49%"
## [1303] "32.56%" "32.64%" "32.76%" "32.91%" "32.95%" "33.12%" "33.15%"
## [1310] "33.23%" "33.24%" "33.28%" "33.30%" "33.37%" "33.42%" "33.43%"
## [1317] "33.47%" "33.56%" "33.62%" "33.64%" "33.67%" "33.75%" "33.80%"
## [1324] "33.90%" "33.93%" "34.04%" "34.06%" "34.20%" "34.26%" "34.41%"
## [1331] "34.56%" "34.74%" "34.88%" "34.91%" "4%" "4.02%" "4.04%"
## [1338] "4.05%" "4.08%" "4.10%" "4.14%" "4.16%" "4.17%" "4.19%"
## [1345] "4.25%" "4.26%" "4.29%" "4.30%" "4.32%" "4.34%" "4.36%"
## [1352] "4.37%" "4.39%" "4.40%" "4.43%" "4.47%" "4.48%" "4.51%"
## [1359] "4.53%" "4.56%" "4.58%" "4.61%" "4.62%" "4.68%" "4.70%"
## [1366] "4.73%" "4.74%" "4.75%" "4.76%" "4.79%" "4.80%" "4.81%"
## [1373] "4.85%" "4.86%" "4.89%" "4.90%" "4.91%" "4.92%" "4.93%"
## [1380] "4.94%" "4.95%" "4.99%" "5.01%" "5.02%" "5.07%" "5.10%"
## [1387] "5.16%" "5.20%" "5.21%" "5.24%" "5.26%" "5.27%" "5.28%"
## [1394] "5.30%" "5.31%" "5.33%" "5.36%" "5.42%" "5.43%" "5.44%"
## [1401] "5.46%" "5.47%" "5.49%" "5.50%" "5.52%" "5.56%" "5.58%"
## [1408] "5.59%" "5.60%" "5.62%" "5.63%" "5.64%" "5.65%" "5.70%"
## [1415] "5.72%" "5.74%" "5.76%" "5.80%" "5.81%" "5.82%" "5.83%"
## [1422] "5.84%" "5.85%" "5.86%" "5.87%" "5.88%" "5.90%" "5.91%"
## [1429] "5.93%" "5.95%" "5.98%" "6.01%" "6.04%" "6.07%" "6.10%"
## [1436] "6.11%" "6.16%" "6.19%" "6.24%" "6.25%" "6.26%" "6.27%"
## [1443] "6.28%" "6.29%" "6.30%" "6.31%" "6.36%" "6.37%" "6.38%"
## [1450] "6.39%" "6.41%" "6.43%" "6.46%" "6.48%" "6.49%" "6.51%"
## [1457] "6.52%" "6.56%" "6.58%" "6.60%" "6.61%" "6.62%" "6.64%"
## [1464] "6.65%" "6.68%" "6.71%" "6.72%" "6.74%" "6.75%" "6.76%"
## [1471] "6.79%" "6.80%" "6.81%" "6.82%" "6.83%" "6.84%" "6.86%"
## [1478] "6.91%" "6.92%" "6.94%" "6.98%" "6.99%" "7.02%" "7.04%"
## [1485] "7.06%" "7.07%" "7.08%" "7.10%" "7.13%" "7.14%" "7.15%"
## [1492] "7.17%" "7.23%" "7.24%" "7.25%" "7.26%" "7.28%" "7.29%"
## [1499] "7.32%" "7.33%" "7.36%" "7.38%" "7.39%" "7.40%" "7.41%"
## [1506] "7.43%" "7.45%" "7.49%" "7.50%" "7.51%" "7.52%" "7.53%"
## [1513] "7.55%" "7.56%" "7.57%" "7.59%" "7.60%" "7.64%" "7.65%"
## [1520] "7.66%" "7.67%" "7.68%" "7.72%" "7.73%" "7.75%" "7.77%"
## [1527] "7.78%" "7.80%" "7.82%" "7.84%" "7.85%" "7.88%" "7.89%"
## [1534] "7.90%" "7.92%" "7.94%" "7.95%" "7.96%" "7.97%" "7.98%"
## [1541] "8%" "8.01%" "8.02%" "8.03%" "8.04%" "8.05%" "8.06%"
## [1548] "8.07%" "8.08%" "8.10%" "8.11%" "8.12%" "8.14%" "8.15%"
## [1555] "8.16%" "8.20%" "8.21%" "8.23%" "8.26%" "8.28%" "8.29%"
## [1562] "8.31%" "8.33%" "8.34%" "8.36%" "8.37%" "8.38%" "8.40%"
## [1569] "8.43%" "8.44%" "8.45%" "8.46%" "8.47%" "8.48%" "8.49%"
## [1576] "8.51%" "8.52%" "8.56%" "8.57%" "8.60%" "8.61%" "8.62%"
## [1583] "8.64%" "8.69%" "8.70%" "8.72%" "8.74%" "8.76%" "8.77%"
## [1590] "8.80%" "8.81%" "8.82%" "8.83%" "8.84%" "8.86%" "8.89%"
## [1597] "8.90%" "8.91%" "8.92%" "8.93%" "8.95%" "8.96%" "8.99%"
## [1604] "9%" "9.02%" "9.03%" "9.04%" "9.05%" "9.06%" "9.07%"
## [1611] "9.09%" "9.10%" "9.12%" "9.14%" "9.15%" "9.16%" "9.17%"
## [1618] "9.18%" "9.19%" "9.20%" "9.22%" "9.26%" "9.28%" "9.29%"
## [1625] "9.30%" "9.31%" "9.33%" "9.35%" "9.37%" "9.40%" "9.41%"
## [1632] "9.44%" "9.46%" "9.47%" "9.49%" "9.51%" "9.52%" "9.53%"
## [1639] "9.54%" "9.55%" "9.57%" "9.58%" "9.59%" "9.60%" "9.61%"
## [1646] "9.64%" "9.66%" "9.67%" "9.68%" "9.70%" "9.71%" "9.72%"
## [1653] "9.73%" "9.74%" "9.75%" "9.76%" "9.77%" "9.79%" "9.81%"
## [1660] "9.84%" "9.86%" "9.89%" "9.90%" "9.92%" "9.93%" "9.95%"
## [1667] "9.96%" "9.98%" "9.99%"
Debt <- loansDataCorrection$Debt
levelsD <- levels(Debt)
levelsDN <- c(levelsD[1:56], levelsD[740:772], levelsD[1223:1265], levelsD[1335:1669],
levelsD[57:739], levelsD[773:1222], levelsD[1266:1334])
DebtN <- factor(Debt, levelsDN)
loansDataCorrectionCn <- loansDataCorrection
loansDataCorrectionCn$Debt.To.Income.Ratio <- DebtN
par(mfrow = c(1, 2))
barplot(table(loansDataCorrection$Debt), col = "blue", main = "loansDataCorrection$Debt")
barplot(table(loansDataCorrectionCn$Debt), col = "blue", main = "loansDataCorrectionCn$Debt")
par(mfrow = c(1, 2))
plot(as.numeric(loansDataCorrectionCn$Debt), as.numeric(loansDataCorrectionCn$Interest),
xlab = "Debt-to-Income Ration", ylab = "Interest Rate", main = "Interest Rate vs. Debt")
plot(as.numeric(loansDataCorrectionCn$Debt), as.numeric(loansDataCorrectionCn$FICO),
xlab = "Debt-to-Income Ratio", ylab = "FICO Score Range", main = "FICO vs. Debt")
lm <- lm(as.numeric(loansDataCorrectionCn$Interest) ~ as.numeric(loansDataCorrectionCn$FICO) +
as.factor(loansDataCorrectionCn$Loan.L) + as.factor(AmountRange) + as.factor(AmountRange) *
as.numeric(loansDataCorrectionCn$FICO) + as.numeric(loansDataCorrectionCn$Debt) +
as.numeric(loansDataCorrectionCn$Inquiries) + as.numeric(loansDataCorrectionCn$Open.C) *
as.numeric(loansDataCorrectionCn$Debt))
summary(lm)
##
## Call:
## lm(formula = as.numeric(loansDataCorrectionCn$Interest) ~ as.numeric(loansDataCorrectionCn$FICO) +
## as.factor(loansDataCorrectionCn$Loan.L) + as.factor(AmountRange) +
## as.factor(AmountRange) * as.numeric(loansDataCorrectionCn$FICO) +
## as.numeric(loansDataCorrectionCn$Debt) + as.numeric(loansDataCorrectionCn$Inquiries) +
## as.numeric(loansDataCorrectionCn$Open.C) * as.numeric(loansDataCorrectionCn$Debt))
##
## Residuals:
## Min 1Q Median 3Q Max
## -171.36 -28.39 -2.84 25.14 183.64
##
## Coefficients:
## Estimate
## (Intercept) 2.04e+02
## as.numeric(loansDataCorrectionCn$FICO) -6.88e+00
## as.factor(loansDataCorrectionCn$Loan.L)60 months 5.88e+01
## as.factor(AmountRange)[ 6075,10050) 2.18e+01
## as.factor(AmountRange)[10050,17200) 3.82e+01
## as.factor(AmountRange)[17200,35000] 7.10e+01
## as.numeric(loansDataCorrectionCn$Debt) -2.69e-02
## as.numeric(loansDataCorrectionCn$Inquiries) 6.60e+00
## as.numeric(loansDataCorrectionCn$Open.C) -3.28e+00
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -7.39e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -1.28e+00
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -1.58e+00
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 2.76e-03
## Std. Error
## (Intercept) 5.11e+00
## as.numeric(loansDataCorrectionCn$FICO) 2.20e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 2.12e+00
## as.factor(AmountRange)[ 6075,10050) 4.83e+00
## as.factor(AmountRange)[10050,17200) 5.03e+00
## as.factor(AmountRange)[17200,35000] 5.31e+00
## as.numeric(loansDataCorrectionCn$Debt) 4.16e-03
## as.numeric(loansDataCorrectionCn$Inquiries) 6.53e-01
## as.numeric(loansDataCorrectionCn$Open.C) 4.06e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) 3.12e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) 3.19e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] 3.22e-01
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 3.88e-04
## t value
## (Intercept) 39.91
## as.numeric(loansDataCorrectionCn$FICO) -31.27
## as.factor(loansDataCorrectionCn$Loan.L)60 months 27.75
## as.factor(AmountRange)[ 6075,10050) 4.52
## as.factor(AmountRange)[10050,17200) 7.58
## as.factor(AmountRange)[17200,35000] 13.38
## as.numeric(loansDataCorrectionCn$Debt) -6.47
## as.numeric(loansDataCorrectionCn$Inquiries) 10.10
## as.numeric(loansDataCorrectionCn$Open.C) -8.07
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -2.37
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -4.01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -4.91
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 7.11
## Pr(>|t|)
## (Intercept) < 2e-16
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L)60 months < 2e-16
## as.factor(AmountRange)[ 6075,10050) 6.3e-06
## as.factor(AmountRange)[10050,17200) 4.7e-14
## as.factor(AmountRange)[17200,35000] < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 1.2e-10
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## as.numeric(loansDataCorrectionCn$Open.C) 1.1e-15
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) 0.018
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) 6.3e-05
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] 9.8e-07
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 1.6e-12
##
## (Intercept) ***
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.factor(loansDataCorrectionCn$Loan.L)60 months ***
## as.factor(AmountRange)[ 6075,10050) ***
## as.factor(AmountRange)[10050,17200) ***
## as.factor(AmountRange)[17200,35000] ***
## as.numeric(loansDataCorrectionCn$Debt) ***
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## as.numeric(loansDataCorrectionCn$Open.C) ***
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) *
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) ***
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] ***
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39.6 on 2485 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.73, Adjusted R-squared: 0.728
## F-statistic: 559 on 12 and 2485 DF, p-value: <2e-16
confint(lm)
## 2.5 %
## (Intercept) 193.785205
## as.numeric(loansDataCorrectionCn$FICO) -7.312717
## as.factor(loansDataCorrectionCn$Loan.L)60 months 54.635829
## as.factor(AmountRange)[ 6075,10050) 12.376010
## as.factor(AmountRange)[10050,17200) 28.306751
## as.factor(AmountRange)[17200,35000] 60.598061
## as.numeric(loansDataCorrectionCn$Debt) -0.035081
## as.numeric(loansDataCorrectionCn$Inquiries) 5.317156
## as.numeric(loansDataCorrectionCn$Open.C) -4.071126
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -1.351181
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -1.906100
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -2.213757
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 0.001996
## 97.5 %
## (Intercept) 213.809960
## as.numeric(loansDataCorrectionCn$FICO) -6.449763
## as.factor(loansDataCorrectionCn$Loan.L)60 months 62.944456
## as.factor(AmountRange)[ 6075,10050) 31.307316
## as.factor(AmountRange)[10050,17200) 48.046739
## as.factor(AmountRange)[17200,35000] 81.411324
## as.numeric(loansDataCorrectionCn$Debt) -0.018767
## as.numeric(loansDataCorrectionCn$Inquiries) 7.878643
## as.numeric(loansDataCorrectionCn$Open.C) -2.478909
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -0.127523
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -0.654124
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -0.949678
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 0.003518
anova(lm)
## Analysis of Variance Table
##
## Response: as.numeric(loansDataCorrectionCn$Interest)
## Df
## as.numeric(loansDataCorrectionCn$FICO) 1
## as.factor(loansDataCorrectionCn$Loan.L) 1
## as.factor(AmountRange) 3
## as.numeric(loansDataCorrectionCn$Debt) 1
## as.numeric(loansDataCorrectionCn$Inquiries) 1
## as.numeric(loansDataCorrectionCn$Open.C) 1
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 3
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 1
## Residuals 2485
## Sum Sq
## as.numeric(loansDataCorrectionCn$FICO) 7079425
## as.factor(loansDataCorrectionCn$Loan.L) 2551922
## as.factor(AmountRange) 585275
## as.numeric(loansDataCorrectionCn$Debt) 4784
## as.numeric(loansDataCorrectionCn$Inquiries) 150763
## as.numeric(loansDataCorrectionCn$Open.C) 20181
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 47238
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 79138
## Residuals 3894775
## Mean Sq
## as.numeric(loansDataCorrectionCn$FICO) 7079425
## as.factor(loansDataCorrectionCn$Loan.L) 2551922
## as.factor(AmountRange) 195092
## as.numeric(loansDataCorrectionCn$Debt) 4784
## as.numeric(loansDataCorrectionCn$Inquiries) 150763
## as.numeric(loansDataCorrectionCn$Open.C) 20181
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 15746
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 79138
## Residuals 1567
## F value
## as.numeric(loansDataCorrectionCn$FICO) 4516.92
## as.factor(loansDataCorrectionCn$Loan.L) 1628.21
## as.factor(AmountRange) 124.48
## as.numeric(loansDataCorrectionCn$Debt) 3.05
## as.numeric(loansDataCorrectionCn$Inquiries) 96.19
## as.numeric(loansDataCorrectionCn$Open.C) 12.88
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 10.05
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 50.49
## Residuals
## Pr(>F)
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L) < 2e-16
## as.factor(AmountRange) < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 0.08075
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## as.numeric(loansDataCorrectionCn$Open.C) 0.00034
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 1.4e-06
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 1.6e-12
## Residuals
##
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.factor(loansDataCorrectionCn$Loan.L) ***
## as.factor(AmountRange) ***
## as.numeric(loansDataCorrectionCn$Debt) .
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## as.numeric(loansDataCorrectionCn$Open.C) ***
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) ***
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow = c(1, 1))
plot(as.numeric(loansDataCorrectionCn$FICO[which(is.na(loansDataCorrectionCn$Inquiries) ==
F)]), as.numeric(loansDataCorrectionCn$Interest[which(is.na(loansDataCorrectionCn$Inquiries) ==
F)]), cex = 0.6, xlab = "FICO Range", ylab = "Interest Rate", main = "Interest Rate vs. FICO Score Range")
plot(as.numeric(loansDataCorrection$FICO), as.numeric(loansDataCorrection$Interest),
xlab = "FICO range", ylab = "Interest Rate", cex = 0.5, main = "Interest Rate Vs. FICO Range, Colored by Loan Length",
cex.main = 0.75, pch = 19, col = as.numeric(loansDataCorrection$Loan.L))
legend(27, 275, col = unique(as.numeric(loansDataCorrection$Loan.L)), legend = unique(loansDataCorrection$Loan.L),
pch = 19, cex = 0.5)
plot(as.numeric(loansDataCorrectionCn$FICO[which(is.na(loansDataCorrectionCn$Inquiries) ==
F)]), as.numeric(loansDataCorrectionCn$Interest[which(is.na(loansDataCorrectionCn$Inquiries) ==
F)]), xlab = "FICO Range", ylab = "Interest Rate", main = "Interest vs. FICO with Linear Model Fitted Points")
points(as.numeric(loansDataCorrectionCn$FICO[which(is.na(loansDataCorrectionCn$Inquiries) ==
F)]), lm$fitted, pch = 20, cex = 0.4, col = "blue")
plot(lm$fitted, lm$residuals, xlab = "Linear M. Fitted", ylab = "Linear M. Residuals",
main = "Linear Model Residuals", cex = 0.6)
abline(c(0, 0), col = "red", lwd = 2)
lm2 <- lm(as.numeric(loansDataCorrectionCn$Interest) ~ as.numeric(loansDataCorrectionCn$FICO)^2 +
as.factor(loansDataCorrectionCn$Loan.L) + as.factor(AmountRange) + as.factor(AmountRange) *
as.numeric(loansDataCorrectionCn$FICO) + as.numeric(loansDataCorrectionCn$Debt) +
as.numeric(loansDataCorrectionCn$Inquiries) + as.numeric(loansDataCorrectionCn$Open.C)^2 *
as.numeric(loansDataCorrectionCn$Debt))
summary(lm2)
##
## Call:
## lm(formula = as.numeric(loansDataCorrectionCn$Interest) ~ as.numeric(loansDataCorrectionCn$FICO)^2 +
## as.factor(loansDataCorrectionCn$Loan.L) + as.factor(AmountRange) +
## as.factor(AmountRange) * as.numeric(loansDataCorrectionCn$FICO) +
## as.numeric(loansDataCorrectionCn$Debt) + as.numeric(loansDataCorrectionCn$Inquiries) +
## as.numeric(loansDataCorrectionCn$Open.C)^2 * as.numeric(loansDataCorrectionCn$Debt))
##
## Residuals:
## Min 1Q Median 3Q Max
## -171.36 -28.39 -2.84 25.14 183.64
##
## Coefficients:
## Estimate
## (Intercept) 2.04e+02
## as.numeric(loansDataCorrectionCn$FICO) -6.88e+00
## as.factor(loansDataCorrectionCn$Loan.L)60 months 5.88e+01
## as.factor(AmountRange)[ 6075,10050) 2.18e+01
## as.factor(AmountRange)[10050,17200) 3.82e+01
## as.factor(AmountRange)[17200,35000] 7.10e+01
## as.numeric(loansDataCorrectionCn$Debt) -2.69e-02
## as.numeric(loansDataCorrectionCn$Inquiries) 6.60e+00
## as.numeric(loansDataCorrectionCn$Open.C) -3.28e+00
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -7.39e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -1.28e+00
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -1.58e+00
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 2.76e-03
## Std. Error
## (Intercept) 5.11e+00
## as.numeric(loansDataCorrectionCn$FICO) 2.20e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 2.12e+00
## as.factor(AmountRange)[ 6075,10050) 4.83e+00
## as.factor(AmountRange)[10050,17200) 5.03e+00
## as.factor(AmountRange)[17200,35000] 5.31e+00
## as.numeric(loansDataCorrectionCn$Debt) 4.16e-03
## as.numeric(loansDataCorrectionCn$Inquiries) 6.53e-01
## as.numeric(loansDataCorrectionCn$Open.C) 4.06e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) 3.12e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) 3.19e-01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] 3.22e-01
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 3.88e-04
## t value
## (Intercept) 39.91
## as.numeric(loansDataCorrectionCn$FICO) -31.27
## as.factor(loansDataCorrectionCn$Loan.L)60 months 27.75
## as.factor(AmountRange)[ 6075,10050) 4.52
## as.factor(AmountRange)[10050,17200) 7.58
## as.factor(AmountRange)[17200,35000] 13.38
## as.numeric(loansDataCorrectionCn$Debt) -6.47
## as.numeric(loansDataCorrectionCn$Inquiries) 10.10
## as.numeric(loansDataCorrectionCn$Open.C) -8.07
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -2.37
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -4.01
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -4.91
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 7.11
## Pr(>|t|)
## (Intercept) < 2e-16
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L)60 months < 2e-16
## as.factor(AmountRange)[ 6075,10050) 6.3e-06
## as.factor(AmountRange)[10050,17200) 4.7e-14
## as.factor(AmountRange)[17200,35000] < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 1.2e-10
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## as.numeric(loansDataCorrectionCn$Open.C) 1.1e-15
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) 0.018
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) 6.3e-05
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] 9.8e-07
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 1.6e-12
##
## (Intercept) ***
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.factor(loansDataCorrectionCn$Loan.L)60 months ***
## as.factor(AmountRange)[ 6075,10050) ***
## as.factor(AmountRange)[10050,17200) ***
## as.factor(AmountRange)[17200,35000] ***
## as.numeric(loansDataCorrectionCn$Debt) ***
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## as.numeric(loansDataCorrectionCn$Open.C) ***
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) *
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) ***
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] ***
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 39.6 on 2485 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.73, Adjusted R-squared: 0.728
## F-statistic: 559 on 12 and 2485 DF, p-value: <2e-16
confint(lm2)
## 2.5 %
## (Intercept) 193.785205
## as.numeric(loansDataCorrectionCn$FICO) -7.312717
## as.factor(loansDataCorrectionCn$Loan.L)60 months 54.635829
## as.factor(AmountRange)[ 6075,10050) 12.376010
## as.factor(AmountRange)[10050,17200) 28.306751
## as.factor(AmountRange)[17200,35000] 60.598061
## as.numeric(loansDataCorrectionCn$Debt) -0.035081
## as.numeric(loansDataCorrectionCn$Inquiries) 5.317156
## as.numeric(loansDataCorrectionCn$Open.C) -4.071126
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -1.351181
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -1.906100
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -2.213757
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 0.001996
## 97.5 %
## (Intercept) 213.809960
## as.numeric(loansDataCorrectionCn$FICO) -6.449763
## as.factor(loansDataCorrectionCn$Loan.L)60 months 62.944456
## as.factor(AmountRange)[ 6075,10050) 31.307316
## as.factor(AmountRange)[10050,17200) 48.046739
## as.factor(AmountRange)[17200,35000] 81.411324
## as.numeric(loansDataCorrectionCn$Debt) -0.018767
## as.numeric(loansDataCorrectionCn$Inquiries) 7.878643
## as.numeric(loansDataCorrectionCn$Open.C) -2.478909
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[ 6075,10050) -0.127523
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[10050,17200) -0.654124
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange)[17200,35000] -0.949678
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 0.003518
anova(lm2)
## Analysis of Variance Table
##
## Response: as.numeric(loansDataCorrectionCn$Interest)
## Df
## as.numeric(loansDataCorrectionCn$FICO) 1
## as.factor(loansDataCorrectionCn$Loan.L) 1
## as.factor(AmountRange) 3
## as.numeric(loansDataCorrectionCn$Debt) 1
## as.numeric(loansDataCorrectionCn$Inquiries) 1
## as.numeric(loansDataCorrectionCn$Open.C) 1
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 3
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 1
## Residuals 2485
## Sum Sq
## as.numeric(loansDataCorrectionCn$FICO) 7079425
## as.factor(loansDataCorrectionCn$Loan.L) 2551922
## as.factor(AmountRange) 585275
## as.numeric(loansDataCorrectionCn$Debt) 4784
## as.numeric(loansDataCorrectionCn$Inquiries) 150763
## as.numeric(loansDataCorrectionCn$Open.C) 20181
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 47238
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 79138
## Residuals 3894775
## Mean Sq
## as.numeric(loansDataCorrectionCn$FICO) 7079425
## as.factor(loansDataCorrectionCn$Loan.L) 2551922
## as.factor(AmountRange) 195092
## as.numeric(loansDataCorrectionCn$Debt) 4784
## as.numeric(loansDataCorrectionCn$Inquiries) 150763
## as.numeric(loansDataCorrectionCn$Open.C) 20181
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 15746
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 79138
## Residuals 1567
## F value
## as.numeric(loansDataCorrectionCn$FICO) 4516.92
## as.factor(loansDataCorrectionCn$Loan.L) 1628.21
## as.factor(AmountRange) 124.48
## as.numeric(loansDataCorrectionCn$Debt) 3.05
## as.numeric(loansDataCorrectionCn$Inquiries) 96.19
## as.numeric(loansDataCorrectionCn$Open.C) 12.88
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 10.05
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 50.49
## Residuals
## Pr(>F)
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L) < 2e-16
## as.factor(AmountRange) < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 0.08075
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## as.numeric(loansDataCorrectionCn$Open.C) 0.00034
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) 1.4e-06
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) 1.6e-12
## Residuals
##
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.factor(loansDataCorrectionCn$Loan.L) ***
## as.factor(AmountRange) ***
## as.numeric(loansDataCorrectionCn$Debt) .
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## as.numeric(loansDataCorrectionCn$Open.C) ***
## as.numeric(loansDataCorrectionCn$FICO):as.factor(AmountRange) ***
## as.numeric(loansDataCorrectionCn$Debt):as.numeric(loansDataCorrectionCn$Open.C) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(lm2)
lm3 <- lm(as.numeric(loansDataCorrectionCn$Interest) ~ I(as.numeric(loansDataCorrectionCn$FICO)^2) +
as.factor(loansDataCorrectionCn$Loan.L) + as.factor(AmountRange) + as.factor(AmountRange) *
as.numeric(loansDataCorrectionCn$FICO) + as.numeric(loansDataCorrectionCn$Debt) +
as.numeric(loansDataCorrectionCn$Inquiries) + I(as.numeric(loansDataCorrectionCn$Open.C)^2) *
as.numeric(loansDataCorrectionCn$Debt))
summary(lm3)
##
## Call:
## lm(formula = as.numeric(loansDataCorrectionCn$Interest) ~ I(as.numeric(loansDataCorrectionCn$FICO)^2) +
## as.factor(loansDataCorrectionCn$Loan.L) + as.factor(AmountRange) +
## as.factor(AmountRange) * as.numeric(loansDataCorrectionCn$FICO) +
## as.numeric(loansDataCorrectionCn$Debt) + as.numeric(loansDataCorrectionCn$Inquiries) +
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) * as.numeric(loansDataCorrectionCn$Debt))
##
## Residuals:
## Min 1Q Median 3Q Max
## -157.14 -22.82 -2.17 19.23 183.77
##
## Coefficients:
## Estimate
## (Intercept) 2.46e+02
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 2.81e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 5.90e+01
## as.factor(AmountRange)[ 6075,10050) 2.60e+01
## as.factor(AmountRange)[10050,17200) 4.48e+01
## as.factor(AmountRange)[17200,35000] 7.91e+01
## as.numeric(loansDataCorrectionCn$FICO) -1.62e+01
## as.numeric(loansDataCorrectionCn$Debt) -1.14e-02
## as.numeric(loansDataCorrectionCn$Inquiries) 5.91e+00
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -1.22e-01
## as.factor(AmountRange)[ 6075,10050):as.numeric(loansDataCorrectionCn$FICO) -1.04e+00
## as.factor(AmountRange)[10050,17200):as.numeric(loansDataCorrectionCn$FICO) -1.65e+00
## as.factor(AmountRange)[17200,35000]:as.numeric(loansDataCorrectionCn$FICO) -2.02e+00
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.11e-04
## Std. Error
## (Intercept) 4.59e+00
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 1.24e-02
## as.factor(loansDataCorrectionCn$Loan.L)60 months 1.93e+00
## as.factor(AmountRange)[ 6075,10050) 4.41e+00
## as.factor(AmountRange)[10050,17200) 4.60e+00
## as.factor(AmountRange)[17200,35000] 4.85e+00
## as.numeric(loansDataCorrectionCn$FICO) 4.54e-01
## as.numeric(loansDataCorrectionCn$Debt) 2.33e-03
## as.numeric(loansDataCorrectionCn$Inquiries) 5.96e-01
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.75e-02
## as.factor(AmountRange)[ 6075,10050):as.numeric(loansDataCorrectionCn$FICO) 2.85e-01
## as.factor(AmountRange)[10050,17200):as.numeric(loansDataCorrectionCn$FICO) 2.92e-01
## as.factor(AmountRange)[17200,35000]:as.numeric(loansDataCorrectionCn$FICO) 2.95e-01
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.51e-05
## t value
## (Intercept) 53.63
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 22.77
## as.factor(loansDataCorrectionCn$Loan.L)60 months 30.52
## as.factor(AmountRange)[ 6075,10050) 5.90
## as.factor(AmountRange)[10050,17200) 9.74
## as.factor(AmountRange)[17200,35000] 16.31
## as.numeric(loansDataCorrectionCn$FICO) -35.59
## as.numeric(loansDataCorrectionCn$Debt) -4.89
## as.numeric(loansDataCorrectionCn$Inquiries) 9.91
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -6.96
## as.factor(AmountRange)[ 6075,10050):as.numeric(loansDataCorrectionCn$FICO) -3.64
## as.factor(AmountRange)[10050,17200):as.numeric(loansDataCorrectionCn$FICO) -5.65
## as.factor(AmountRange)[17200,35000]:as.numeric(loansDataCorrectionCn$FICO) -6.87
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 7.36
## Pr(>|t|)
## (Intercept) < 2e-16
## I(as.numeric(loansDataCorrectionCn$FICO)^2) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L)60 months < 2e-16
## as.factor(AmountRange)[ 6075,10050) 4.0e-09
## as.factor(AmountRange)[10050,17200) < 2e-16
## as.factor(AmountRange)[17200,35000] < 2e-16
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 1.1e-06
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 4.3e-12
## as.factor(AmountRange)[ 6075,10050):as.numeric(loansDataCorrectionCn$FICO) 0.00028
## as.factor(AmountRange)[10050,17200):as.numeric(loansDataCorrectionCn$FICO) 1.8e-08
## as.factor(AmountRange)[17200,35000]:as.numeric(loansDataCorrectionCn$FICO) 8.2e-12
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 2.5e-13
##
## (Intercept) ***
## I(as.numeric(loansDataCorrectionCn$FICO)^2) ***
## as.factor(loansDataCorrectionCn$Loan.L)60 months ***
## as.factor(AmountRange)[ 6075,10050) ***
## as.factor(AmountRange)[10050,17200) ***
## as.factor(AmountRange)[17200,35000] ***
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt) ***
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) ***
## as.factor(AmountRange)[ 6075,10050):as.numeric(loansDataCorrectionCn$FICO) ***
## as.factor(AmountRange)[10050,17200):as.numeric(loansDataCorrectionCn$FICO) ***
## as.factor(AmountRange)[17200,35000]:as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 36.1 on 2484 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.775, Adjusted R-squared: 0.774
## F-statistic: 659 on 13 and 2484 DF, p-value: <2e-16
confint(lm3)
## 2.5 %
## (Intercept) 2.369e+02
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 2.571e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 5.521e+01
## as.factor(AmountRange)[ 6075,10050) 1.738e+01
## as.factor(AmountRange)[10050,17200) 3.579e+01
## as.factor(AmountRange)[17200,35000] 6.959e+01
## as.numeric(loansDataCorrectionCn$FICO) -1.706e+01
## as.numeric(loansDataCorrectionCn$Debt) -1.594e-02
## as.numeric(loansDataCorrectionCn$Inquiries) 4.738e+00
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -1.561e-01
## as.factor(AmountRange)[ 6075,10050):as.numeric(loansDataCorrectionCn$FICO) -1.596e+00
## as.factor(AmountRange)[10050,17200):as.numeric(loansDataCorrectionCn$FICO) -2.220e+00
## as.factor(AmountRange)[17200,35000]:as.numeric(loansDataCorrectionCn$FICO) -2.601e+00
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 8.181e-05
## 97.5 %
## (Intercept) 2.549e+02
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 3.055e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 6.279e+01
## as.factor(AmountRange)[ 6075,10050) 3.467e+01
## as.factor(AmountRange)[10050,17200) 5.383e+01
## as.factor(AmountRange)[17200,35000] 8.861e+01
## as.numeric(loansDataCorrectionCn$FICO) -1.527e+01
## as.numeric(loansDataCorrectionCn$Debt) -6.818e-03
## as.numeric(loansDataCorrectionCn$Inquiries) 7.075e+00
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -8.751e-02
## as.factor(AmountRange)[ 6075,10050):as.numeric(loansDataCorrectionCn$FICO) -4.787e-01
## as.factor(AmountRange)[10050,17200):as.numeric(loansDataCorrectionCn$FICO) -1.076e+00
## as.factor(AmountRange)[17200,35000]:as.numeric(loansDataCorrectionCn$FICO) -1.446e+00
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.412e-04
anova(lm3)
## Analysis of Variance Table
##
## Response: as.numeric(loansDataCorrectionCn$Interest)
## Df
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 1
## as.factor(loansDataCorrectionCn$Loan.L) 1
## as.factor(AmountRange) 3
## as.numeric(loansDataCorrectionCn$FICO) 1
## as.numeric(loansDataCorrectionCn$Debt) 1
## as.numeric(loansDataCorrectionCn$Inquiries) 1
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1
## as.factor(AmountRange):as.numeric(loansDataCorrectionCn$FICO) 3
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1
## Residuals 2484
## Sum Sq
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 5798823
## as.factor(loansDataCorrectionCn$Loan.L) 2481695
## as.factor(AmountRange) 492417
## as.numeric(loansDataCorrectionCn$FICO) 2130589
## as.numeric(loansDataCorrectionCn$Debt) 8
## as.numeric(loansDataCorrectionCn$Inquiries) 125661
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 32
## as.factor(AmountRange):as.numeric(loansDataCorrectionCn$FICO) 73173
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 70692
## Residuals 3240411
## Mean Sq
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 5798823
## as.factor(loansDataCorrectionCn$Loan.L) 2481695
## as.factor(AmountRange) 164139
## as.numeric(loansDataCorrectionCn$FICO) 2130589
## as.numeric(loansDataCorrectionCn$Debt) 8
## as.numeric(loansDataCorrectionCn$Inquiries) 125661
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 32
## as.factor(AmountRange):as.numeric(loansDataCorrectionCn$FICO) 24391
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 70692
## Residuals 1305
## F value
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 4445.20
## as.factor(loansDataCorrectionCn$Loan.L) 1902.39
## as.factor(AmountRange) 125.82
## as.numeric(loansDataCorrectionCn$FICO) 1633.24
## as.numeric(loansDataCorrectionCn$Debt) 0.01
## as.numeric(loansDataCorrectionCn$Inquiries) 96.33
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 0.02
## as.factor(AmountRange):as.numeric(loansDataCorrectionCn$FICO) 18.70
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 54.19
## Residuals
## Pr(>F)
## I(as.numeric(loansDataCorrectionCn$FICO)^2) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L) < 2e-16
## as.factor(AmountRange) < 2e-16
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 0.94
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 0.88
## as.factor(AmountRange):as.numeric(loansDataCorrectionCn$FICO) 5.4e-12
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 2.5e-13
## Residuals
##
## I(as.numeric(loansDataCorrectionCn$FICO)^2) ***
## as.factor(loansDataCorrectionCn$Loan.L) ***
## as.factor(AmountRange) ***
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt)
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## I(as.numeric(loansDataCorrectionCn$Open.C)^2)
## as.factor(AmountRange):as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(lm3)
lm4 <- lm(as.numeric(loansDataCorrectionCn$Interest) ~ I(as.numeric(loansDataCorrectionCn$FICO)^2) +
+as.factor(loansDataCorrectionCn$Loan.L) + as.numeric(loansDataCorrection$Amount.R) +
as.numeric(loansDataCorrection$Amount.R) * +as.numeric(loansDataCorrectionCn$FICO) +
as.numeric(loansDataCorrectionCn$Debt) + +as.numeric(loansDataCorrectionCn$Inquiries) +
I(as.numeric(loansDataCorrectionCn$Open.C)^2) * +as.numeric(loansDataCorrectionCn$Debt))
summary(lm4)
##
## Call:
## lm(formula = as.numeric(loansDataCorrectionCn$Interest) ~ I(as.numeric(loansDataCorrectionCn$FICO)^2) +
## +as.factor(loansDataCorrectionCn$Loan.L) + as.numeric(loansDataCorrection$Amount.R) +
## as.numeric(loansDataCorrection$Amount.R) * +as.numeric(loansDataCorrectionCn$FICO) +
## as.numeric(loansDataCorrectionCn$Debt) + +as.numeric(loansDataCorrectionCn$Inquiries) +
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) * +as.numeric(loansDataCorrectionCn$Debt))
##
## Residuals:
## Min 1Q Median 3Q Max
## -147.85 -22.34 -2.38 19.98 187.82
##
## Coefficients:
## Estimate
## (Intercept) 2.35e+02
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 2.82e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 5.64e+01
## as.numeric(loansDataCorrection$Amount.R) 4.02e-03
## as.numeric(loansDataCorrectionCn$FICO) -1.62e+01
## as.numeric(loansDataCorrectionCn$Debt) -1.14e-02
## as.numeric(loansDataCorrectionCn$Inquiries) 6.01e+00
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -1.34e-01
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) -9.43e-05
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.16e-04
## Std. Error
## (Intercept) 4.36e+00
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 1.21e-02
## as.factor(loansDataCorrectionCn$Loan.L)60 months 1.89e+00
## as.numeric(loansDataCorrection$Amount.R) 2.19e-04
## as.numeric(loansDataCorrectionCn$FICO) 4.37e-01
## as.numeric(loansDataCorrectionCn$Debt) 2.27e-03
## as.numeric(loansDataCorrectionCn$Inquiries) 5.83e-01
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.71e-02
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) 1.27e-05
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.48e-05
## t value
## (Intercept) 53.93
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 23.23
## as.factor(loansDataCorrectionCn$Loan.L)60 months 29.84
## as.numeric(loansDataCorrection$Amount.R) 18.40
## as.numeric(loansDataCorrectionCn$FICO) -37.06
## as.numeric(loansDataCorrectionCn$Debt) -5.02
## as.numeric(loansDataCorrectionCn$Inquiries) 10.30
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -7.81
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) -7.40
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 7.85
## Pr(>|t|)
## (Intercept) < 2e-16
## I(as.numeric(loansDataCorrectionCn$FICO)^2) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L)60 months < 2e-16
## as.numeric(loansDataCorrection$Amount.R) < 2e-16
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 5.5e-07
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 8.3e-15
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) 1.8e-13
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 6.0e-15
##
## (Intercept) ***
## I(as.numeric(loansDataCorrectionCn$FICO)^2) ***
## as.factor(loansDataCorrectionCn$Loan.L)60 months ***
## as.numeric(loansDataCorrection$Amount.R) ***
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt) ***
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) ***
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35.4 on 2488 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.784, Adjusted R-squared: 0.783
## F-statistic: 1e+03 on 9 and 2488 DF, p-value: <2e-16
confint(lm4)
## 2.5 %
## (Intercept) 2.265e+02
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 2.578e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 5.268e+01
## as.numeric(loansDataCorrection$Amount.R) 3.596e-03
## as.numeric(loansDataCorrectionCn$FICO) -1.707e+01
## as.numeric(loansDataCorrectionCn$Debt) -1.588e-02
## as.numeric(loansDataCorrectionCn$Inquiries) 4.865e+00
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -1.675e-01
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) -1.193e-04
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 8.730e-05
## 97.5 %
## (Intercept) 2.436e+02
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 3.053e-01
## as.factor(loansDataCorrectionCn$Loan.L)60 months 6.009e+01
## as.numeric(loansDataCorrection$Amount.R) 4.453e-03
## as.numeric(loansDataCorrectionCn$FICO) -1.535e+01
## as.numeric(loansDataCorrectionCn$Debt) -6.960e-03
## as.numeric(loansDataCorrectionCn$Inquiries) 7.152e+00
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) -1.003e-01
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) -6.935e-05
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.454e-04
anova(lm4)
## Analysis of Variance Table
##
## Response: as.numeric(loansDataCorrectionCn$Interest)
## Df
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 1
## as.factor(loansDataCorrectionCn$Loan.L) 1
## as.numeric(loansDataCorrection$Amount.R) 1
## as.numeric(loansDataCorrectionCn$FICO) 1
## as.numeric(loansDataCorrectionCn$Debt) 1
## as.numeric(loansDataCorrectionCn$Inquiries) 1
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) 1
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1
## Residuals 2488
## Sum Sq
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 5798823
## as.factor(loansDataCorrectionCn$Loan.L) 2481695
## as.numeric(loansDataCorrection$Amount.R) 609288
## as.numeric(loansDataCorrectionCn$FICO) 2133909
## as.numeric(loansDataCorrectionCn$Debt) 3
## as.numeric(loansDataCorrectionCn$Inquiries) 129540
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1407
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) 67848
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 77184
## Residuals 3113804
## Mean Sq
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 5798823
## as.factor(loansDataCorrectionCn$Loan.L) 2481695
## as.numeric(loansDataCorrection$Amount.R) 609288
## as.numeric(loansDataCorrectionCn$FICO) 2133909
## as.numeric(loansDataCorrectionCn$Debt) 3
## as.numeric(loansDataCorrectionCn$Inquiries) 129540
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1407
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) 67848
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 77184
## Residuals 1252
## F value
## I(as.numeric(loansDataCorrectionCn$FICO)^2) 4633.39
## as.factor(loansDataCorrectionCn$Loan.L) 1982.93
## as.numeric(loansDataCorrection$Amount.R) 486.83
## as.numeric(loansDataCorrectionCn$FICO) 1705.04
## as.numeric(loansDataCorrectionCn$Debt) 0.00
## as.numeric(loansDataCorrectionCn$Inquiries) 103.51
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 1.12
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) 54.21
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 61.67
## Residuals
## Pr(>F)
## I(as.numeric(loansDataCorrectionCn$FICO)^2) < 2e-16
## as.factor(loansDataCorrectionCn$Loan.L) < 2e-16
## as.numeric(loansDataCorrection$Amount.R) < 2e-16
## as.numeric(loansDataCorrectionCn$FICO) < 2e-16
## as.numeric(loansDataCorrectionCn$Debt) 0.96
## as.numeric(loansDataCorrectionCn$Inquiries) < 2e-16
## I(as.numeric(loansDataCorrectionCn$Open.C)^2) 0.29
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) 2.4e-13
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) 6.0e-15
## Residuals
##
## I(as.numeric(loansDataCorrectionCn$FICO)^2) ***
## as.factor(loansDataCorrectionCn$Loan.L) ***
## as.numeric(loansDataCorrection$Amount.R) ***
## as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt)
## as.numeric(loansDataCorrectionCn$Inquiries) ***
## I(as.numeric(loansDataCorrectionCn$Open.C)^2)
## as.numeric(loansDataCorrection$Amount.R):as.numeric(loansDataCorrectionCn$FICO) ***
## as.numeric(loansDataCorrectionCn$Debt):I(as.numeric(loansDataCorrectionCn$Open.C)^2) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hist(as.numeric(loansDataCorrection$Interest), breaks = 100, col = "blue", xlab = "Interest Rate (%)",
border = "green", main = "Interest Rate Histogram")
plot(lm$fitted, lm$residuals, xlab = "Linear M. Fitted", ylab = "Linear M. Residuals",
main = "Linear Model Residuals", cex = 0.6)
abline(c(0, 0), col = "red", lwd = 2)
plot(lm2)
plot(lm3)