rm(list = ls())
setwd("~/Downloads")
library(foreign)
sex_data <- read.spss("sex_data.sav", use.value.label=TRUE, to.data.frame=TRUE)

Libraries/themes

library(ggplot2)
library(tidyverse)
library(gridExtra)
library(finalfit)
library(kableExtra)
library(xtable)
jrothsch_theme <-  theme_bw() + 
  theme(text = element_text(size = 10, face = "bold", color = "deepskyblue4"),panel.grid = element_blank(),axis.text = element_text(size = 10, color = "gray13"), axis.title = element_text(size = 10, color = "red"), legend.text = element_text(colour="Black", size=10), legend.title = element_text(colour="Black", size=7), plot.subtitle = element_text(size=14, face="italic", color="black"))

Removing obserations without our key variables

sex_data <- sex_data[!is.na(sex_data$status),]
sex_data <- sex_data[!is.na(sex_data$age),]
sex_data <- sex_data[!is.na(sex_data$Years_PrimaryPartner),]
sex_data <- sex_data[!is.na(sex_data$MALE),]

Making variables

sex_data <- sex_data %>%
  mutate(married = status == "Married")

sex_data <- sex_data %>%
  mutate(married_gender = ifelse(married, 
                                 ifelse(MALE == "Male", "Married Male", "Married Female"),
                                 ifelse(MALE == "Male", "Unmarried Male", "Unmarried Female ")))

  married_num =   length(sex_data$married[sex_data$married == T])
  unmarried_num =   length(sex_data$married[sex_data$married == T])
  
  sex_data <- sex_data %>% mutate(freq_num =  as.numeric(ifelse(sexfreq == "At least once per day", 6, 
                                ifelse(sexfreq == "3-4 times per week", 5,
                                  ifelse(sexfreq == 'At least once a week', 4,
                                       ifelse(sexfreq == 'At least once per month', 3, 
                                              ifelse(sexfreq =='At least once per year', 2,
                                                     ifelse( sexfreq =="Less than once a year", 1, 0))))))))
  
  
  female <- sex_data %>%
  filter(sex_data$MALE == "Female")

Binary graphs

bin_graphs_want <- function(df, mod, modname, modlabs,  interaction_labs){
  
  
  df2 = df[!is.na(df$want) & !is.na(mod),]
  mod = mod[!is.na(df$want) & !is.na(mod)]
  
    df2$mod_married = interaction(df2$married, mod)
     
    age <- ggplot(data = df2, aes(x = age, y = want, color = mod))  +
      geom_smooth() +
      labs(title = paste("Effect Of", modname, "On", "Want", " -- Age"), x = "Age", y = "Want", color = "") + 
      scale_x_continuous(limits = c(18, 80)) +
      scale_color_discrete(labels = modlabs) + 
      jrothsch_theme
  
  sum_inter <- df2 %>%
      group_by( mod_married) %>%
      summarize(DV = mean(want))
    
    mod_married <- ggplot(data = sum_inter,  aes(x = mod_married, y = DV)) +
    geom_bar(stat = 'identity', position = 'identity', fill = "Black") + 
      scale_x_discrete(labels = interaction_labs) + 
      labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Want", x = "") +
      jrothsch_theme
    
    
    grid.arrange(age, mod_married)
    
}

bin_graphs_like <- function(df, mod, modname, modlabs, interaction_labs){
  

  df <- sex_data
  mod <- sex_data$children_in_house
  modname <-"Children In House"
  modlabs <- c("Children", "No Children")
  interaction_labs <- c("Unmarried, Children", "Married, Children", "Unmarried, No Children", "Married, No Children")
  df2 = df[!is.na(df$totlike) & !is.na(mod),]
  mod = mod[!is.na(df$totlike) & !is.na(mod)]
  table(mod)
  
    df2$mod_married = interaction(df2$married, mod)
     
    age <- ggplot(data = df2, aes(x = age, y = totlike, color = mod))  +
       geom_smooth() + 
      labs(title = paste("Effect Of", modname, "On", "Like", " -- Age"), x = "Age", y = "Like", color = "") + 
      scale_x_continuous(limits = c(18, 80)) +
      scale_color_discrete(labels = modlabs) + 
      jrothsch_theme
  
  sum_inter <- df2 %>%
      group_by( mod_married) %>%
      summarize(DV = mean(totlike))
    
    mod_married <- ggplot(data = sum_inter,  aes(x = mod_married, y = DV)) +
    geom_bar(stat = 'identity', position = 'identity', fill = "black") +
         scale_x_discrete(labels = interaction_labs) + 
      labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Like", x = "") +
      jrothsch_theme
    
    
    grid.arrange(age, mod_married)
    
}
bin_graphs_freq <- function(df, mod, modname, modlabs, interaction_labs){
  

  
  df2 = df[!is.na(df$freq_num) & !is.na(mod),]
  mod = mod[!is.na(df$freq_num) & !is.na(mod)]
  
    df2$mod_married = interaction(df2$married, mod)
     
    age <- ggplot(data = df2, aes(x = age, y = freq_num, color = mod))  +
      geom_smooth() +
      labs(title = paste("Effect Of", modname, "On", "Frequency", " -- Age"), x = "Age", y = "Frequency", color = "") + 
      scale_x_continuous(limits = c(18, 80)) +
      scale_color_discrete(labels = modlabs) + 
      jrothsch_theme
  
  sum_inter <- df2 %>%
      group_by(mod_married) %>%
      summarize(DV = mean(freq_num))
    
    mod_married <- ggplot(data = sum_inter,  aes(x = mod_married, y = DV)) +
    geom_bar(stat = 'identity', position = 'identity', fill = "black") +    
      scale_x_discrete(labels = interaction_labs) + 
      labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Frequency", x = "") +
      jrothsch_theme
    
    
    grid.arrange(age, mod_married)
    
}

Small continuous graphs

contsmall <- function(df, mod, modname, modlabs){

  
  df2 = df[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod) ,]
  mod = mod[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod)]




want <- ggplot(df2, aes(x=mod, y = want)) +
  stat_summary_bin(fun.y='mean', bins=20,
                    size=2, geom='point', mapping = aes(group = married, color = married)) +
  geom_smooth(method='lm', se = F,  size= 1, aes(color = married)) + jrothsch_theme +
    labs( x = modname, y = "Want")
  
like <- ggplot(df2, aes(x=mod, y = totlike)) +
  stat_summary_bin(fun.y='mean', bins=20,
                    size=2, geom='point', mapping = aes(group = married, color = married)) +
  geom_smooth(method='lm', se = F,  size= 1, aes(color = married)) + jrothsch_theme +
    labs( x = modname, y = "Like")




freq <- ggplot(df2, aes(x=mod, y=  freq_num)) +
  stat_summary_bin(fun.y='mean', bins=20,
                    size=2, geom='point', mapping = aes(group = married, color = married)) +
  geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
      labs( x = modname, y = "Frequency")

  

grid.arrange(want, like, freq)

}

Regressions – Standard

###################################################################################################################################
#REgressions
#########################################################################################################################
  reg_no_mod <- function(dv, df){
      dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married, data = .)

  
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True")
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  }


###########################################################################################################################
  reg_no_mod_i <- function(dv, df){

  dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + age + married*age, data = .)

  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: TRUE", "Age",  "Married X Age")
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  }

##################################################################################################################

  reg_no_mod_control <- function(dv, df){

  dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + age +  Years_PrimaryPartner + MALE, data = .)

  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: TRUE", "Age",  "Duration", "MALE")
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  }

##################################################################################################################

  reg_just_mod_i <- function(dv, df, mod, modname){
    
      dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + mod, data = .)

  
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname)
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  }
  
#############################################################################################################################################################################################################################################################
  reg_full_control <- function(dv, df, mod, modname){
     
     dv <- as.numeric(dv)
       tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE, data = .)
  
      
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male")
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  
    
  }


 


#############################################################################################################################################################################################################################################################
  reg_full_control_i <- function(dv, df, mod, modname){
    
          dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*age, data = .)

  
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age")
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
  }

Subsets where controls can’t be used – e.g. one gender subsets

     reg_full_control_gend <- function(dv, df, mod, modname){

    
      dv <- as.numeric(dv)
      
       tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner, data = .)
  
      
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration" )
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  
    
     }

 reg_full_control_gend_i <- function(dv, df, mod, modname){
    
          dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married, data = .)

  
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age")
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
  }

Looking at modertators interaction with marriage

  ireg_just_mod_i <- function(dv, df, mod, modname){
    
      dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + mod + married*mod, data = .)

  
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, paste("Married X", modname))
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  }
  
#############################################################################################################################################################################################################################################################
  ireg_full_control <- function(dv, df, mod, modname){
     
     dv <- as.numeric(dv)
       tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*mod, data = .)
  
      
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male",  paste("Married X", modname))
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  
    
  }


 


#############################################################################################################################################################################################################################################################
  ireg_full_control_i <- function(dv, df, mod, modname){
    
          dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + age*married + married*mod, data = .)

  
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age",  paste("Married X", modname))
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
  }
  
  
  
   
    
    #############################################################################################################################################################################################################################################################
   #For subsets wheere we can't use all controls
    
    #############################################################################################################################################################################################################################################################
    
     ireg_full_control_gend <- function(dv, df, mod, modname){

    
      dv <- as.numeric(dv)
      
       tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + married*mod, data = .)
  
      
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration",  paste("Married X", modname))
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r",  "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
    
  
    
     }

 ireg_full_control_gend_i <- function(dv, df, mod, modname){
    
          dv <- as.numeric(dv)
  tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married + married*mod, data = .)

  
  tx1 <- xtable(tx1)
  colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
    colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"

  
  tx1 <- tx1 %>%
    mutate(p_value = round(p_value, 4)) %>%
    mutate(t_value = round(t_value, 3)) %>%
    mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
    mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347", 
                                                                   ifelse(t_value > 2.5, "lightgreen", "white"))))

  
  rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age",  paste("Married X", modname))
  
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r")  ,
            booktabs=TRUE, escape = F) %>% 
    kable_styling(font_size=8) 
  }

Marriage on Want/Age/Like without mediators, with or without controls, for comparison

Want - Marriage

reg_no_mod(sex_data$want, sex_data )
Estimate Std. Error t_value p_value
Intercept 28.927462 0.2358428 122.656 0
Married: True -5.062436 0.2804827 -18.049 0

Like - Marriage

reg_no_mod(sex_data$totlike, sex_data )
Estimate Std. Error t_value p_value
Intercept 38.524460 0.2654955 145.104 0
Married: True -3.954296 0.3168241 -12.481 0

Frequency - Marriage

reg_no_mod(sex_data$freq_num, sex_data)
Estimate Std. Error t_value p_value
Intercept 3.6641623 0.0408283 89.746 0
Married: True -0.6595098 0.0480844 -13.716 0

Want - Marriage, controls

reg_no_mod_control(sex_data$want, sex_data )
Estimate Std. Error t_value p_value
Intercept 33.6515234 0.3616805 93.042 0
Married: TRUE -2.4498192 0.2836310 -8.637 0
Age -0.1788330 0.0079330 -22.543 0
Duration -0.0164498 0.0049803 -3.303 0.001
MALE 4.5428634 0.2430139 18.694 0

Like - Marriage, controls

reg_no_mod_control(sex_data$totlike, sex_data)
Estimate Std. Error t_value p_value
Intercept 40.9088281 0.4368889 93.637 0
Married: TRUE -2.6911441 0.3412552 -7.886 0
Age -0.0852356 0.0095901 -8.888 0
Duration -0.0098875 0.0058960 -1.677 0.0936
MALE 1.9027594 0.2944406 6.462 0

Frequency - Marriage, controls

reg_no_mod_control(sex_data$freq_num, sex_data)
Estimate Std. Error t_value p_value
Intercept 4.8698702 0.0640338 76.052 0
Married: TRUE -0.1485242 0.0488622 -3.04 0.0024
Age -0.0334322 0.0014244 -23.471 0
Duration -0.0032137 0.0010801 -2.975 0.0029
MALE 0.2339988 0.0411009 5.693 0

Believing Sex Is Important Accounts For Some Of The Marriage Effect

Graphs

sex_data$SexImporNum = as.numeric(sex_data$seximpor)


contsmall(sex_data, sex_data$SexImporNum, "Importance of Sex", "")

Want - Only Importance

reg_just_mod_i(sex_data$want, sex_data, sex_data$SexImporNum, "Importance of Sex")
Estimate Std. Error t_value p_value
Intercept 13.045487 0.3692273 35.332 0
Married: True -3.216863 0.2396767 -13.422 0
Importance of Sex 2.380053 0.0486655 48.906 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$SexImporNum, "Importance of Sex")
Estimate Std. Error t_value p_value
Intercept 16.5953852 0.4837344 34.307 0
Married: True -2.0302154 0.2510262 -8.088 0
Importance of Sex 2.1750198 0.0485360 44.813 0
Age (years) -0.0912025 0.0071982 -12.67 0
Duration -0.0100332 0.0039433 -2.544 0.011
Male 2.8352708 0.2214528 12.803 0

Like - Only Importance

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$SexImporNum,"Importance of Sex")
Estimate Std. Error t_value p_value
Intercept 25.402354 0.4875021 52.107 0
Married: True -2.681595 0.3119561 -8.596 0
Importance of Sex 1.989012 0.0643406 30.914 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$SexImporNum, "Importance of Sex")
Estimate Std. Error t_value p_value
Intercept 25.6459440 0.6568328 39.045 0
Married: True -2.5313869 0.3388627 -7.47 0
Importance of Sex 1.9710709 0.0665278 29.628 0
Age (years) -0.0054871 0.0097105 -0.565 0.5721
Duration -0.0052256 0.0052401 -0.997 0.3187
Male 0.2416187 0.3008386 0.803 0.4219

Frequency - Only Importance

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$SexImporNum, "Importance of Sex")
Estimate Std. Error t_value p_value
Intercept 1.4760963 0.0691558 21.344 0
Married: True -0.4445915 0.0455606 -9.758 0
Importance of Sex 0.3434624 0.0091385 37.584 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$SexImporNum, "Importance of Sex")
Estimate Std. Error t_value p_value
Intercept 2.5542944 0.0910795 28.045 0
Married: True -0.1358470 0.0476609 -2.85 0.0044
Importance of Sex 0.3082776 0.0090500 34.064 0
Age (years) -0.0213327 0.0014119 -15.109 0
Duration -0.0013552 0.0009617 -1.409 0.1589
Male -0.0346244 0.0415015 -0.834 0.4042

Initiating Equally Correlates With Most WLF, But Doesn’t Account For Marriage Effect (regressions pretty useless)

Graphs

sex_data$InitNum = 5 - as.numeric(sex_data$initiate)

contsmall(sex_data, sex_data$InitNum, "Initiating More Than Partner", "")

Want - Only Initiating

reg_just_mod_i(sex_data$want, sex_data, sex_data$InitNum, "Initiating More Than Partner")
Estimate Std. Error t_value p_value
Intercept 26.058328 0.3425653 76.068 0
Married: True -5.153207 0.2770681 -18.599 0
Initiating More Than Partner 1.397351 0.1222804 11.427 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$InitNum, "Initiating More Than Partner")
Estimate Std. Error t_value p_value
Intercept 32.0933649 0.4150560 77.323 0
Married: True -2.4506415 0.2819908 -8.691 0
Initiating More Than Partner 0.9426112 0.1282448 7.35 0
Age (years) -0.1772391 0.0078931 -22.455 0
Duration -0.0184282 0.0049563 -3.718 2e-04
Male 3.6573981 0.2705804 13.517 0

Like - Only Initiating

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$InitNum,"Initiating More Than Partner")
Estimate Std. Error t_value p_value
Intercept 38.5156024 0.3931978 97.955 0
Married: True -3.9546820 0.3171102 -12.471 0
Initiating More Than Partner 0.0042946 0.1406012 0.031 0.9756

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$InitNum, "Initiating More Than Partner")
Estimate Std. Error t_value p_value
Intercept 41.4133554 0.5045660 82.077 0
Married: True -2.6874619 0.3411509 -7.878 0
Initiating More Than Partner -0.3119762 0.1562332 -1.997 0.0459
Age (years) -0.0853923 0.0095874 -8.907 0
Duration -0.0092394 0.0059030 -1.565 0.1176
Male 2.1969550 0.3291589 6.674 0

Frequency - Only initiating

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$InitNum, "Initiating More Than Partner")
Estimate Std. Error t_value p_value
Intercept 3.8316078 0.0592510 64.667 0
Married: True -0.6435315 0.0482471 -13.338 0
Initiating More Than Partner -0.0818772 0.0208914 -3.919 1e-04

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$InitNum, "Initiating More Than Partner")
Estimate Std. Error t_value p_value
Intercept 5.0115369 0.0730855 68.571 0
Married: True -0.1413439 0.0489341 -2.888 0.0039
Initiating More Than Partner -0.0916778 0.0218405 -4.198 0
Age (years) -0.0333608 0.0014293 -23.34 0
Duration -0.0031523 0.0010779 -2.925 0.0035
Male 0.3242687 0.0464120 6.987 0

Unreciprocated Wanting Predicts More Wanting And Less Liking, Slight Relationship To Marriage

Graphs

sex_data$IdoNum =  as.numeric(sex_data$i_do)

contsmall(sex_data, sex_data$IdoNum, "Wanting Sex But Partner Doesn't, ")

Want - Only Unreciprocated Wanting

reg_just_mod_i(sex_data$want, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 25.608438 0.3178940 80.557 0
Married: True -5.163224 0.2743014 -18.823 0
Wanting Unreciprocated 1.609025 0.1060707 15.169 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 31.3000838 0.4145978 75.495 0
Married: True -2.5843066 0.2804288 -9.216 0
Wanting Unreciprocated 1.1333319 0.1029135 11.012 0
Age (years) -0.1689724 0.0078802 -21.443 0
Duration -0.0184619 0.0049194 -3.753 2e-04
Male 3.8166747 0.2494155 15.302 0

Like - Only Unreciprocated Wanting

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$IdoNum,"Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 40.298068 0.3660930 110.076 0
Married: True -3.873351 0.3154206 -12.28 0
Wanting Unreciprocated -0.857799 0.1225959 -6.997 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 43.3239290 0.5026739 86.187 0
Married: True -2.5297734 0.3385024 -7.473 0
Wanting Unreciprocated -1.1822918 0.1251488 -9.447 0
Age (years) -0.0944112 0.0095501 -9.886 0
Duration -0.0077867 0.0058452 -1.332 0.1829
Male 2.6657806 0.3026689 8.808 0

Frequency - Only Unreciprocated Wanting

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 3.7492218 0.0559672 66.99 0
Married: True -0.6472979 0.0482933 -13.403 0
Wanting Unreciprocated -0.0417347 0.0185793 -2.246 0.0247

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 5.0484524 0.0736695 68.528 0
Married: True -0.1302306 0.0489606 -2.66 0.0078
Wanting Unreciprocated -0.0902839 0.0178239 -5.065 0
Age (years) -0.0340074 0.0014345 -23.707 0
Duration -0.0031844 0.0010767 -2.958 0.0031
Male 0.2944787 0.0428882 6.866 0

Partner Unreciprocated Wanting Predicts Lower WLF, Unrelated To Marriage

Graphs

sex_data$TheydoNum = as.numeric(sex_data$they_do)

contsmall(sex_data, sex_data$TheydoNum, "Not Wanting Sex But Partner Does, ")

Want - Only Partner Unreciprocated Wanting

reg_just_mod_i(sex_data$want, sex_data, sex_data$TheydoNum, "Partner Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 31.120626 0.3259845 95.467 0
Married: True -5.143193 0.2781674 -18.49 0
Partner Wanting Unreciprocated -1.058403 0.1100998 -9.613 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$TheydoNum, "Partner Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 36.5774948 0.4605310 79.425 0
Married: True -2.3910836 0.2805863 -8.522 0
Partner Wanting Unreciprocated -1.0963910 0.1071773 -10.23 0
Age (years) -0.1878379 0.0079150 -23.732 0
Duration -0.0162207 0.0049244 -3.294 0.001
Male 3.8904459 0.2492389 15.609 0

Like - Only Partner Unreciprocated Wanting

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$TheydoNum,"Partner Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 40.916311 0.3677122 111.273 0
Married: True -4.078153 0.3142361 -12.978 0
Partner Wanting Unreciprocated -1.158019 0.1243766 -9.311 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$TheydoNum, "Partner Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 44.3243914 0.5543891 79.952 0
Married: True -2.6442461 0.3378308 -7.827 0
Partner Wanting Unreciprocated -1.2719444 0.1291760 -9.847 0
Age (years) -0.0962585 0.0095587 -10.07 0
Duration -0.0094991 0.0058364 -1.628 0.1037
Male 1.1283810 0.3018810 3.738 2e-04

Frequency - Only Partner Unreciprocated Wanting

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$TheydoNum, "Partner Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 3.4221096 0.0564381 60.635 0
Married: True -0.6390921 0.0481294 -13.279 0
Partner Wanting Unreciprocated 0.1176811 0.0190498 6.178 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$TheydoNum, "Partner Wanting Unreciprocated")
Estimate Std. Error t_value p_value
Intercept 4.7061428 0.0814074 57.81 0
Married: True -0.1470794 0.0489827 -3.003 0.0027
Partner Wanting Unreciprocated 0.0593652 0.0186932 3.176 0.0015
Age (years) -0.0328296 0.0014387 -22.819 0
Duration -0.0032356 0.0010784 -3 0.0027
Male 0.2724440 0.0429522 6.343 0

Very Frustrated Indiviudals Are Similar, But Doesn’t Account For Marriage

Graphs

sex_data$FrustNum =  as.numeric(sex_data$frustration)

contsmall(sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire", "")

Want - Only Frustration

reg_just_mod_i(sex_data$want, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
Estimate Std. Error t_value p_value
Intercept 23.829517 0.3347157 71.193 0
Married: True -4.663560 0.2698580 -17.282 0
Frustration With Unreciprocated Desire 1.342334 0.0647436 20.733 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
Estimate Std. Error t_value p_value
Intercept 29.3794878 0.4596227 63.921 0
Married: True -2.5239274 0.2780876 -9.076 0
Frustration With Unreciprocated Desire 0.9264577 0.0635664 14.575 0
Age (years) -0.1507377 0.0080125 -18.813 0
Duration -0.0170432 0.0048763 -3.495 5e-04
Male 3.8958162 0.2428676 16.041 0

Like - Only Partner Frustration

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$FrustNum,"Frustration With Unreciprocated Desire")
Estimate Std. Error t_value p_value
Intercept 39.0663055 0.3953944 98.803 0
Married: True -3.9889263 0.3172953 -12.572 0
Frustration With Unreciprocated Desire -0.1414659 0.0765132 -1.849 0.0645

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
Estimate Std. Error t_value p_value
Intercept 42.6907937 0.5642977 75.653 0
Married: True -2.6539782 0.3404731 -7.795 0
Frustration With Unreciprocated Desire -0.3886498 0.0781904 -4.971 0
Age (years) -0.0963474 0.0098236 -9.808 0
Duration -0.0094703 0.0058817 -1.61 0.1074
Male 2.1667409 0.2984582 7.26 0

Frequency - Only Frustration

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
Estimate Std. Error t_value p_value
Intercept 3.2757672 0.0592372 55.299 0
Married: True -0.6249548 0.0478917 -13.049 0
Frustration With Unreciprocated Desire 0.1035010 0.0114120 9.069 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
Estimate Std. Error t_value p_value
Intercept 4.7175565 0.0819851 57.542 0
Married: True -0.1503541 0.0489541 -3.071 0.0021
Frustration With Unreciprocated Desire 0.0324711 0.0111016 2.925 0.0035
Age (years) -0.0323377 0.0014686 -22.019 0
Duration -0.0031568 0.0010770 -2.931 0.0034
Male 0.2140341 0.0421540 5.077 0

Importance Accounts For A Lot Of Marriage Effect On Want, Like, Freq

Graphs

sex_data$Satis2Num =  as.numeric(sex_data$satis2)

contsmall(sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship", "")

Want - Only Satis2

reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
Estimate Std. Error t_value p_value
Intercept 12.663917 0.3602982 35.148 0
Married: True -3.372148 0.2269714 -14.857 0
Sex Life Adds TO Relationship 4.327446 0.0815111 53.09 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
Estimate Std. Error t_value p_value
Intercept 17.4526374 0.4375596 39.886 0
Married: True -1.7034706 0.2325226 -7.326 0
Sex Life Adds TO Relationship 3.9536934 0.0786010 50.301 0
Age (years) -0.1255029 0.0066001 -19.015 0
Duration -0.0120335 0.0040407 -2.978 0.0029
Male 3.0622233 0.2022959 15.137 0

Like - Only Satis2

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis2Num,"Sex Life Adds TO Relationship")
Estimate Std. Error t_value p_value
Intercept 17.071048 0.3536608 48.27 0
Married: True -1.991664 0.2213427 -8.998 0
Sex Life Adds TO Relationship 5.682211 0.0799903 71.036 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
Estimate Std. Error t_value p_value
Intercept 17.8439318 0.4522109 39.459 0
Married: True -1.6971955 0.2398380 -7.076 0
Sex Life Adds TO Relationship 5.6533230 0.0814955 69.37 0
Age (years) -0.0152042 0.0068033 -2.235 0.0255
Duration -0.0048095 0.0041370 -1.163 0.2451
Male -0.1209782 0.2086165 -0.58 0.562

Frequency - Only Satis2

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
Estimate Std. Error t_value p_value
Intercept 1.4710152 0.0654456 22.477 0
Married: True -0.4350021 0.0419224 -10.376 0
Sex Life Adds TO Relationship 0.5934546 0.0148458 39.975 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
Estimate Std. Error t_value p_value
Intercept 2.6789570 0.0799321 33.515 0
Married: True -0.0593518 0.0427579 -1.388 0.1652
Sex Life Adds TO Relationship 0.5447578 0.0141899 38.39 0
Age (years) -0.0263283 0.0012619 -20.864 0
Duration -0.0020104 0.0009345 -2.151 0.0315
Male 0.0177950 0.0366640 0.485 0.6274


Belief That Partner Is Sexually Pleased Accounts For A Very Large Portion Of Marriage Like Effect

Graphs

sex_data$Satis9Num =  as.numeric(sex_data$satis9)

contsmall(sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased", "")

Want - Only Satis9

reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
Estimate Std. Error t_value p_value
Intercept 14.616535 0.4244795 34.434 0
Married: True -3.339812 0.2509269 -13.31 0
Partner Is Sexually Pleased 3.619867 0.0934515 38.735 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
Estimate Std. Error t_value p_value
Intercept 19.2123412 0.5006374 38.376 0
Married: True -1.5284964 0.2532365 -6.036 0
Partner Is Sexually Pleased 3.3201639 0.0882444 37.625 0
Age (years) -0.1407840 0.0071493 -19.692 0
Duration -0.0113235 0.0043911 -2.579 0.0099
Male 4.2116975 0.2177424 19.343 0

Like - Only Satis9

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis9Num,"Partner Is Sexually Pleased")
Estimate Std. Error t_value p_value
Intercept 14.368420 0.3671552 39.134 0
Married: True -1.352923 0.2156987 -6.272 0
Partner Is Sexually Pleased 6.080568 0.0807743 75.279 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$Satis9Num,"Partner Is Sexually Pleased")
Estimate Std. Error t_value p_value
Intercept 14.7698562 0.4595837 32.137 0
Married: True -1.0831210 0.2319604 -4.669 0
Partner Is Sexually Pleased 6.0322123 0.0811975 74.291 0
Age (years) -0.0231803 0.0065437 -3.542 4e-04
Duration -0.0022536 0.0039915 -0.565 0.5724
Male 1.4273118 0.1993687 7.159 0

Frequency - Only Satis9

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
Estimate Std. Error t_value p_value
Intercept 1.5681412 0.0728509 21.525 0
Married: True -0.4134790 0.0438456 -9.43 0
Partner Is Sexually Pleased 0.5386635 0.0160846 33.489 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
Estimate Std. Error t_value p_value
Intercept 2.8068062 0.0871164 32.219 0
Married: True -0.0290623 0.0445982 -0.652 0.5147
Partner Is Sexually Pleased 0.4841241 0.0152116 31.826 0
Age (years) -0.0283415 0.0013093 -21.647 0
Duration -0.0018218 0.0009730 -1.872 0.0612
Male 0.1825889 0.0377636 4.835 0


Belief That Partner Is Lucky Has Positive, Unrelated Effect

Graphs

sex_data$PLuckyNuM =  as.numeric(sex_data$PartnerLucky)

contsmall(sex_data, sex_data$PLuckyNuM, "Partner Is Lucky To Be With Me", "")

Want - Only Partner Lucky

reg_just_mod_i(sex_data$want, sex_data, sex_data$PLuckyNuM, "Partner Is Lucky To Be With Me")
Estimate Std. Error t_value p_value
Intercept 18.127828 0.7042133 25.742 0
Married: True -4.740036 0.3757265 -12.616 0
Partner Is Lucky To Be With Me 2.564097 0.1598204 16.044 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$PLuckyNuM, "Partner Is Lucky To Be With Me")
Estimate Std. Error t_value p_value
Intercept 22.9499233 0.7818718 29.353 0
Married: True -2.2752571 0.3899386 -5.835 0
Partner Is Lucky To Be With Me 2.5429259 0.1483818 17.138 0
Age (years) -0.1728813 0.0107446 -16.09 0
Duration -0.0084972 0.0050420 -1.685 0.0921
Male 4.6118880 0.3493840 13.2 0

Like - Only Partner Lucky

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$PLuckyNuM,"Partner Is Lucky To Be With Me")
Estimate Std. Error t_value p_value
Intercept 18.435402 0.6754787 27.292 0
Married: True -3.243428 0.3603954 -9 0
Partner Is Lucky To Be With Me 4.912480 0.1532991 32.045 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$PLuckyNuM,"Partner Is Lucky To Be With Me")
Estimate Std. Error t_value p_value
Intercept 19.7278235 0.7978311 24.727 0
Married: True -2.4150828 0.3978978 -6.07 0
Partner Is Lucky To Be With Me 4.9311615 0.1514105 32.568 0
Age (years) -0.0631778 0.0109639 -5.762 0
Duration -0.0038898 0.0051449 -0.756 0.4497
Male 2.6033603 0.3565155 7.302 0

Frequency - Only Partner Lucky

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$PLuckyNuM, "Partner Is Lucky To Be With Me")
Estimate Std. Error t_value p_value
Intercept 2.3040453 0.1209948 19.043 0
Married: True -0.6601568 0.0648768 -10.176 0
Partner Is Lucky To Be With Me 0.3291528 0.0274849 11.976 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$PLuckyNuM, "Partner Is Lucky To Be With Me")
Estimate Std. Error t_value p_value
Intercept 3.4101431 0.1386268 24.599 0
Married: True -0.2009122 0.0690989 -2.908 0.0037
Partner Is Lucky To Be With Me 0.3098280 0.0260415 11.897 0
Age (years) -0.0288850 0.0019617 -14.724 0
Duration -0.0014540 0.0011674 -1.246 0.2131
Male 0.2394457 0.0612726 3.908 1e-04


Belief That Ther Are Lucky To Be With Partner Has Positive, Unrelated Effect

Graphs

sex_data$Satis22Num =  as.numeric(sex_data$satis22)

contsmall(sex_data, sex_data$Satis22Num, "Lucky To Be With Partner", "")

Want - Only Satis22

reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis22Num, "Lucky To Be With Partner")
Estimate Std. Error t_value p_value
Intercept 16.221597 0.4885928 33.201 0
Married: True -4.706754 0.2623980 -17.937 0
Lucky To Be With Partner 3.112898 0.1058147 29.418 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$Satis22Num, "Lucky To Be With Partner")
Estimate Std. Error t_value p_value
Intercept 20.9911034 0.5386432 38.97 0
Married: True -2.4306077 0.2645141 -9.189 0
Lucky To Be With Partner 2.9508234 0.0980005 30.11 0
Age (years) -0.1601768 0.0074474 -21.508 0
Duration -0.0158831 0.0045701 -3.475 5e-04
Male 4.3343557 0.2282834 18.987 0

Like - Only Satis2

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis22Num,"Lucky To Be With Partner")
Estimate Std. Error t_value p_value
Intercept 15.529762 0.4541060 34.199 0
Married: True -3.604512 0.2438769 -14.78 0
Lucky To Be With Partner 5.576174 0.0983459 56.7 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$Satis22Num,"Lucky To Be With Partner")
Estimate Std. Error t_value p_value
Intercept 17.3421302 0.5348059 32.427 0
Married: True -2.6678846 0.2626297 -10.158 0
Lucky To Be With Partner 5.5136596 0.0973024 56.665 0
Age (years) -0.0596718 0.0073943 -8.07 0
Duration -0.0107211 0.0045376 -2.363 0.0182
Male 1.6167529 0.2266572 7.133 0

Frequency - Only Satis22

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis22Num, "Lucky To Be With Partner")
Estimate Std. Error t_value p_value
Intercept 2.2892605 0.0854083 26.804 0
Married: True -0.6177296 0.0467202 -13.222 0
Lucky To Be With Partner 0.3431301 0.0184967 18.551 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis22Num, "Lucky To Be With Partner")
Estimate Std. Error t_value p_value
Intercept 3.5076597 0.0959424 36.56 0
Married: True -0.1617874 0.0475644 -3.401 7e-04
Lucky To Be With Partner 0.3174340 0.0172247 18.429 0
Age (years) -0.0308375 0.0013947 -22.111 0
Duration -0.0028252 0.0010347 -2.731 0.0063
Male 0.2094392 0.0404073 5.183 0


Sexual Attraction To Partner Decreases Marriage Effects

Graphs

sex_data$Satis23Num =  as.numeric(sex_data$satis23)

contsmall(sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner", "")

Want - Only Attraction To

reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
Estimate Std. Error t_value p_value
Intercept 11.113315 0.4169079 26.657 0
Married: True -3.517980 0.2342962 -15.015 0
Sexual Attraction To Partner 4.382228 0.0900014 48.691 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
Estimate Std. Error t_value p_value
Intercept 16.0889127 0.4865806 33.065 0
Married: True -1.7685708 0.2396736 -7.379 0
Sexual Attraction To Partner 3.9996142 0.0863412 46.323 0
Age (years) -0.1281127 0.0067951 -18.854 0
Duration -0.0142868 0.0041333 -3.456 6e-04
Male 3.2177052 0.2082244 15.453 0

Like - Only Attraction To

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis23Num,"Sexual Attraction To Partner")
Estimate Std. Error t_value p_value
Intercept 12.466098 0.3692949 33.756 0
Married: True -1.944504 0.2075384 -9.369 0
Sexual Attraction To Partner 6.363514 0.0797228 79.821 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
Estimate Std. Error t_value p_value
Intercept 13.1683193 0.4566078 28.839 0
Married: True -1.6228675 0.2249100 -7.216 0
Sexual Attraction To Partner 6.3347497 0.0810227 78.185 0
Age (years) -0.0127822 0.0063765 -2.005 0.0451
Duration -0.0080658 0.0038787 -2.079 0.0376
Male -0.1082689 0.1953980 -0.554 0.5795

Frequency - Only Attraction to

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
Estimate Std. Error t_value p_value
Intercept 1.8494335 0.0792466 23.338 0
Married: True -0.4987895 0.0453279 -11.004 0
Sexual Attraction To Partner 0.4549570 0.0171408 26.542 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
Estimate Std. Error t_value p_value
Intercept 3.1191465 0.0934761 33.368 0
Married: True -0.0992315 0.0464045 -2.138 0.0325
Sexual Attraction To Partner 0.3998997 0.0163919 24.396 0
Age (years) -0.0277435 0.0013689 -20.267 0
Duration -0.0025180 0.0010080 -2.498 0.0125
Male 0.0943254 0.0397445 2.373 0.0177


Belief That Partner Is Sexually Attracted Reduces Marriage Effect

Graphs

sex_data$Satis21Num =  as.numeric(sex_data$satis21)

contsmall(sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief", "")

Want - Only Partner Sexual Attraction

reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief")
Estimate Std. Error t_value p_value
Intercept 16.841134 0.4668292 36.076 0
Married: True -3.618780 0.2655335 -13.628 0
Partner Sexual Attraction Belief 3.053214 0.1029592 29.655 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belif")
Estimate Std. Error t_value p_value
Intercept 20.7450116 0.5550085 37.378 0
Married: True -1.7675501 0.2666382 -6.629 0
Partner Sexual Attraction Belif 2.8569398 0.0974504 29.317 0
Age (years) -0.1412421 0.0075476 -18.714 0
Duration -0.0122728 0.0045908 -2.673 0.0075
Male 4.8386517 0.2295121 21.082 0

Like - Only Partner Sexual Attraction

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis21Num,"Partner Sexual Attraction Belief")
Estimate Std. Error t_value p_value
Intercept 15.562854 0.4167388 37.344 0
Married: True -1.542520 0.2370420 -6.507 0
Partner Sexual Attraction Belief 5.738337 0.0919118 62.433 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$Satis21Num,"Partner Sexual Attraction Belief")
Estimate Std. Error t_value p_value
Intercept 14.8765907 0.5250826 28.332 0
Married: True -1.3235843 0.2522612 -5.247 0
Partner Sexual Attraction Belief 5.7838679 0.0921959 62.735 0
Age (years) -0.0192046 0.0071406 -2.689 0.0072
Duration -0.0034816 0.0043433 -0.802 0.4228
Male 2.6138234 0.2171369 12.038 0

Frequency - Only Partner Sexual Attraction

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief")
Estimate Std. Error t_value p_value
Intercept 1.7498286 0.0780685 22.414 0
Married: True -0.4346514 0.0451372 -9.63 0
Partner Sexual Attraction Belief 0.4909396 0.0172624 28.44 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief")
Estimate Std. Error t_value p_value
Intercept 2.9385681 0.0948766 30.973 0
Married: True -0.0646439 0.0460886 -1.403 0.1608
Partner Sexual Attraction Belief 0.4311782 0.0165150 26.108 0
Age (years) -0.0277529 0.0013559 -20.469 0
Duration -0.0018881 0.0010000 -1.888 0.0591
Male 0.2841097 0.0390648 7.273 0


Emotional Proximity Has Positiv, Largely Unrelated Effect

Graphs

sex_data$EmotNum =  as.numeric(sex_data$emotion)

contsmall(sex_data, sex_data$EmotNum, "Emotional Proximity", "")

Want - Only Emotional Proximity

reg_just_mod_i(sex_data$want, sex_data, sex_data$EmotNum, "Emotional Proximity")
Estimate Std. Error t_value p_value
Intercept 15.422532 0.5484573 28.12 0
Married: True -4.890454 0.2657303 -18.404 0
Emotional Proximity 2.303690 0.0846465 27.215 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$EmotNum, "Emotional Proximity")
Estimate Std. Error t_value p_value
Intercept 20.2200879 0.5835692 34.649 0
Married: True -2.5167980 0.2676349 -9.404 0
Emotional Proximity 2.2124643 0.0782225 28.284 0
Age (years) -0.1636021 0.0075269 -21.736 0
Duration -0.0179953 0.0046176 -3.897 1e-04
Male 4.2930686 0.2309471 18.589 0

Like - Only Emotional Proximity

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$EmotNum,"Emotional Proximity")
Estimate Std. Error t_value p_value
Intercept 15.003781 0.5354774 28.019 0
Married: True -3.938998 0.2594414 -15.183 0
Emotional Proximity 3.972394 0.0826433 48.067 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$EmotNum,"Emotional Proximity")
Estimate Std. Error t_value p_value
Intercept 17.1002657 0.6086301 28.096 0
Married: True -2.8249047 0.2791283 -10.12 0
Emotional Proximity 3.9362337 0.0815817 48.249 0
Age (years) -0.0674999 0.0078501 -8.599 0
Duration -0.0142132 0.0048159 -2.951 0.0032
Male 1.5905415 0.2408650 6.603 0

Frequency - Only Emotional Proximity

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$EmotNum, "Emotional Proximity")
Estimate Std. Error t_value p_value
Intercept 2.2343211 0.0951211 23.489 0
Married: True -0.6325176 0.0470125 -13.454 0
Emotional Proximity 0.2481978 0.0146997 16.885 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$EmotNum, "Emotional Proximity")
Estimate Std. Error t_value p_value
Intercept 3.4275364 0.1030599 33.258 0
Married: True -0.1630333 0.0477688 -3.413 6e-04
Emotional Proximity 0.2366541 0.0136512 17.336 0
Age (years) -0.0309942 0.0013997 -22.144 0
Duration -0.0033258 0.0010380 -3.204 0.0014
Male 0.2005798 0.0405752 4.943 0


Partner Work Power Has A Small ANd Unrelated Positive Effect

Graphs

sex_data$WPNum =  as.numeric(sex_data$workpower)
sex_data$WPNum =  ifelse(sex_data$workpower == "Not applicable (my partner does not work)", NA, sex_data$WPNum)

contsmall(sex_data, sex_data$WPNum, "Partner Work Power", "")

Want - Only Partner Work Power

reg_just_mod_i(sex_data$want, sex_data, sex_data$WPNum, "Partner Work Power")
Estimate Std. Error t_value p_value
Intercept 25.2608724 0.4324477 58.414 0
Married: True -4.5416555 0.3005030 -15.114 0
Partner Work Power 0.8507393 0.0772669 11.01 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$WPNum, "Partner Work Power")
Estimate Std. Error t_value p_value
Intercept 29.3892562 0.5235945 56.13 0
Married: True -2.4426162 0.3032917 -8.054 0
Partner Work Power 0.8279658 0.0724102 11.434 0
Age (years) -0.1608716 0.0087291 -18.429 0
Duration -0.0136752 0.0050000 -2.735 0.0063
Male 4.3376282 0.2662168 16.294 0

Like - Only Partner Work Power

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$WPNum,"Partner Work Power")
Estimate Std. Error t_value p_value
Intercept 32.487080 0.4743244 68.491 0
Married: True -3.577460 0.3296027 -10.854 0
Partner Work Power 1.300749 0.0847491 15.348 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$WPNum,"Partner Work Power")
Estimate Std. Error t_value p_value
Intercept 34.4855008 0.6078150 56.737 0
Married: True -2.5631179 0.3520764 -7.28 0
Partner Work Power 1.2883544 0.0840575 15.327 0
Age (years) -0.0714282 0.0101331 -7.049 0
Duration -0.0102757 0.0058043 -1.77 0.0767
Male 1.6549009 0.3090380 5.355 0

Frequency - Only Partner Work Power

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$WPNum, "Partner Work Power")
Estimate Std. Error t_value p_value
Intercept 3.3481543 0.0717875 46.64 0
Married: True -0.5717298 0.0503803 -11.348 0
Partner Work Power 0.0894081 0.0128017 6.984 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$WPNum, "Partner Work Power")
Estimate Std. Error t_value p_value
Intercept 4.4776459 0.0882072 50.763 0
Married: True -0.1659542 0.0509915 -3.255 0.0011
Partner Work Power 0.0802235 0.0119886 6.692 0
Age (years) -0.0302376 0.0015253 -19.824 0
Duration -0.0024153 0.0010715 -2.254 0.0242
Male 0.1779924 0.0441335 4.033 1e-04


Partner Physical Attractiveness Reduces Marriage Effect, Less Than Attraction To Partner

Graphs

sex_data$PAttracNum =  as.numeric(sex_data$PhysicalAttractive_PrimaryPartner)

contsmall(sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness", "")

Want - Only Partner Physical Attractiveness

reg_just_mod_i(sex_data$want, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
Estimate Std. Error t_value p_value
Intercept 10.639096 0.7112652 14.958 0
Married: True -3.982559 0.3468968 -11.481 0
Partner Physical Attractiveness 2.432250 0.0899434 27.042 0

Want – Full Controls

reg_full_control(sex_data$want, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
Estimate Std. Error t_value p_value
Intercept 16.0195886 0.8094368 19.791 0
Married: True -2.0154397 0.3646536 -5.527 0
Partner Physical Attractiveness 2.2255667 0.0857366 25.958 0
Age (years) -0.1410848 0.0101339 -13.922 0
Duration -0.0087690 0.0046993 -1.866 0.0622
Male 3.7500118 0.3264691 11.487 0

Like - Only Partner Physical Attractiveness

reg_just_mod_i(sex_data$totlike, sex_data, sex_data$PAttracNum,"Partner Physical Attractiveness")
Estimate Std. Error t_value p_value
Intercept 15.112688 0.7296525 20.712 0
Married: True -2.444246 0.3558646 -6.868 0
Partner Physical Attractiveness 3.140848 0.0922685 34.04 0

Like – Full Controls

reg_full_control(sex_data$totlike,sex_data, sex_data$PAttracNum,"Partner Physical Attractiveness")
Estimate Std. Error t_value p_value
Intercept 15.8581475 0.8791610 18.038 0
Married: True -2.1173712 0.3960645 -5.346 0
Partner Physical Attractiveness 3.0999806 0.0931218 33.29 0
Age (years) -0.0246886 0.0110068 -2.243 0.025
Duration -0.0036312 0.0051041 -0.711 0.4769
Male 1.2584230 0.3545908 3.549 4e-04

Frequency - Only Partner Physical Attractiveness

reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
Estimate Std. Error t_value p_value
Intercept 1.9712684 0.1310729 15.039 0
Married: True -0.5973298 0.0647256 -9.229 0
Partner Physical Attractiveness 0.2270554 0.0166671 13.623 0

Frequency – Full Controls

reg_full_control(sex_data$freq_num, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
Estimate Std. Error t_value p_value
Intercept 3.1817834 0.1516085 20.987 0
Married: True -0.1743550 0.0691916 -2.52 0.0118
Partner Physical Attractiveness 0.1949393 0.0160373 12.155 0
Age (years) -0.0267014 0.0019757 -13.515 0
Duration -0.0014411 0.0011654 -1.237 0.2164
Male 0.1509480 0.0613573 2.46 0.014


Security Scale Not Yet Included For Time Purposes