rm(list = ls())
setwd("~/Downloads")
library(foreign)
sex_data <- read.spss("sex_data.sav", use.value.label=TRUE, to.data.frame=TRUE)
Libraries/themes
library(ggplot2)
library(tidyverse)
library(gridExtra)
library(finalfit)
library(kableExtra)
library(xtable)
jrothsch_theme <- theme_bw() +
theme(text = element_text(size = 10, face = "bold", color = "deepskyblue4"),panel.grid = element_blank(),axis.text = element_text(size = 10, color = "gray13"), axis.title = element_text(size = 10, color = "red"), legend.text = element_text(colour="Black", size=10), legend.title = element_text(colour="Black", size=7), plot.subtitle = element_text(size=14, face="italic", color="black"))
Removing obserations without our key variables
sex_data <- sex_data[!is.na(sex_data$status),]
sex_data <- sex_data[!is.na(sex_data$age),]
sex_data <- sex_data[!is.na(sex_data$Years_PrimaryPartner),]
sex_data <- sex_data[!is.na(sex_data$MALE),]
Making variables
sex_data <- sex_data %>%
mutate(married = status == "Married")
sex_data <- sex_data %>%
mutate(married_gender = ifelse(married,
ifelse(MALE == "Male", "Married Male", "Married Female"),
ifelse(MALE == "Male", "Unmarried Male", "Unmarried Female ")))
married_num = length(sex_data$married[sex_data$married == T])
unmarried_num = length(sex_data$married[sex_data$married == T])
sex_data <- sex_data %>% mutate(freq_num = as.numeric(ifelse(sexfreq == "At least once per day", 6,
ifelse(sexfreq == "3-4 times per week", 5,
ifelse(sexfreq == 'At least once a week', 4,
ifelse(sexfreq == 'At least once per month', 3,
ifelse(sexfreq =='At least once per year', 2,
ifelse( sexfreq =="Less than once a year", 1, 0))))))))
female <- sex_data %>%
filter(sex_data$MALE == "Female")
Binary graphs
bin_graphs_want <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$want) & !is.na(mod),]
mod = mod[!is.na(df$want) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = want, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Want", " -- Age"), x = "Age", y = "Want", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(want))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "Black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Want", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_like <- function(df, mod, modname, modlabs, interaction_labs){
df <- sex_data
mod <- sex_data$children_in_house
modname <-"Children In House"
modlabs <- c("Children", "No Children")
interaction_labs <- c("Unmarried, Children", "Married, Children", "Unmarried, No Children", "Married, No Children")
df2 = df[!is.na(df$totlike) & !is.na(mod),]
mod = mod[!is.na(df$totlike) & !is.na(mod)]
table(mod)
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = totlike, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Like", " -- Age"), x = "Age", y = "Like", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(totlike))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Like", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_freq <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$freq_num) & !is.na(mod),]
mod = mod[!is.na(df$freq_num) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = freq_num, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Frequency", " -- Age"), x = "Age", y = "Frequency", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by(mod_married) %>%
summarize(DV = mean(freq_num))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Frequency", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
Small continuous graphs
contsmall <- function(df, mod, modname, modlabs){
df2 = df[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod) ,]
mod = mod[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod)]
want <- ggplot(df2, aes(x=mod, y = want)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, size= 1, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Want")
like <- ggplot(df2, aes(x=mod, y = totlike)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, size= 1, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Like")
freq <- ggplot(df2, aes(x=mod, y= freq_num)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Frequency")
grid.arrange(want, like, freq)
}
Regressions – Standard
###################################################################################################################################
#REgressions
#########################################################################################################################
reg_no_mod <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
###########################################################################################################################
reg_no_mod_i <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_no_mod_control <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Duration", "MALE")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname)
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Subsets where controls can’t be used – e.g. one gender subsets
reg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration" )
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
reg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Looking at modertators interaction with marriage
ireg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
#For subsets wheere we can't use all controls
#############################################################################################################################################################################################################################################################
ireg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
ireg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Believing Sex Is Important Accounts For Some Of The Marriage Effect
Graphs
sex_data$SexImporNum = as.numeric(sex_data$seximpor)
contsmall(sex_data, sex_data$SexImporNum, "Importance of Sex", "")

Want - Only Importance
reg_just_mod_i(sex_data$want, sex_data, sex_data$SexImporNum, "Importance of Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
13.045487
|
0.3692273
|
35.332
|
0
|
|
Married: True
|
-3.216863
|
0.2396767
|
-13.422
|
0
|
|
Importance of Sex
|
2.380053
|
0.0486655
|
48.906
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$SexImporNum, "Importance of Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
16.5953852
|
0.4837344
|
34.307
|
0
|
|
Married: True
|
-2.0302154
|
0.2510262
|
-8.088
|
0
|
|
Importance of Sex
|
2.1750198
|
0.0485360
|
44.813
|
0
|
|
Age (years)
|
-0.0912025
|
0.0071982
|
-12.67
|
0
|
|
Duration
|
-0.0100332
|
0.0039433
|
-2.544
|
0.011
|
|
Male
|
2.8352708
|
0.2214528
|
12.803
|
0
|
Like - Only Importance
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$SexImporNum,"Importance of Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
25.402354
|
0.4875021
|
52.107
|
0
|
|
Married: True
|
-2.681595
|
0.3119561
|
-8.596
|
0
|
|
Importance of Sex
|
1.989012
|
0.0643406
|
30.914
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$SexImporNum, "Importance of Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
25.6459440
|
0.6568328
|
39.045
|
0
|
|
Married: True
|
-2.5313869
|
0.3388627
|
-7.47
|
0
|
|
Importance of Sex
|
1.9710709
|
0.0665278
|
29.628
|
0
|
|
Age (years)
|
-0.0054871
|
0.0097105
|
-0.565
|
0.5721
|
|
Duration
|
-0.0052256
|
0.0052401
|
-0.997
|
0.3187
|
|
Male
|
0.2416187
|
0.3008386
|
0.803
|
0.4219
|
Frequency - Only Importance
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$SexImporNum, "Importance of Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
1.4760963
|
0.0691558
|
21.344
|
0
|
|
Married: True
|
-0.4445915
|
0.0455606
|
-9.758
|
0
|
|
Importance of Sex
|
0.3434624
|
0.0091385
|
37.584
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$SexImporNum, "Importance of Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.5542944
|
0.0910795
|
28.045
|
0
|
|
Married: True
|
-0.1358470
|
0.0476609
|
-2.85
|
0.0044
|
|
Importance of Sex
|
0.3082776
|
0.0090500
|
34.064
|
0
|
|
Age (years)
|
-0.0213327
|
0.0014119
|
-15.109
|
0
|
|
Duration
|
-0.0013552
|
0.0009617
|
-1.409
|
0.1589
|
|
Male
|
-0.0346244
|
0.0415015
|
-0.834
|
0.4042
|
Initiating Equally Correlates With Most WLF, But Doesn’t Account For Marriage Effect (regressions pretty useless)
Graphs
sex_data$InitNum = 5 - as.numeric(sex_data$initiate)
contsmall(sex_data, sex_data$InitNum, "Initiating More Than Partner", "")

Want - Only Initiating
reg_just_mod_i(sex_data$want, sex_data, sex_data$InitNum, "Initiating More Than Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
26.058328
|
0.3425653
|
76.068
|
0
|
|
Married: True
|
-5.153207
|
0.2770681
|
-18.599
|
0
|
|
Initiating More Than Partner
|
1.397351
|
0.1222804
|
11.427
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$InitNum, "Initiating More Than Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
32.0933649
|
0.4150560
|
77.323
|
0
|
|
Married: True
|
-2.4506415
|
0.2819908
|
-8.691
|
0
|
|
Initiating More Than Partner
|
0.9426112
|
0.1282448
|
7.35
|
0
|
|
Age (years)
|
-0.1772391
|
0.0078931
|
-22.455
|
0
|
|
Duration
|
-0.0184282
|
0.0049563
|
-3.718
|
2e-04
|
|
Male
|
3.6573981
|
0.2705804
|
13.517
|
0
|
Like - Only Initiating
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$InitNum,"Initiating More Than Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.5156024
|
0.3931978
|
97.955
|
0
|
|
Married: True
|
-3.9546820
|
0.3171102
|
-12.471
|
0
|
|
Initiating More Than Partner
|
0.0042946
|
0.1406012
|
0.031
|
0.9756
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$InitNum, "Initiating More Than Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
41.4133554
|
0.5045660
|
82.077
|
0
|
|
Married: True
|
-2.6874619
|
0.3411509
|
-7.878
|
0
|
|
Initiating More Than Partner
|
-0.3119762
|
0.1562332
|
-1.997
|
0.0459
|
|
Age (years)
|
-0.0853923
|
0.0095874
|
-8.907
|
0
|
|
Duration
|
-0.0092394
|
0.0059030
|
-1.565
|
0.1176
|
|
Male
|
2.1969550
|
0.3291589
|
6.674
|
0
|
Frequency - Only initiating
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$InitNum, "Initiating More Than Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.8316078
|
0.0592510
|
64.667
|
0
|
|
Married: True
|
-0.6435315
|
0.0482471
|
-13.338
|
0
|
|
Initiating More Than Partner
|
-0.0818772
|
0.0208914
|
-3.919
|
1e-04
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$InitNum, "Initiating More Than Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.0115369
|
0.0730855
|
68.571
|
0
|
|
Married: True
|
-0.1413439
|
0.0489341
|
-2.888
|
0.0039
|
|
Initiating More Than Partner
|
-0.0916778
|
0.0218405
|
-4.198
|
0
|
|
Age (years)
|
-0.0333608
|
0.0014293
|
-23.34
|
0
|
|
Duration
|
-0.0031523
|
0.0010779
|
-2.925
|
0.0035
|
|
Male
|
0.3242687
|
0.0464120
|
6.987
|
0
|
Unreciprocated Wanting Predicts More Wanting And Less Liking, Slight Relationship To Marriage
Graphs
sex_data$IdoNum = as.numeric(sex_data$i_do)
contsmall(sex_data, sex_data$IdoNum, "Wanting Sex But Partner Doesn't, ")

Want - Only Unreciprocated Wanting
reg_just_mod_i(sex_data$want, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
25.608438
|
0.3178940
|
80.557
|
0
|
|
Married: True
|
-5.163224
|
0.2743014
|
-18.823
|
0
|
|
Wanting Unreciprocated
|
1.609025
|
0.1060707
|
15.169
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
31.3000838
|
0.4145978
|
75.495
|
0
|
|
Married: True
|
-2.5843066
|
0.2804288
|
-9.216
|
0
|
|
Wanting Unreciprocated
|
1.1333319
|
0.1029135
|
11.012
|
0
|
|
Age (years)
|
-0.1689724
|
0.0078802
|
-21.443
|
0
|
|
Duration
|
-0.0184619
|
0.0049194
|
-3.753
|
2e-04
|
|
Male
|
3.8166747
|
0.2494155
|
15.302
|
0
|
Like - Only Unreciprocated Wanting
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$IdoNum,"Wanting Unreciprocated")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
40.298068
|
0.3660930
|
110.076
|
0
|
|
Married: True
|
-3.873351
|
0.3154206
|
-12.28
|
0
|
|
Wanting Unreciprocated
|
-0.857799
|
0.1225959
|
-6.997
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
43.3239290
|
0.5026739
|
86.187
|
0
|
|
Married: True
|
-2.5297734
|
0.3385024
|
-7.473
|
0
|
|
Wanting Unreciprocated
|
-1.1822918
|
0.1251488
|
-9.447
|
0
|
|
Age (years)
|
-0.0944112
|
0.0095501
|
-9.886
|
0
|
|
Duration
|
-0.0077867
|
0.0058452
|
-1.332
|
0.1829
|
|
Male
|
2.6657806
|
0.3026689
|
8.808
|
0
|
Frequency - Only Unreciprocated Wanting
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7492218
|
0.0559672
|
66.99
|
0
|
|
Married: True
|
-0.6472979
|
0.0482933
|
-13.403
|
0
|
|
Wanting Unreciprocated
|
-0.0417347
|
0.0185793
|
-2.246
|
0.0247
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$IdoNum, "Wanting Unreciprocated")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.0484524
|
0.0736695
|
68.528
|
0
|
|
Married: True
|
-0.1302306
|
0.0489606
|
-2.66
|
0.0078
|
|
Wanting Unreciprocated
|
-0.0902839
|
0.0178239
|
-5.065
|
0
|
|
Age (years)
|
-0.0340074
|
0.0014345
|
-23.707
|
0
|
|
Duration
|
-0.0031844
|
0.0010767
|
-2.958
|
0.0031
|
|
Male
|
0.2944787
|
0.0428882
|
6.866
|
0
|
Very Frustrated Indiviudals Are Similar, But Doesn’t Account For Marriage
Graphs
sex_data$FrustNum = as.numeric(sex_data$frustration)
contsmall(sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire", "")

Want - Only Frustration
reg_just_mod_i(sex_data$want, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
23.829517
|
0.3347157
|
71.193
|
0
|
|
Married: True
|
-4.663560
|
0.2698580
|
-17.282
|
0
|
|
Frustration With Unreciprocated Desire
|
1.342334
|
0.0647436
|
20.733
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.3794878
|
0.4596227
|
63.921
|
0
|
|
Married: True
|
-2.5239274
|
0.2780876
|
-9.076
|
0
|
|
Frustration With Unreciprocated Desire
|
0.9264577
|
0.0635664
|
14.575
|
0
|
|
Age (years)
|
-0.1507377
|
0.0080125
|
-18.813
|
0
|
|
Duration
|
-0.0170432
|
0.0048763
|
-3.495
|
5e-04
|
|
Male
|
3.8958162
|
0.2428676
|
16.041
|
0
|
Like - Only Partner Frustration
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$FrustNum,"Frustration With Unreciprocated Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
39.0663055
|
0.3953944
|
98.803
|
0
|
|
Married: True
|
-3.9889263
|
0.3172953
|
-12.572
|
0
|
|
Frustration With Unreciprocated Desire
|
-0.1414659
|
0.0765132
|
-1.849
|
0.0645
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
42.6907937
|
0.5642977
|
75.653
|
0
|
|
Married: True
|
-2.6539782
|
0.3404731
|
-7.795
|
0
|
|
Frustration With Unreciprocated Desire
|
-0.3886498
|
0.0781904
|
-4.971
|
0
|
|
Age (years)
|
-0.0963474
|
0.0098236
|
-9.808
|
0
|
|
Duration
|
-0.0094703
|
0.0058817
|
-1.61
|
0.1074
|
|
Male
|
2.1667409
|
0.2984582
|
7.26
|
0
|
Frequency - Only Frustration
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.2757672
|
0.0592372
|
55.299
|
0
|
|
Married: True
|
-0.6249548
|
0.0478917
|
-13.049
|
0
|
|
Frustration With Unreciprocated Desire
|
0.1035010
|
0.0114120
|
9.069
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$FrustNum, "Frustration With Unreciprocated Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.7175565
|
0.0819851
|
57.542
|
0
|
|
Married: True
|
-0.1503541
|
0.0489541
|
-3.071
|
0.0021
|
|
Frustration With Unreciprocated Desire
|
0.0324711
|
0.0111016
|
2.925
|
0.0035
|
|
Age (years)
|
-0.0323377
|
0.0014686
|
-22.019
|
0
|
|
Duration
|
-0.0031568
|
0.0010770
|
-2.931
|
0.0034
|
|
Male
|
0.2140341
|
0.0421540
|
5.077
|
0
|
Importance Accounts For A Lot Of Marriage Effect On Want, Like, Freq
Graphs
sex_data$Satis2Num = as.numeric(sex_data$satis2)
contsmall(sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship", "")

Want - Only Satis2
reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
12.663917
|
0.3602982
|
35.148
|
0
|
|
Married: True
|
-3.372148
|
0.2269714
|
-14.857
|
0
|
|
Sex Life Adds TO Relationship
|
4.327446
|
0.0815111
|
53.09
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.4526374
|
0.4375596
|
39.886
|
0
|
|
Married: True
|
-1.7034706
|
0.2325226
|
-7.326
|
0
|
|
Sex Life Adds TO Relationship
|
3.9536934
|
0.0786010
|
50.301
|
0
|
|
Age (years)
|
-0.1255029
|
0.0066001
|
-19.015
|
0
|
|
Duration
|
-0.0120335
|
0.0040407
|
-2.978
|
0.0029
|
|
Male
|
3.0622233
|
0.2022959
|
15.137
|
0
|
Like - Only Satis2
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis2Num,"Sex Life Adds TO Relationship")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.071048
|
0.3536608
|
48.27
|
0
|
|
Married: True
|
-1.991664
|
0.2213427
|
-8.998
|
0
|
|
Sex Life Adds TO Relationship
|
5.682211
|
0.0799903
|
71.036
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.8439318
|
0.4522109
|
39.459
|
0
|
|
Married: True
|
-1.6971955
|
0.2398380
|
-7.076
|
0
|
|
Sex Life Adds TO Relationship
|
5.6533230
|
0.0814955
|
69.37
|
0
|
|
Age (years)
|
-0.0152042
|
0.0068033
|
-2.235
|
0.0255
|
|
Duration
|
-0.0048095
|
0.0041370
|
-1.163
|
0.2451
|
|
Male
|
-0.1209782
|
0.2086165
|
-0.58
|
0.562
|
Frequency - Only Satis2
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
1.4710152
|
0.0654456
|
22.477
|
0
|
|
Married: True
|
-0.4350021
|
0.0419224
|
-10.376
|
0
|
|
Sex Life Adds TO Relationship
|
0.5934546
|
0.0148458
|
39.975
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis2Num, "Sex Life Adds TO Relationship")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.6789570
|
0.0799321
|
33.515
|
0
|
|
Married: True
|
-0.0593518
|
0.0427579
|
-1.388
|
0.1652
|
|
Sex Life Adds TO Relationship
|
0.5447578
|
0.0141899
|
38.39
|
0
|
|
Age (years)
|
-0.0263283
|
0.0012619
|
-20.864
|
0
|
|
Duration
|
-0.0020104
|
0.0009345
|
-2.151
|
0.0315
|
|
Male
|
0.0177950
|
0.0366640
|
0.485
|
0.6274
|
Belief That Partner Is Sexually Pleased Accounts For A Very Large Portion Of Marriage Like Effect
Graphs
sex_data$Satis9Num = as.numeric(sex_data$satis9)
contsmall(sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased", "")

Want - Only Satis9
reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
14.616535
|
0.4244795
|
34.434
|
0
|
|
Married: True
|
-3.339812
|
0.2509269
|
-13.31
|
0
|
|
Partner Is Sexually Pleased
|
3.619867
|
0.0934515
|
38.735
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
19.2123412
|
0.5006374
|
38.376
|
0
|
|
Married: True
|
-1.5284964
|
0.2532365
|
-6.036
|
0
|
|
Partner Is Sexually Pleased
|
3.3201639
|
0.0882444
|
37.625
|
0
|
|
Age (years)
|
-0.1407840
|
0.0071493
|
-19.692
|
0
|
|
Duration
|
-0.0113235
|
0.0043911
|
-2.579
|
0.0099
|
|
Male
|
4.2116975
|
0.2177424
|
19.343
|
0
|
Like - Only Satis9
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis9Num,"Partner Is Sexually Pleased")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
14.368420
|
0.3671552
|
39.134
|
0
|
|
Married: True
|
-1.352923
|
0.2156987
|
-6.272
|
0
|
|
Partner Is Sexually Pleased
|
6.080568
|
0.0807743
|
75.279
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$Satis9Num,"Partner Is Sexually Pleased")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
14.7698562
|
0.4595837
|
32.137
|
0
|
|
Married: True
|
-1.0831210
|
0.2319604
|
-4.669
|
0
|
|
Partner Is Sexually Pleased
|
6.0322123
|
0.0811975
|
74.291
|
0
|
|
Age (years)
|
-0.0231803
|
0.0065437
|
-3.542
|
4e-04
|
|
Duration
|
-0.0022536
|
0.0039915
|
-0.565
|
0.5724
|
|
Male
|
1.4273118
|
0.1993687
|
7.159
|
0
|
Frequency - Only Satis9
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
1.5681412
|
0.0728509
|
21.525
|
0
|
|
Married: True
|
-0.4134790
|
0.0438456
|
-9.43
|
0
|
|
Partner Is Sexually Pleased
|
0.5386635
|
0.0160846
|
33.489
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis9Num, "Partner Is Sexually Pleased")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.8068062
|
0.0871164
|
32.219
|
0
|
|
Married: True
|
-0.0290623
|
0.0445982
|
-0.652
|
0.5147
|
|
Partner Is Sexually Pleased
|
0.4841241
|
0.0152116
|
31.826
|
0
|
|
Age (years)
|
-0.0283415
|
0.0013093
|
-21.647
|
0
|
|
Duration
|
-0.0018218
|
0.0009730
|
-1.872
|
0.0612
|
|
Male
|
0.1825889
|
0.0377636
|
4.835
|
0
|
Sexual Attraction To Partner Decreases Marriage Effects
Graphs
sex_data$Satis23Num = as.numeric(sex_data$satis23)
contsmall(sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner", "")

Want - Only Attraction To
reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
11.113315
|
0.4169079
|
26.657
|
0
|
|
Married: True
|
-3.517980
|
0.2342962
|
-15.015
|
0
|
|
Sexual Attraction To Partner
|
4.382228
|
0.0900014
|
48.691
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
16.0889127
|
0.4865806
|
33.065
|
0
|
|
Married: True
|
-1.7685708
|
0.2396736
|
-7.379
|
0
|
|
Sexual Attraction To Partner
|
3.9996142
|
0.0863412
|
46.323
|
0
|
|
Age (years)
|
-0.1281127
|
0.0067951
|
-18.854
|
0
|
|
Duration
|
-0.0142868
|
0.0041333
|
-3.456
|
6e-04
|
|
Male
|
3.2177052
|
0.2082244
|
15.453
|
0
|
Like - Only Attraction To
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis23Num,"Sexual Attraction To Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
12.466098
|
0.3692949
|
33.756
|
0
|
|
Married: True
|
-1.944504
|
0.2075384
|
-9.369
|
0
|
|
Sexual Attraction To Partner
|
6.363514
|
0.0797228
|
79.821
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
13.1683193
|
0.4566078
|
28.839
|
0
|
|
Married: True
|
-1.6228675
|
0.2249100
|
-7.216
|
0
|
|
Sexual Attraction To Partner
|
6.3347497
|
0.0810227
|
78.185
|
0
|
|
Age (years)
|
-0.0127822
|
0.0063765
|
-2.005
|
0.0451
|
|
Duration
|
-0.0080658
|
0.0038787
|
-2.079
|
0.0376
|
|
Male
|
-0.1082689
|
0.1953980
|
-0.554
|
0.5795
|
Frequency - Only Attraction to
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
1.8494335
|
0.0792466
|
23.338
|
0
|
|
Married: True
|
-0.4987895
|
0.0453279
|
-11.004
|
0
|
|
Sexual Attraction To Partner
|
0.4549570
|
0.0171408
|
26.542
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis23Num, "Sexual Attraction To Partner")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.1191465
|
0.0934761
|
33.368
|
0
|
|
Married: True
|
-0.0992315
|
0.0464045
|
-2.138
|
0.0325
|
|
Sexual Attraction To Partner
|
0.3998997
|
0.0163919
|
24.396
|
0
|
|
Age (years)
|
-0.0277435
|
0.0013689
|
-20.267
|
0
|
|
Duration
|
-0.0025180
|
0.0010080
|
-2.498
|
0.0125
|
|
Male
|
0.0943254
|
0.0397445
|
2.373
|
0.0177
|
Belief That Partner Is Sexually Attracted Reduces Marriage Effect
Graphs
sex_data$Satis21Num = as.numeric(sex_data$satis21)
contsmall(sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief", "")

Want - Only Partner Sexual Attraction
reg_just_mod_i(sex_data$want, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
16.841134
|
0.4668292
|
36.076
|
0
|
|
Married: True
|
-3.618780
|
0.2655335
|
-13.628
|
0
|
|
Partner Sexual Attraction Belief
|
3.053214
|
0.1029592
|
29.655
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belif")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
20.7450116
|
0.5550085
|
37.378
|
0
|
|
Married: True
|
-1.7675501
|
0.2666382
|
-6.629
|
0
|
|
Partner Sexual Attraction Belif
|
2.8569398
|
0.0974504
|
29.317
|
0
|
|
Age (years)
|
-0.1412421
|
0.0075476
|
-18.714
|
0
|
|
Duration
|
-0.0122728
|
0.0045908
|
-2.673
|
0.0075
|
|
Male
|
4.8386517
|
0.2295121
|
21.082
|
0
|
Like - Only Partner Sexual Attraction
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Satis21Num,"Partner Sexual Attraction Belief")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
15.562854
|
0.4167388
|
37.344
|
0
|
|
Married: True
|
-1.542520
|
0.2370420
|
-6.507
|
0
|
|
Partner Sexual Attraction Belief
|
5.738337
|
0.0919118
|
62.433
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$Satis21Num,"Partner Sexual Attraction Belief")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
14.8765907
|
0.5250826
|
28.332
|
0
|
|
Married: True
|
-1.3235843
|
0.2522612
|
-5.247
|
0
|
|
Partner Sexual Attraction Belief
|
5.7838679
|
0.0921959
|
62.735
|
0
|
|
Age (years)
|
-0.0192046
|
0.0071406
|
-2.689
|
0.0072
|
|
Duration
|
-0.0034816
|
0.0043433
|
-0.802
|
0.4228
|
|
Male
|
2.6138234
|
0.2171369
|
12.038
|
0
|
Frequency - Only Partner Sexual Attraction
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
1.7498286
|
0.0780685
|
22.414
|
0
|
|
Married: True
|
-0.4346514
|
0.0451372
|
-9.63
|
0
|
|
Partner Sexual Attraction Belief
|
0.4909396
|
0.0172624
|
28.44
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$Satis21Num, "Partner Sexual Attraction Belief")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.9385681
|
0.0948766
|
30.973
|
0
|
|
Married: True
|
-0.0646439
|
0.0460886
|
-1.403
|
0.1608
|
|
Partner Sexual Attraction Belief
|
0.4311782
|
0.0165150
|
26.108
|
0
|
|
Age (years)
|
-0.0277529
|
0.0013559
|
-20.469
|
0
|
|
Duration
|
-0.0018881
|
0.0010000
|
-1.888
|
0.0591
|
|
Male
|
0.2841097
|
0.0390648
|
7.273
|
0
|
Partner Physical Attractiveness Reduces Marriage Effect, Less Than Attraction To Partner
Graphs
sex_data$PAttracNum = as.numeric(sex_data$PhysicalAttractive_PrimaryPartner)
contsmall(sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness", "")

Want - Only Partner Physical Attractiveness
reg_just_mod_i(sex_data$want, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
10.639096
|
0.7112652
|
14.958
|
0
|
|
Married: True
|
-3.982559
|
0.3468968
|
-11.481
|
0
|
|
Partner Physical Attractiveness
|
2.432250
|
0.0899434
|
27.042
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
16.0195886
|
0.8094368
|
19.791
|
0
|
|
Married: True
|
-2.0154397
|
0.3646536
|
-5.527
|
0
|
|
Partner Physical Attractiveness
|
2.2255667
|
0.0857366
|
25.958
|
0
|
|
Age (years)
|
-0.1410848
|
0.0101339
|
-13.922
|
0
|
|
Duration
|
-0.0087690
|
0.0046993
|
-1.866
|
0.0622
|
|
Male
|
3.7500118
|
0.3264691
|
11.487
|
0
|
Like - Only Partner Physical Attractiveness
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$PAttracNum,"Partner Physical Attractiveness")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
15.112688
|
0.7296525
|
20.712
|
0
|
|
Married: True
|
-2.444246
|
0.3558646
|
-6.868
|
0
|
|
Partner Physical Attractiveness
|
3.140848
|
0.0922685
|
34.04
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$PAttracNum,"Partner Physical Attractiveness")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
15.8581475
|
0.8791610
|
18.038
|
0
|
|
Married: True
|
-2.1173712
|
0.3960645
|
-5.346
|
0
|
|
Partner Physical Attractiveness
|
3.0999806
|
0.0931218
|
33.29
|
0
|
|
Age (years)
|
-0.0246886
|
0.0110068
|
-2.243
|
0.025
|
|
Duration
|
-0.0036312
|
0.0051041
|
-0.711
|
0.4769
|
|
Male
|
1.2584230
|
0.3545908
|
3.549
|
4e-04
|
Frequency - Only Partner Physical Attractiveness
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
1.9712684
|
0.1310729
|
15.039
|
0
|
|
Married: True
|
-0.5973298
|
0.0647256
|
-9.229
|
0
|
|
Partner Physical Attractiveness
|
0.2270554
|
0.0166671
|
13.623
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$PAttracNum, "Partner Physical Attractiveness")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.1817834
|
0.1516085
|
20.987
|
0
|
|
Married: True
|
-0.1743550
|
0.0691916
|
-2.52
|
0.0118
|
|
Partner Physical Attractiveness
|
0.1949393
|
0.0160373
|
12.155
|
0
|
|
Age (years)
|
-0.0267014
|
0.0019757
|
-13.515
|
0
|
|
Duration
|
-0.0014411
|
0.0011654
|
-1.237
|
0.2164
|
|
Male
|
0.1509480
|
0.0613573
|
2.46
|
0.014
|
Security Scale Not Yet Included For Time Purposes