rm(list = ls())
setwd("~/Downloads")
library(foreign)
sex_data <- read.spss("sex_data.sav", use.value.label=TRUE, to.data.frame=TRUE)
Libraries/themes
library(ggplot2)
library(tidyverse)
library(gridExtra)
library(finalfit)
library(kableExtra)
library(xtable)
jrothsch_theme <- theme_bw() +
theme(text = element_text(size = 10, face = "bold", color = "deepskyblue4"),panel.grid = element_blank(),axis.text = element_text(size = 10, color = "gray13"), axis.title = element_text(size = 10, color = "red"), legend.text = element_text(colour="Black", size=10), legend.title = element_text(colour="Black", size=7), plot.subtitle = element_text(size=14, face="italic", color="black"))
Removing obserations without our key variables
sex_data <- sex_data[!is.na(sex_data$status),]
sex_data <- sex_data[!is.na(sex_data$age),]
sex_data <- sex_data[!is.na(sex_data$Years_PrimaryPartner),]
sex_data <- sex_data[!is.na(sex_data$MALE),]
Making variables
sex_data <- sex_data %>%
mutate(married = status == "Married")
sex_data <- sex_data %>%
mutate(married_gender = ifelse(married,
ifelse(MALE == "Male", "Married Male", "Married Female"),
ifelse(MALE == "Male", "Unmarried Male", "Unmarried Female ")))
married_num = length(sex_data$married[sex_data$married == T])
unmarried_num = length(sex_data$married[sex_data$married == T])
sex_data <- sex_data %>% mutate(freq_num = as.numeric(ifelse(sexfreq == "At least once per day", 6,
ifelse(sexfreq == "3-4 times per week", 5,
ifelse(sexfreq == 'At least once a week', 4,
ifelse(sexfreq == 'At least once per month', 3,
ifelse(sexfreq =='At least once per year', 2,
ifelse( sexfreq =="Less than once a year", 1, 0))))))))
female <- sex_data %>%
filter(sex_data$MALE == "Female")
Binary graphs
bin_graphs_want <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$want) & !is.na(mod),]
mod = mod[!is.na(df$want) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = want, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Want", " -- Age"), x = "Age", y = "Want", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(want))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "Black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Want", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_like <- function(df, mod, modname, modlabs, interaction_labs){
df <- sex_data
mod <- sex_data$children_in_house
modname <-"Children In House"
modlabs <- c("Children", "No Children")
interaction_labs <- c("Unmarried, Children", "Married, Children", "Unmarried, No Children", "Married, No Children")
df2 = df[!is.na(df$totlike) & !is.na(mod),]
mod = mod[!is.na(df$totlike) & !is.na(mod)]
table(mod)
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = totlike, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Like", " -- Age"), x = "Age", y = "Like", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(totlike))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Like", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_freq <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$freq_num) & !is.na(mod),]
mod = mod[!is.na(df$freq_num) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = freq_num, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Frequency", " -- Age"), x = "Age", y = "Frequency", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by(mod_married) %>%
summarize(DV = mean(freq_num))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Frequency", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
Small continuous graphs
contsmall <- function(df, mod, modname, modlabs){
df2 = df[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod) ,]
mod = mod[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod)]
want <- ggplot(df2, aes(x=mod, y = want)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, size= 1, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Want")
like <- ggplot(df2, aes(x=mod, y = totlike)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, size= 1, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Like")
freq <- ggplot(df2, aes(x=mod, y= freq_num)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Frequency")
grid.arrange(want, like, freq)
}
Regressions – Standard
###################################################################################################################################
#REgressions
#########################################################################################################################
reg_no_mod <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
###########################################################################################################################
reg_no_mod_i <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_no_mod_control <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Duration", "MALE")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname)
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Subsets where controls can’t be used – e.g. one gender subsets
reg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration" )
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
reg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Looking at modertators interaction with marriage
ireg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
#For subsets wheere we can't use all controls
#############################################################################################################################################################################################################################################################
ireg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
ireg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Economic Security Correlates With Higher W/L/F, But Doesn’t Affect Marriage Estimates
Graphs
sex_data$SecureNum = as.numeric(sex_data$econ_secure)
contsmall(sex_data, sex_data$SecureNum, "Economic Security", "")

Want - Only Economic Security
reg_just_mod_i(sex_data$want, sex_data, sex_data$SecureNum, "Economic Security")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
28.1024819
|
0.3539723
|
79.392
|
0
|
|
Married: True
|
-4.9898408
|
0.2910801
|
-17.143
|
0
|
|
Economic Security
|
0.2669037
|
0.0702588
|
3.799
|
1e-04
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$SecureNum, "Economic Security")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
32.2402534
|
0.4269611
|
75.511
|
0
|
|
Married: True
|
-2.5032814
|
0.2928144
|
-8.549
|
0
|
|
Economic Security
|
0.4279101
|
0.0657507
|
6.508
|
0
|
|
Age (years)
|
-0.1780372
|
0.0082507
|
-21.579
|
0
|
|
Duration
|
-0.0164754
|
0.0049954
|
-3.298
|
0.001
|
|
Male
|
4.4305888
|
0.2528991
|
17.519
|
0
|
Like - Only Economic Security
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$SecureNum,"Economic Security")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.579222
|
0.3894035
|
91.369
|
0
|
|
Married: True
|
-4.215278
|
0.3202160
|
-13.164
|
0
|
|
Economic Security
|
0.798112
|
0.0772914
|
10.326
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$SecureNum, "Economic Security")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.0229422
|
0.4994597
|
76.128
|
0
|
|
Married: True
|
-2.7885252
|
0.3425347
|
-8.141
|
0
|
|
Economic Security
|
0.8980070
|
0.0769152
|
11.675
|
0
|
|
Age (years)
|
-0.0950957
|
0.0096516
|
-9.853
|
0
|
|
Duration
|
-0.0129868
|
0.0058436
|
-2.222
|
0.0263
|
|
Male
|
1.8234063
|
0.2958418
|
6.163
|
0
|
Frequency - Only Economic Security
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$SecureNum, "Economic Security")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.5719567
|
0.0597229
|
59.809
|
0
|
|
Married: True
|
-0.6416354
|
0.0495148
|
-12.958
|
0
|
|
Economic Security
|
0.0338985
|
0.0118347
|
2.864
|
0.0042
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$SecureNum, "Economic Security")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.6149388
|
0.0737187
|
62.602
|
0
|
|
Married: True
|
-0.1658769
|
0.0499455
|
-3.321
|
9e-04
|
|
Economic Security
|
0.0751823
|
0.0110847
|
6.783
|
0
|
|
Age (years)
|
-0.0330308
|
0.0014658
|
-22.535
|
0
|
|
Duration
|
-0.0031195
|
0.0010744
|
-2.904
|
0.0037
|
|
Male
|
0.2217620
|
0.0424541
|
5.224
|
0
|
Feeling Personally Hurt By the Economic Downturn Lowers Like And Frequency, But Doesn’t Affect Marriage
Graphs
sex_data$HurtNum = as.numeric(sex_data$econ_hurt)
contsmall(sex_data, sex_data$HurtNum, "Economic Hurt", "")

Want - Only Economic Hurt
reg_just_mod_i(sex_data$want, sex_data, sex_data$HurtNum, "Economic Hurt")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.2782602
|
0.4073395
|
71.877
|
0
|
|
Married: True
|
-4.8942777
|
0.2904324
|
-16.852
|
0
|
|
Economic Hurt
|
-0.0444954
|
0.0736562
|
-0.604
|
0.5458
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$HurtNum, "Economic Hurt")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
33.7736842
|
0.4829793
|
69.928
|
0
|
|
Married: True
|
-2.4556816
|
0.2941520
|
-8.348
|
0
|
|
Economic Hurt
|
-0.0437978
|
0.0683929
|
-0.64
|
0.522
|
|
Age (years)
|
-0.1729108
|
0.0082511
|
-20.956
|
0
|
|
Duration
|
-0.0145745
|
0.0050102
|
-2.909
|
0.0036
|
|
Male
|
4.4804931
|
0.2539606
|
17.642
|
0
|
Like - Only Economic Hurt
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$HurtNum,"Economic Hurt")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
40.272139
|
0.4514913
|
89.198
|
0
|
|
Married: True
|
-3.955757
|
0.3219125
|
-12.288
|
0
|
|
Economic Hurt
|
-0.398369
|
0.0816399
|
-4.88
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$HurtNum, "Economic Hurt")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
42.5976932
|
0.5692948
|
74.825
|
0
|
|
Married: True
|
-2.7202765
|
0.3467212
|
-7.846
|
0
|
|
Economic Hurt
|
-0.3978147
|
0.0806157
|
-4.935
|
0
|
|
Age (years)
|
-0.0843628
|
0.0097257
|
-8.674
|
0
|
|
Duration
|
-0.0089079
|
0.0059056
|
-1.508
|
0.1315
|
|
Male
|
1.9298237
|
0.2993471
|
6.447
|
0
|
Frequency - Only Economic Hurt
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$HurtNum, "Economic Hurt")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.8205804
|
0.0688016
|
55.53
|
0
|
|
Married: True
|
-0.6292731
|
0.0492935
|
-12.766
|
0
|
|
Economic Hurt
|
-0.0285361
|
0.0124015
|
-2.301
|
0.0214
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$HurtNum, "Economic Hurt")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.9816202
|
0.0832645
|
59.829
|
0
|
|
Married: True
|
-0.1561676
|
0.0501474
|
-3.114
|
0.0019
|
|
Economic Hurt
|
-0.0312331
|
0.0115256
|
-2.71
|
0.0068
|
|
Age (years)
|
-0.0320833
|
0.0014656
|
-21.89
|
0
|
|
Duration
|
-0.0027764
|
0.0010779
|
-2.576
|
0.01
|
|
Male
|
0.2309884
|
0.0426271
|
5.419
|
0
|
Feeling Anxious About The Economy Lowers Like And Frequency, But Doesn’t Affect Marriage
Graphs
sex_data$AnxNum = as.numeric(sex_data$econ_anxious)
contsmall(sex_data, sex_data$AnxNum, "Economic Anxiety", "")

Want - Only Economic Anxiety
reg_just_mod_i(sex_data$want, sex_data, sex_data$AnxNum, "Economic Anxiety")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.0342250
|
0.4203434
|
69.073
|
0
|
|
Married: True
|
-4.8890687
|
0.2904131
|
-16.835
|
0
|
|
Economic Anxiety
|
0.0105147
|
0.0772909
|
0.136
|
0.8918
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$AnxNum, "Economic Anxiety")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
33.8383957
|
0.5085759
|
66.536
|
0
|
|
Married: True
|
-2.4504488
|
0.2940631
|
-8.333
|
0
|
|
Economic Anxiety
|
-0.0544082
|
0.0719874
|
-0.756
|
0.4498
|
|
Age (years)
|
-0.1733125
|
0.0082684
|
-20.961
|
0
|
|
Duration
|
-0.0145353
|
0.0050105
|
-2.901
|
0.0037
|
|
Male
|
4.4749506
|
0.2540526
|
17.614
|
0
|
Like - Only Economic Anxiety
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$AnxNum,"Economic Anxiety")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
40.5510888
|
0.4656180
|
87.091
|
0
|
|
Married: True
|
-3.9518542
|
0.3216931
|
-12.285
|
0
|
|
Economic Anxiety
|
-0.4613249
|
0.0856158
|
-5.388
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$AnxNum, "Economic Anxiety")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
43.2109527
|
0.5987891
|
72.164
|
0
|
|
Married: True
|
-2.6726777
|
0.3462251
|
-7.719
|
0
|
|
Economic Anxiety
|
-0.4995435
|
0.0847568
|
-5.894
|
0
|
|
Age (years)
|
-0.0880516
|
0.0097351
|
-9.045
|
0
|
|
Duration
|
-0.0085469
|
0.0058993
|
-1.449
|
0.1475
|
|
Male
|
1.8789597
|
0.2991174
|
6.282
|
0
|
Frequency - Only Economic Anxiety
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$AnxNum, "Economic Anxiety")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7804814
|
0.0711089
|
53.165
|
0
|
|
Married: True
|
-0.6285247
|
0.0493099
|
-12.746
|
0
|
|
Economic Anxiety
|
-0.0194401
|
0.0130398
|
-1.491
|
0.1361
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$AnxNum, "Economic Anxiety")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.0477169
|
0.0876969
|
57.559
|
0
|
|
Married: True
|
-0.1523044
|
0.0501219
|
-3.039
|
0.0024
|
|
Economic Anxiety
|
-0.0428054
|
0.0121509
|
-3.523
|
4e-04
|
|
Age (years)
|
-0.0324144
|
0.0014679
|
-22.083
|
0
|
|
Duration
|
-0.0027405
|
0.0010771
|
-2.544
|
0.011
|
|
Male
|
0.2262950
|
0.0426178
|
5.31
|
0
|
Education Level Has Little Effect, Increases Marriage Like Estimate
Graphs
sex_data$EducNum = as.numeric(sex_data$educ)
contsmall(sex_data, sex_data$AnxNum, "Education Level", "")

Want - Only Education
reg_just_mod_i(sex_data$want, sex_data, sex_data$EducNum, "Education Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.5532773
|
0.3992271
|
74.026
|
0
|
|
Married: True
|
-4.8682097
|
0.2910248
|
-16.728
|
0
|
|
Education Level
|
-0.1404548
|
0.0917818
|
-1.53
|
0.126
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$EducNum, "Education Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
33.5829662
|
0.4531463
|
74.111
|
0
|
|
Married: True
|
-2.4561218
|
0.2943536
|
-8.344
|
0
|
|
Education Level
|
-0.0016097
|
0.0862935
|
-0.019
|
0.9851
|
|
Age (years)
|
-0.1728834
|
0.0083183
|
-20.783
|
0
|
|
Duration
|
-0.0146329
|
0.0050097
|
-2.921
|
0.0035
|
|
Male
|
4.4753205
|
0.2548165
|
17.563
|
0
|
Like - Only Education
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$EducNum,"Education Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
39.342560
|
0.4440245
|
88.604
|
0
|
|
Married: True
|
-3.885504
|
0.3236807
|
-12.004
|
0
|
|
Education Level
|
-0.240647
|
0.1020806
|
-2.357
|
0.0184
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$EducNum, "Education Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
41.3409496
|
0.5360001
|
77.129
|
0
|
|
Married: True
|
-2.6848860
|
0.3481735
|
-7.711
|
0
|
|
Education Level
|
-0.1670266
|
0.1020715
|
-1.636
|
0.1018
|
|
Age (years)
|
-0.0827136
|
0.0098393
|
-8.406
|
0
|
|
Duration
|
-0.0091332
|
0.0059256
|
-1.541
|
0.1233
|
|
Male
|
1.9677495
|
0.3014075
|
6.529
|
0
|
Frequency - Only Education
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$EducNum, "Education Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7804564
|
0.0680426
|
55.56
|
0
|
|
Married: True
|
-0.6235493
|
0.0494678
|
-12.605
|
0
|
|
Education Level
|
-0.0251669
|
0.0154655
|
-1.627
|
0.1037
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$EducNum, "Education Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.7968498
|
0.0791281
|
60.621
|
0
|
|
Married: True
|
-0.1550942
|
0.0502657
|
-3.085
|
0.002
|
|
Education Level
|
0.0157017
|
0.0145205
|
1.081
|
0.2796
|
|
Age (years)
|
-0.0322418
|
0.0014761
|
-21.843
|
0
|
|
Duration
|
-0.0027959
|
0.0010793
|
-2.591
|
0.0096
|
|
Male
|
0.2267135
|
0.0428281
|
5.294
|
0
|
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
No Income Effect, Possibly Some Specific Outlier Income Groups
Graphs
sex_data$IncomeNum = as.numeric(sex_data$HouseholdIncome)
contsmall(sex_data, sex_data$IncomeNum, "Income Level", "")

Want - Only Income
reg_just_mod_i(sex_data$want, sex_data, sex_data$IncomeNum, "Income Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
28.7239484
|
0.4557908
|
63.02
|
0
|
|
Married: True
|
-5.0549824
|
0.4141058
|
-12.207
|
0
|
|
Income Level
|
-0.0906243
|
0.1123780
|
-0.806
|
0.4201
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$IncomeNum, "Income Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
33.9389741
|
0.5825240
|
58.262
|
0
|
|
Married: True
|
-2.4014129
|
0.4276577
|
-5.615
|
0
|
|
Income Level
|
-0.0754337
|
0.1051256
|
-0.718
|
0.4731
|
|
Age (years)
|
-0.1838015
|
0.0115380
|
-15.93
|
0
|
|
Duration
|
-0.0072029
|
0.0053718
|
-1.341
|
0.1801
|
|
Male
|
4.2568551
|
0.3774423
|
11.278
|
0
|
Like - Only Income
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$IncomeNum,"Income Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.1934517
|
0.5016493
|
76.136
|
0
|
|
Married: True
|
-3.8375362
|
0.4557702
|
-8.42
|
0
|
|
Income Level
|
-0.0461524
|
0.1236847
|
-0.373
|
0.7091
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$IncomeNum, "Income Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
40.5011138
|
0.6815216
|
59.427
|
0
|
|
Married: True
|
-2.6851216
|
0.5003363
|
-5.367
|
0
|
|
Income Level
|
-0.0410305
|
0.1229913
|
-0.334
|
0.7387
|
|
Age (years)
|
-0.0819290
|
0.0134988
|
-6.069
|
0
|
|
Duration
|
-0.0018835
|
0.0062847
|
-0.3
|
0.7644
|
|
Male
|
1.9336434
|
0.4415870
|
4.379
|
0
|
Frequency - Only Income
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$IncomeNum, "Income Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.5291093
|
0.0772604
|
45.678
|
0
|
|
Married: True
|
-0.7205595
|
0.0697380
|
-10.332
|
0
|
|
Income Level
|
0.0309751
|
0.0188795
|
1.641
|
0.101
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$IncomeNum, "Income Level")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.5753121
|
0.1018641
|
44.916
|
0
|
|
Married: True
|
-0.2455662
|
0.0732116
|
-3.354
|
8e-04
|
|
Income Level
|
0.0475445
|
0.0178977
|
2.656
|
0.008
|
|
Age (years)
|
-0.0300907
|
0.0020378
|
-14.766
|
0
|
|
Duration
|
-0.0015402
|
0.0012051
|
-1.278
|
0.2014
|
|
Male
|
0.1844088
|
0.0640869
|
2.877
|
0.0041
|
Partner Age Shows A Similar Effect to Age; The Marriage Effect Comes From A Steeper Decline With Age
Graphs
sex_data <- sex_data %>% mutate(partner_agecat = ifelse(partner_age < 30, 1,
ifelse(partner_age < 40 & partner_age >= 30, 2,
ifelse(partner_age < 50 & partner_age >= 40, 3,
ifelse(partner_age < 60 & partner_age >= 50, 4 ,5))))
)
contsmall(sex_data, sex_data$partner_agecat, "Partner Age Bucket", "")

Want - Only Education
reg_just_mod_i(sex_data$want, sex_data, sex_data$partner_age, "Partner Age")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.6876997
|
0.3667337
|
97.312
|
0
|
|
Married: True
|
-2.4991131
|
0.2881915
|
-8.672
|
0
|
|
Partner Age
|
-0.1801903
|
0.0077411
|
-23.277
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$partner_age, "Partner Age")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
34.0394728
|
0.3792510
|
89.754
|
0
|
|
Married: True
|
-2.3508670
|
0.2848575
|
-8.253
|
0
|
|
Partner Age
|
-0.0633540
|
0.0188267
|
-3.365
|
8e-04
|
|
Age (years)
|
-0.1232009
|
0.0183332
|
-6.72
|
0
|
|
Duration
|
-0.0147545
|
0.0050005
|
-2.951
|
0.0032
|
|
Male
|
4.2562491
|
0.2572687
|
16.544
|
0
|
Like - Only Education
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$partner_age,"Partner Age")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
42.1696109
|
0.4324816
|
97.506
|
0
|
|
Married: True
|
-2.6010701
|
0.3381217
|
-7.693
|
0
|
|
Partner Age
|
-0.0972413
|
0.0091714
|
-10.603
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$partner_age, "Partner Age")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
41.4568818
|
0.4576758
|
90.581
|
0
|
|
Married: True
|
-2.5494021
|
0.3425991
|
-7.441
|
0
|
|
Partner Age
|
-0.0900794
|
0.0227706
|
-3.956
|
1e-04
|
|
Age (years)
|
-0.0060467
|
0.0221898
|
-0.273
|
0.7852
|
|
Duration
|
-0.0076745
|
0.0059133
|
-1.298
|
0.1944
|
|
Male
|
1.4971609
|
0.3113452
|
4.809
|
0
|
Frequency - Only Education
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$partner_age, "Partner Age")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.0380031
|
0.0620456
|
81.198
|
0
|
|
Married: True
|
-0.1575805
|
0.0480595
|
-3.279
|
0.001
|
|
Partner Age
|
-0.0359067
|
0.0012849
|
-27.944
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$partner_age, "Partner Age")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.9779925
|
0.0672407
|
74.032
|
0
|
|
Married: True
|
-0.1265578
|
0.0489196
|
-2.587
|
0.0097
|
|
Partner Age
|
-0.0164814
|
0.0032074
|
-5.139
|
0
|
|
Age (years)
|
-0.0191987
|
0.0031130
|
-6.167
|
0
|
|
Duration
|
-0.0024071
|
0.0010886
|
-2.211
|
0.0271
|
|
Male
|
0.1605635
|
0.0434115
|
3.699
|
2e-04
|
Religion - There is some interesting stuff here so I’m going to wait until after call to analyze. Does’t account for marriage effect nonetheless
Frequency – Full Controls
sex_data %>%
lm(want ~ married + religion, data = .) %>%
summary()
##
## Call:
## lm(formula = want ~ married + religion, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.4643 -5.9643 0.1145 6.3976 22.4408
##
## Coefficients:
## Estimate
## (Intercept) 28.67394
## marriedTRUE -5.07878
## religionProtestant (United, Anglican, Presbyterian, Baptist) -0.01831
## religionJewish 0.67898
## religionMuslim 2.43371
## religionHindu 0.92838
## religionNone or Atheist or Agnostic -1.03592
## religionOther 2.31537
## Std. Error
## (Intercept) 0.45838
## marriedTRUE 0.32525
## religionProtestant (United, Anglican, Presbyterian, Baptist) 0.46261
## religionJewish 0.90977
## religionMuslim 1.75232
## religionHindu 2.48919
## religionNone or Atheist or Agnostic 0.61280
## religionOther 0.50644
## t value
## (Intercept) 62.555
## marriedTRUE -15.615
## religionProtestant (United, Anglican, Presbyterian, Baptist) -0.040
## religionJewish 0.746
## religionMuslim 1.389
## religionHindu 0.373
## religionNone or Atheist or Agnostic -1.690
## religionOther 4.572
## Pr(>|t|)
## (Intercept) <2e-16 ***
## marriedTRUE <2e-16 ***
## religionProtestant (United, Anglican, Presbyterian, Baptist) 0.968
## religionJewish 0.456
## religionMuslim 0.165
## religionHindu 0.709
## religionNone or Atheist or Agnostic 0.091 .
## religionOther 5e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.853 on 3622 degrees of freedom
## (1445 observations deleted due to missingness)
## Multiple R-squared: 0.07993, Adjusted R-squared: 0.07815
## F-statistic: 44.95 on 7 and 3622 DF, p-value: < 2.2e-16
sex_data %>%
lm(totlike ~ married + religion, data = .) %>%
summary()
##
## Call:
## lm(formula = totlike ~ married + religion, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.598 -6.693 1.330 8.375 16.944
##
## Coefficients:
## Estimate
## (Intercept) 38.46321
## marriedTRUE -3.92725
## religionProtestant (United, Anglican, Presbyterian, Baptist) 0.08888
## religionJewish -0.19173
## religionMuslim 1.23711
## religionHindu -1.12337
## religionNone or Atheist or Agnostic -1.47959
## religionOther 1.13424
## Std. Error
## (Intercept) 0.51282
## marriedTRUE 0.36388
## religionProtestant (United, Anglican, Presbyterian, Baptist) 0.51756
## religionJewish 1.01783
## religionMuslim 1.96047
## religionHindu 2.78487
## religionNone or Atheist or Agnostic 0.68559
## religionOther 0.56660
## t value
## (Intercept) 75.003
## marriedTRUE -10.793
## religionProtestant (United, Anglican, Presbyterian, Baptist) 0.172
## religionJewish -0.188
## religionMuslim 0.631
## religionHindu -0.403
## religionNone or Atheist or Agnostic -2.158
## religionOther 2.002
## Pr(>|t|)
## (Intercept) <2e-16 ***
## marriedTRUE <2e-16 ***
## religionProtestant (United, Anglican, Presbyterian, Baptist) 0.8637
## religionJewish 0.8506
## religionMuslim 0.5281
## religionHindu 0.6867
## religionNone or Atheist or Agnostic 0.0310 *
## religionOther 0.0454 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.905 on 3622 degrees of freedom
## (1445 observations deleted due to missingness)
## Multiple R-squared: 0.03599, Adjusted R-squared: 0.03413
## F-statistic: 19.32 on 7 and 3622 DF, p-value: < 2.2e-16
Having Children In House Seems Promising, But Not Nearly Enough Data
Want
sex_data <-sex_data %>% mutate(children_in_house = ifelse(children == "Yes, my partner and I have 1 or more children under the age of 18 that live with me/my partner all of the time", 1, 0))
bin_graphs_want(sex_data, as.factor(sex_data$children_in_house), "Children In House", c("Children", "No Children"),
c("Unmarried, Children", "Married, Children", "Unmarried, No Children", "Married, No Children"))

Like Graphs
bin_graphs_like(sex_data, as.factor(sex_data$children_in_house), "Children In House", c("Children", "No Children"),
c("Unmarried, Children", "Married, Children", "Unmarried, No Children", "Married, No Children"))

Frequency Graphs
bin_graphs_freq(sex_data, as.factor(sex_data$children_in_house), "Children In House", c("Children", "No Children"),
c("Unmarried, Children", "Married, Children", "Unmarried, No Children", "Married, No Children"))

Want - Children
reg_just_mod_i(sex_data$want, sex_data, sex_data$children_in_house, "Has Children In House")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
27.2613340
|
1.134890
|
24.021
|
0
|
|
Married: True
|
-1.3197076
|
1.798587
|
-0.734
|
0.4663
|
|
Has Children In House
|
0.4213146
|
2.205528
|
0.191
|
0.8492
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$children_in_house, "Has Children In House")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
28.2289203
|
3.4994587
|
8.067
|
0
|
|
Married: True
|
-2.1847248
|
2.1088725
|
-1.036
|
0.3051
|
|
Has Children In House
|
0.6597606
|
2.0966675
|
0.315
|
0.7543
|
|
Age (years)
|
-0.1090315
|
0.1243599
|
-0.877
|
0.3847
|
|
Duration
|
0.0366755
|
0.1776905
|
0.206
|
0.8373
|
|
Male
|
5.3815719
|
1.5267409
|
3.525
|
9e-04
|
Like - Children In Houise
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$children_in_house,"Has Children In House")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
36.291123
|
1.379154
|
26.314
|
0
|
|
Married: True
|
-1.652972
|
2.185700
|
-0.756
|
0.4528
|
|
Has Children In House
|
1.557435
|
2.680227
|
0.581
|
0.5636
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$children_in_house, "Has Children In House")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.0384981
|
4.5673762
|
8.328
|
0
|
|
Married: True
|
-0.6739723
|
2.7524297
|
-0.245
|
0.8075
|
|
Has Children In House
|
1.9184509
|
2.7365002
|
0.701
|
0.4865
|
|
Age (years)
|
-0.0962328
|
0.1623103
|
-0.593
|
0.5559
|
|
Duration
|
-0.1560996
|
0.2319157
|
-0.673
|
0.5039
|
|
Male
|
3.4260734
|
1.9926510
|
1.719
|
0.0916
|
Frequency - Children In House
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$children_in_house, "Has Children In House")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.8571923
|
0.1571327
|
24.547
|
0
|
|
Married: True
|
-0.0505453
|
0.2434290
|
-0.208
|
0.8363
|
|
Has Children In House
|
-0.1441925
|
0.2946513
|
-0.489
|
0.6266
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$children_in_house, "Has Children In House")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.3420304
|
0.5181018
|
8.381
|
0
|
|
Married: True
|
-0.0072073
|
0.3138191
|
-0.023
|
0.9818
|
|
Has Children In House
|
-0.0652540
|
0.3097394
|
-0.211
|
0.834
|
|
Age (years)
|
-0.0181816
|
0.0184045
|
-0.988
|
0.3281
|
|
Duration
|
0.0012913
|
0.0262512
|
0.049
|
0.961
|
|
Male
|
0.0629352
|
0.2296261
|
0.274
|
0.7852
|