rm(list = ls())
setwd("~/Downloads")
library(foreign)
sex_data <- read.spss("sex_data.sav", use.value.label=TRUE, to.data.frame=TRUE)
Libraries/themes
library(ggplot2)
library(tidyverse)
library(gridExtra)
library(finalfit)
library(kableExtra)
library(xtable)
jrothsch_theme <- theme_bw() +
theme(text = element_text(size = 10, face = "bold", color = "deepskyblue4"),panel.grid = element_blank(),axis.text = element_text(size = 10, color = "gray13"), axis.title = element_text(size = 10, color = "red"), legend.text = element_text(colour="Black", size=10), legend.title = element_text(colour="Black", size=7), plot.subtitle = element_text(size=14, face="italic", color="black"))
Removing obserations without our key variables
sex_data <- sex_data[!is.na(sex_data$status),]
sex_data <- sex_data[!is.na(sex_data$age),]
sex_data <- sex_data[!is.na(sex_data$Years_PrimaryPartner),]
sex_data <- sex_data[!is.na(sex_data$MALE),]
Making variables
sex_data <- sex_data %>%
mutate(married = status == "Married")
sex_data <- sex_data %>%
mutate(married_gender = ifelse(married,
ifelse(MALE == "Male", "Married Male", "Married Female"),
ifelse(MALE == "Male", "Unmarried Male", "Unmarried Female ")))
married_num = length(sex_data$married[sex_data$married == T])
unmarried_num = length(sex_data$married[sex_data$married == T])
sex_data <- sex_data %>% mutate(freq_num = as.numeric(ifelse(sexfreq == "At least once per day", 6,
ifelse(sexfreq == "3-4 times per week", 5,
ifelse(sexfreq == 'At least once a week', 4,
ifelse(sexfreq == 'At least once per month', 3,
ifelse(sexfreq =='At least once per year', 2,
ifelse( sexfreq =="Less than once a year", 1, 0))))))))
female <- sex_data %>%
filter(sex_data$MALE == "Female")
Binary graphs
bin_graphs_want <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$want) & !is.na(mod),]
mod = mod[!is.na(df$want) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = want, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Want", " -- Age"), x = "Age", y = "Want", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(want))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "Black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Want", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_like <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$totlike) & !is.na(mod),]
mod = mod[!is.na(df$totlike) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = totlike, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Like", " -- Age"), x = "Age", y = "Like", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(totlike))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Like", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_freq <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$freq_num) & !is.na(mod),]
mod = mod[!is.na(df$freq_num) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = freq_num, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Frequency", " -- Age"), x = "Age", y = "Frequency", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by(mod_married) %>%
summarize(DV = mean(freq_num))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Frequency", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
Small continuous graphs
contsmall <- function(df, mod, modname, modlabs){
df2 = df[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod) ,]
mod = mod[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod)]
want <- ggplot(df2, aes(x=mod, y= want)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs(title = paste0("Interaction between marriage and ", modname ), x = modname, y = "Want")
like <- ggplot(df2, aes(x=mod, y = totlike)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Like")
freq <- ggplot(df2, aes(x=mod, y= freq_num)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Frequency")
grid.arrange(want, like, freq)
}
Regressions – Standard
###################################################################################################################################
#REgressions
#########################################################################################################################
reg_no_mod <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
###########################################################################################################################
reg_no_mod_i <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_no_mod_control <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Duration", "MALE")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname)
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Subsets where controls can’t be used – e.g. one gender subsets
reg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration" )
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
reg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Looking at modertators interaction with marriage
ireg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
#For subsets wheere we can't use all controls
#############################################################################################################################################################################################################################################################
ireg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
ireg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Masturbation Correlates With Wanting, But Doesn’t Change Marriage Effect For Any Outcome
Want Graphs
bin_graphs_want(sex_data, sex_data$Masturbation, "Masturbation Binary", c("Does Masturbate", "Doesn't Masturbate"),
c("Unmarried, Does", "Married, Does", "Unmarried, Doesn't", "Married, Doesn't"))

Like Graphs
bin_graphs_like(sex_data, sex_data$Masturbation, "Masturbation Binary", c("Does Masturbate", "Doesn't Masturbate"),
c("Unmarried, Does", "Married, Does", "Unmarried, Doesn't", "Married, Doesn't"))

Frequency Graphs
bin_graphs_freq(sex_data, sex_data$Masturbation, "Masturbation Binary", c("Does Masturbate", "Doesn't Masturbate"),
c("Unmarried, Does", "Married, Does", "Unmarried, Doesn't", "Married, Doesn't"))

Want - Only Masturbates
reg_just_mod_i(sex_data$want, sex_data, sex_data$Masturbation, "Masturbates")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
25.713283
|
0.4207056
|
61.119
|
0
|
|
Married: True
|
-4.832764
|
0.3882385
|
-12.448
|
0
|
|
Masturbates
|
3.509673
|
0.3896280
|
9.008
|
0
|
Want – Full Controls
reg_full_control_gend(sex_data$want, sex_data, sex_data$Masturbation, "Masturbates")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
31.6357836
|
0.5937128
|
53.285
|
0
|
|
Married: True
|
-2.3241751
|
0.4173741
|
-5.569
|
0
|
|
Masturbates
|
3.0708399
|
0.3757931
|
8.172
|
0
|
|
Age (years)
|
-0.1462420
|
0.0110613
|
-13.221
|
0
|
|
Duration
|
-0.0092792
|
0.0054456
|
-1.704
|
0.0885
|
Like - Only Masturbates
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Masturbation, "Masturbates")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
37.897542
|
0.4767215
|
79.496
|
0
|
|
Married: True
|
-3.883481
|
0.4398593
|
-8.829
|
0
|
|
Masturbates
|
0.213616
|
0.4447252
|
0.48
|
0.631
|
Like – Full Controls
reg_full_control_gend(sex_data$totlike, sex_data, sex_data$Masturbation, "Masturbates")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
40.5204466
|
0.6978172
|
58.067
|
0
|
|
Married: True
|
-2.8094235
|
0.4877010
|
-5.761
|
0
|
|
Masturbates
|
0.0061784
|
0.4441115
|
0.014
|
0.9889
|
|
Age (years)
|
-0.0647526
|
0.0129863
|
-4.986
|
0
|
|
Duration
|
-0.0034569
|
0.0062795
|
-0.551
|
0.582
|
Frequency - Only Masturbates
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Masturbation, "Masturbates")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.5492972
|
0.0727877
|
48.762
|
0
|
|
Married: True
|
-0.7372743
|
0.0672972
|
-10.956
|
0
|
|
Masturbates
|
0.0600030
|
0.0666479
|
0.9
|
0.3681
|
Frequency – Full Controls
reg_full_control_gend(sex_data$freq_num, sex_data, sex_data$Masturbation, "Masturbates")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.7746206
|
0.1026428
|
46.517
|
0
|
|
Married: True
|
-0.2341212
|
0.0713455
|
-3.282
|
0.001
|
|
Masturbates
|
-0.0256017
|
0.0631884
|
-0.405
|
0.6854
|
|
Age (years)
|
-0.0297049
|
0.0019449
|
-15.273
|
0
|
|
Duration
|
-0.0017873
|
0.0012219
|
-1.463
|
0.1437
|
Controlling For Masturbation Frequency Strengthens Marriage Effects Slightly
Graphs
# (6 - desire )because scale is reverse
sex_data$MastFreqNum = 6- as.numeric(sex_data$MasturbationFreq)
contsmall(sex_data, sex_data$MastFreqNum, "Masturbation Frequency", "")

Want - Only Masturbation Frequency
reg_just_mod_i(sex_data$want, sex_data, sex_data$MastFreqNum, "Masturbation Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
23.828069
|
0.6476797
|
36.79
|
0
|
|
Married: True
|
-4.261849
|
0.4556931
|
-9.352
|
0
|
|
Masturbation Frequency
|
1.894929
|
0.1870059
|
10.133
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$MastFreqNum, "Masturbation Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.9168012
|
0.8782980
|
34.062
|
0
|
|
Married: True
|
-2.4248481
|
0.4897959
|
-4.951
|
0
|
|
Masturbation Frequency
|
1.2841080
|
0.1921966
|
6.681
|
0
|
|
Age (years)
|
-0.1399572
|
0.0142508
|
-9.821
|
0
|
|
Duration
|
-0.0113385
|
0.0073318
|
-1.546
|
0.1222
|
|
Male
|
2.1480876
|
0.4725876
|
4.545
|
0
|
Like - Only Masturbation Frequency
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$MastFreqNum,"Masturbation Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
37.6440001
|
0.7469046
|
50.4
|
0
|
|
Married: True
|
-4.3094520
|
0.5236447
|
-8.23
|
0
|
|
Masturbation Frequency
|
0.2654942
|
0.2149702
|
1.235
|
0.217
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$MastFreqNum, "Masturbation Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
41.0565500
|
1.0312607
|
39.812
|
0
|
|
Married: True
|
-3.2370843
|
0.5757667
|
-5.622
|
0
|
|
Masturbation Frequency
|
-0.0610910
|
0.2263510
|
-0.27
|
0.7873
|
|
Age (years)
|
-0.0775992
|
0.0167022
|
-4.646
|
0
|
|
Duration
|
-0.0088210
|
0.0085021
|
-1.038
|
0.2997
|
|
Male
|
1.0413703
|
0.5556341
|
1.874
|
0.0611
|
Frequency - Only Masturbation Frequency
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$MastFreqNum, "Masturbation Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.3551771
|
0.1126418
|
29.786
|
0
|
|
Married: True
|
-0.7589831
|
0.0796163
|
-9.533
|
0
|
|
Masturbation Frequency
|
0.1027011
|
0.0331603
|
3.097
|
0.002
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$MastFreqNum, "Masturbation Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.5689407
|
0.1518618
|
30.086
|
0
|
|
Married: True
|
-0.1413652
|
0.0908218
|
-1.557
|
0.1198
|
|
Masturbation Frequency
|
-0.0007456
|
0.0329361
|
-0.023
|
0.9819
|
|
Age (years)
|
-0.0234004
|
0.0028664
|
-8.164
|
0
|
|
Duration
|
-0.0163969
|
0.0035609
|
-4.605
|
0
|
|
Male
|
0.1266775
|
0.0802366
|
1.579
|
0.1146
|
Generally, Faking Orgasm Doesn’t Account for Marriage Effect, But Frequent Fakers Dislike Sex Whether Or Not They Are Married
Graphs
sex_data$FakeOrgNum = as.numeric(sex_data$FakeOrgasm)
contsmall(sex_data, sex_data$FakeOrgNum, "Orgasm Faking Frequency", "")

Want - Only Orgasm Faking
reg_just_mod_i(sex_data$want, sex_data, sex_data$FakeOrgNum, "Orgasm Faking Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.746179
|
0.4542020
|
65.491
|
0
|
|
Married: True
|
-5.445533
|
0.3903286
|
-13.951
|
0
|
|
Orgasm Faking Frequency
|
-1.021436
|
0.2383273
|
-4.286
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$FakeOrgNum, "Orgasm Faking Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.3801796
|
0.6210873
|
56.965
|
0
|
|
Married: True
|
-2.6370829
|
0.4075799
|
-6.47
|
0
|
|
Orgasm Faking Frequency
|
-1.0339689
|
0.2254665
|
-4.586
|
0
|
|
Age (years)
|
-0.1911471
|
0.0112611
|
-16.974
|
0
|
|
Duration
|
-0.0061278
|
0.0053458
|
-1.146
|
0.2518
|
|
Male
|
4.1453354
|
0.3671072
|
11.292
|
0
|
Like - Only Orgasm Faking
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$FakeOrgNum,"Orgasm Faking Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
41.685952
|
0.4969993
|
83.875
|
0
|
|
Married: True
|
-4.209796
|
0.4266210
|
-9.868
|
0
|
|
Orgasm Faking Frequency
|
-2.590407
|
0.2603343
|
-9.95
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$FakeOrgNum, "Orgasm Faking Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
44.6589220
|
0.7216664
|
61.883
|
0
|
|
Married: True
|
-2.9397474
|
0.4728434
|
-6.217
|
0
|
|
Orgasm Faking Frequency
|
-2.6565030
|
0.2621482
|
-10.134
|
0
|
|
Age (years)
|
-0.0910808
|
0.0130586
|
-6.975
|
0
|
|
Duration
|
0.0014874
|
0.0061243
|
0.243
|
0.8081
|
|
Male
|
1.3912883
|
0.4273255
|
3.256
|
0.0011
|
Frequency - Only Orgasm Faking
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$FakeOrgNum, "Orgasm Faking Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.4731091
|
0.0787276
|
44.116
|
0
|
|
Married: True
|
-0.7243116
|
0.0669104
|
-10.825
|
0
|
|
Orgasm Faking Frequency
|
0.0898590
|
0.0420751
|
2.136
|
0.0328
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$FakeOrgNum, "Orgasm Faking Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.6483460
|
0.1106267
|
42.018
|
0
|
|
Married: True
|
-0.2228745
|
0.0712392
|
-3.129
|
0.0018
|
|
Orgasm Faking Frequency
|
0.0508237
|
0.0405494
|
1.253
|
0.2102
|
|
Age (years)
|
-0.0308910
|
0.0020260
|
-15.248
|
0
|
|
Duration
|
-0.0015573
|
0.0012184
|
-1.278
|
0.2013
|
|
Male
|
0.2108186
|
0.0638475
|
3.302
|
0.001
|
Lube Doesn’t Offset Marriage Effect, But Interacts In Interesting Ways
Graphs
sex_data$LubeNum = as.numeric(sex_data$lube)
contsmall(sex_data, sex_data$LubeNum, "Lube Use Frequency", "")

Want - Only Masturbation Frequency
reg_just_mod_i(sex_data$want, sex_data, sex_data$LubeNum, "Lube Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
28.1249776
|
0.3240067
|
86.804
|
0
|
|
Married: True
|
-4.9052735
|
0.2855114
|
-17.181
|
0
|
|
Lube Use Frequency
|
0.4287085
|
0.1013284
|
4.231
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$LubeNum, "Lube Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
32.5068844
|
0.4134712
|
78.619
|
0
|
|
Married: True
|
-2.4038534
|
0.2885690
|
-8.33
|
0
|
|
Lube Use Frequency
|
0.5442508
|
0.0940628
|
5.786
|
0
|
|
Age (years)
|
-0.1759847
|
0.0081142
|
-21.688
|
0
|
|
Duration
|
-0.0162218
|
0.0049805
|
-3.257
|
0.0011
|
|
Male
|
4.4808710
|
0.2487751
|
18.012
|
0
|
Like - Only Masturbation Frequency
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$LubeNum,"Lube Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
37.5333572
|
0.3594896
|
104.407
|
0
|
|
Married: True
|
-3.9572115
|
0.3167785
|
-12.492
|
0
|
|
Lube Use Frequency
|
0.4554106
|
0.1124252
|
4.051
|
1e-04
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$LubeNum, "Lube Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
39.8547714
|
0.4887817
|
81.539
|
0
|
|
Married: True
|
-2.6575331
|
0.3411295
|
-7.79
|
0
|
|
Lube Use Frequency
|
0.5178601
|
0.1111956
|
4.657
|
0
|
|
Age (years)
|
-0.0870408
|
0.0095922
|
-9.074
|
0
|
|
Duration
|
-0.0105475
|
0.0058877
|
-1.791
|
0.0733
|
|
Male
|
1.9009603
|
0.2940875
|
6.464
|
0
|
Frequency - Only Masturbation Frequency
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$LubeNum, "Lube Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.4119269
|
0.0545293
|
62.571
|
0
|
|
Married: True
|
-0.6357592
|
0.0482201
|
-13.185
|
0
|
|
Lube Use Frequency
|
0.1312485
|
0.0169472
|
7.745
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$LubeNum, "Lube Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.5288613
|
0.0712203
|
63.59
|
0
|
|
Married: True
|
-0.1462357
|
0.0488291
|
-2.995
|
0.0028
|
|
Lube Use Frequency
|
0.1612277
|
0.0157072
|
10.265
|
0
|
|
Age (years)
|
-0.0328129
|
0.0014306
|
-22.937
|
0
|
|
Duration
|
-0.0032100
|
0.0010613
|
-3.025
|
0.0025
|
|
Male
|
0.2306529
|
0.0414256
|
5.568
|
0
|
Drugs Doesn’t Offset Marriage Effect, But Interacts In Interesting Ways
Graphs
sex_data$DrugNum = as.numeric(sex_data$drugs)
contsmall(sex_data, sex_data$DrugNum, "Potency-Enhacncing Drug Use Frequency", "")

Want - Only Drug Use
reg_just_mod_i(sex_data$want, sex_data, sex_data$DrugNum, "Drug Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
29.1259287
|
0.3034984
|
95.967
|
0
|
|
Married: True
|
-4.8888789
|
0.2862352
|
-17.08
|
0
|
|
Drug Use Frequency
|
-0.0563525
|
0.1366889
|
-0.412
|
0.6802
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$DrugNum, "Drug Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
33.2787578
|
0.3897049
|
85.395
|
0
|
|
Married: True
|
-2.4113851
|
0.2894974
|
-8.33
|
0
|
|
Drug Use Frequency
|
0.3240472
|
0.1289948
|
2.512
|
0.012
|
|
Age (years)
|
-0.1769679
|
0.0082276
|
-21.509
|
0
|
|
Duration
|
-0.0155739
|
0.0049935
|
-3.119
|
0.0018
|
|
Male
|
4.4680834
|
0.2497531
|
17.89
|
0
|
Like - Only Drug Use
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$DrugNum,"Drug Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.6785266
|
0.3366652
|
114.887
|
0
|
|
Married: True
|
-3.9351491
|
0.3175153
|
-12.394
|
0
|
|
Drug Use Frequency
|
-0.1199988
|
0.1516265
|
-0.791
|
0.4287
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$DrugNum, "Drug Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
40.8045045
|
0.4604050
|
88.627
|
0
|
|
Married: True
|
-2.6802903
|
0.3420179
|
-7.837
|
0
|
|
Drug Use Frequency
|
0.0799457
|
0.1523970
|
0.525
|
0.5999
|
|
Age (years)
|
-0.0857264
|
0.0097202
|
-8.819
|
0
|
|
Duration
|
-0.0098698
|
0.0058994
|
-1.673
|
0.0944
|
|
Male
|
1.9093453
|
0.2950632
|
6.471
|
0
|
Frequency - Only Drug Use
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$DrugNum, "Drug Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7344416
|
0.0514037
|
72.649
|
0
|
|
Married: True
|
-0.6275255
|
0.0485841
|
-12.916
|
0
|
|
Drug Use Frequency
|
-0.0313924
|
0.0230976
|
-1.359
|
0.1742
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$DrugNum, "Drug Use Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.7820035
|
0.0676208
|
70.718
|
0
|
|
Married: True
|
-0.1518016
|
0.0493492
|
-3.076
|
0.0021
|
|
Drug Use Frequency
|
0.0727476
|
0.0218678
|
3.327
|
9e-04
|
|
Age (years)
|
-0.0329764
|
0.0014652
|
-22.506
|
0
|
|
Duration
|
-0.0028108
|
0.0010722
|
-2.621
|
0.0088
|
|
Male
|
0.2260370
|
0.0418982
|
5.395
|
0
|
More Previous Sex Partners Decreases Marriage’s Effect On Want, Increases Effect On Like
Graphs
nooutlier_sexpartners <- sex_data[sex_data$howmany < 50,]
contsmall(nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Number Of Previous Sex Partners", "")

Want - Only Sex Partners
reg_just_mod_i(nooutlier_sexpartners$want, nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
27.7109286
|
0.5665457
|
48.912
|
0
|
|
Married: True
|
-4.6364867
|
0.6415684
|
-7.227
|
0
|
|
Sex Partners
|
0.1588474
|
0.0691162
|
2.298
|
0.0218
|
Want – Full Controls
reg_full_control(nooutlier_sexpartners$want, nooutlier_sexpartners, nooutlier_sexpartners$howmany, " Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
30.2471210
|
1.0530463
|
28.723
|
0
|
|
Married: True
|
-1.5196466
|
0.7502283
|
-2.026
|
0.0431
|
|
Sex Partners
|
0.1618124
|
0.0663974
|
2.437
|
0.015
|
|
Age (years)
|
-0.1018521
|
0.0268054
|
-3.8
|
2e-04
|
|
Duration
|
-0.1100553
|
0.0312582
|
-3.521
|
5e-04
|
|
Male
|
4.1140395
|
0.6596097
|
6.237
|
0
|
Like - Only Sex Partners
reg_just_mod_i(nooutlier_sexpartners$totlike, nooutlier_sexpartners, nooutlier_sexpartners$howmany,"Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
36.9496110
|
0.6224055
|
59.366
|
0
|
|
Married: True
|
-5.2361789
|
0.7048252
|
-7.429
|
0
|
|
Sex Partners
|
-0.0348543
|
0.0759308
|
-0.459
|
0.6463
|
Like – Full Controls
reg_full_control(nooutlier_sexpartners$totlike,nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.0222937
|
1.2131083
|
31.343
|
0
|
|
Married: True
|
-3.7555878
|
0.8642623
|
-4.345
|
0
|
|
Sex Partners
|
-0.0339220
|
0.0764898
|
-0.443
|
0.6575
|
|
Age (years)
|
-0.0442488
|
0.0308797
|
-1.433
|
0.1522
|
|
Duration
|
-0.0546437
|
0.0360094
|
-1.517
|
0.1295
|
|
Male
|
1.9214457
|
0.7598697
|
2.529
|
0.0116
|
Frequency - Only Sex Partners
reg_just_mod_i(nooutlier_sexpartners$freq_num, nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.6030382
|
0.0954659
|
37.742
|
0
|
|
Married: True
|
-0.6810235
|
0.1068685
|
-6.373
|
0
|
|
Sex Partners
|
-0.0047984
|
0.0117928
|
-0.407
|
0.6842
|
Frequency – Full Controls
reg_full_control(nooutlier_sexpartners$freq_num, nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.2962107
|
0.1829015
|
23.489
|
0
|
|
Married: True
|
-0.1774571
|
0.1251693
|
-1.418
|
0.1567
|
|
Sex Partners
|
0.0003797
|
0.0113923
|
0.033
|
0.9734
|
|
Age (years)
|
-0.0185144
|
0.0045396
|
-4.078
|
1e-04
|
|
Duration
|
-0.0171612
|
0.0051101
|
-3.358
|
8e-04
|
|
Male
|
0.3779989
|
0.1108539
|
3.41
|
7e-04
|
More Previous Sex Partners Decreases Marriage’s Effect On Want, Increases Effect On Like
Graphs
nooutlier_sexpartners <- sex_data[sex_data$howmany < 50,]
contsmall(nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Number Of Previous Sex Partners", "")

Want - Only Sex Partners
reg_just_mod_i(nooutlier_sexpartners$want, nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
27.7109286
|
0.5665457
|
48.912
|
0
|
|
Married: True
|
-4.6364867
|
0.6415684
|
-7.227
|
0
|
|
Sex Partners
|
0.1588474
|
0.0691162
|
2.298
|
0.0218
|
Want – Full Controls
reg_full_control(nooutlier_sexpartners$want, nooutlier_sexpartners, nooutlier_sexpartners$howmany, " Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
30.2471210
|
1.0530463
|
28.723
|
0
|
|
Married: True
|
-1.5196466
|
0.7502283
|
-2.026
|
0.0431
|
|
Sex Partners
|
0.1618124
|
0.0663974
|
2.437
|
0.015
|
|
Age (years)
|
-0.1018521
|
0.0268054
|
-3.8
|
2e-04
|
|
Duration
|
-0.1100553
|
0.0312582
|
-3.521
|
5e-04
|
|
Male
|
4.1140395
|
0.6596097
|
6.237
|
0
|
Like - Only Sex Partners
reg_just_mod_i(nooutlier_sexpartners$totlike, nooutlier_sexpartners, nooutlier_sexpartners$howmany,"Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
36.9496110
|
0.6224055
|
59.366
|
0
|
|
Married: True
|
-5.2361789
|
0.7048252
|
-7.429
|
0
|
|
Sex Partners
|
-0.0348543
|
0.0759308
|
-0.459
|
0.6463
|
Like – Full Controls
reg_full_control(nooutlier_sexpartners$totlike,nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.0222937
|
1.2131083
|
31.343
|
0
|
|
Married: True
|
-3.7555878
|
0.8642623
|
-4.345
|
0
|
|
Sex Partners
|
-0.0339220
|
0.0764898
|
-0.443
|
0.6575
|
|
Age (years)
|
-0.0442488
|
0.0308797
|
-1.433
|
0.1522
|
|
Duration
|
-0.0546437
|
0.0360094
|
-1.517
|
0.1295
|
|
Male
|
1.9214457
|
0.7598697
|
2.529
|
0.0116
|
Frequency - Only Sex Partners
reg_just_mod_i(nooutlier_sexpartners$freq_num, nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.6030382
|
0.0954659
|
37.742
|
0
|
|
Married: True
|
-0.6810235
|
0.1068685
|
-6.373
|
0
|
|
Sex Partners
|
-0.0047984
|
0.0117928
|
-0.407
|
0.6842
|
Frequency – Full Controls
reg_full_control(nooutlier_sexpartners$freq_num, nooutlier_sexpartners, nooutlier_sexpartners$howmany, "Sex Partners")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.2962107
|
0.1829015
|
23.489
|
0
|
|
Married: True
|
-0.1774571
|
0.1251693
|
-1.418
|
0.1567
|
|
Sex Partners
|
0.0003797
|
0.0113923
|
0.033
|
0.9734
|
|
Age (years)
|
-0.0185144
|
0.0045396
|
-4.078
|
1e-04
|
|
Duration
|
-0.0171612
|
0.0051101
|
-3.358
|
8e-04
|
|
Male
|
0.3779989
|
0.1108539
|
3.41
|
7e-04
|