rm(list = ls())
setwd("~/Downloads")
library(foreign)
sex_data <- read.spss("sex_data.sav", use.value.label=TRUE, to.data.frame=TRUE)
Libraries/themes
library(ggplot2)
library(tidyverse)
library(gridExtra)
library(finalfit)
library(kableExtra)
library(xtable)
jrothsch_theme <- theme_bw() +
theme(text = element_text(size = 10, face = "bold", color = "deepskyblue4"),panel.grid = element_blank(),axis.text = element_text(size = 10, color = "gray13"), axis.title = element_text(size = 10, color = "red"), legend.text = element_text(colour="Black", size=10), legend.title = element_text(colour="Black", size=7), plot.subtitle = element_text(size=14, face="italic", color="black"))
Removing obserations without our key variables
sex_data <- sex_data[!is.na(sex_data$status),]
sex_data <- sex_data[!is.na(sex_data$age),]
sex_data <- sex_data[!is.na(sex_data$Years_PrimaryPartner),]
sex_data <- sex_data[!is.na(sex_data$MALE),]
Making variables
sex_data <- sex_data %>%
mutate(married = status == "Married")
sex_data <- sex_data %>%
mutate(married_gender = ifelse(married,
ifelse(MALE == "Male", "Married Male", "Married Female"),
ifelse(MALE == "Male", "Unmarried Male", "Unmarried Female ")))
married_num = length(sex_data$married[sex_data$married == T])
unmarried_num = length(sex_data$married[sex_data$married == T])
sex_data <- sex_data %>% mutate(freq_num = as.numeric(ifelse(sexfreq == "At least once per day", 6,
ifelse(sexfreq == "3-4 times per week", 5,
ifelse(sexfreq == 'At least once a week', 4,
ifelse(sexfreq == 'At least once per month', 3,
ifelse(sexfreq =='At least once per year', 2,
ifelse( sexfreq =="Less than once a year", 1, 0))))))))
female <- sex_data %>%
filter(sex_data$MALE == "Female")
Binary graphs
bin_graphs_want <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$want) & !is.na(mod),]
mod = mod[!is.na(df$want) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = want, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Want", " -- Age"), x = "Age", y = "Want", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(want))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "Black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Want", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_like <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$totlike) & !is.na(mod),]
mod = mod[!is.na(df$totlike) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = totlike, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Like", " -- Age"), x = "Age", y = "Like", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by( mod_married) %>%
summarize(DV = mean(totlike))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Like", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
bin_graphs_freq <- function(df, mod, modname, modlabs, interaction_labs){
df2 = df[!is.na(df$freq_num) & !is.na(mod),]
mod = mod[!is.na(df$freq_num) & !is.na(mod)]
df2$mod_married = interaction(df2$married, mod)
age <- ggplot(data = df2, aes(x = age, y = freq_num, color = mod)) +
geom_smooth() +
labs(title = paste("Effect Of", modname, "On", "Frequency", " -- Age"), x = "Age", y = "Frequency", color = "") +
scale_x_continuous(limits = c(18, 80)) +
scale_color_discrete(labels = modlabs) +
jrothsch_theme
sum_inter <- df2 %>%
group_by(mod_married) %>%
summarize(DV = mean(freq_num))
mod_married <- ggplot(data = sum_inter, aes(x = mod_married, y = DV)) +
geom_bar(stat = 'identity', position = 'identity', fill = "black") +
scale_x_discrete(labels = interaction_labs) +
labs(title = paste0("Interaction Between ", modname, "And Marriage"), y = "Frequency", x = "") +
jrothsch_theme
grid.arrange(age, mod_married)
}
Small continuous graphs
contsmall <- function(df, mod, modname, modlabs){
df2 = df[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod) ,]
mod = mod[!is.na(df$want) & !is.na(df$totlike) & !is.na(df$freq_num ) & !is.na(mod)]
want <- ggplot(df2, aes(x=mod, y= want)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs(title = paste0("Interaction between marriage and ", modname ), x = modname, y = "Want")
like <- ggplot(df2, aes(x=mod, y = totlike)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Like")
freq <- ggplot(df2, aes(x=mod, y= freq_num)) +
stat_summary_bin(fun.y='mean', bins=20,
size=2, geom='point', mapping = aes(group = married, color = married)) +
geom_smooth(method='lm', se = F, aes(color = married)) + jrothsch_theme +
labs( x = modname, y = "Frequency")
grid.arrange(want, like, freq)
}
Regressions – Standard
###################################################################################################################################
#REgressions
#########################################################################################################################
reg_no_mod <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
###########################################################################################################################
reg_no_mod_i <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_no_mod_control <- function(dv, df){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: TRUE", "Age", "Duration", "MALE")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
##################################################################################################################
reg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname)
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male")
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
reg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*age, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Subsets where controls can’t be used – e.g. one gender subsets
reg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration" )
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
reg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age")
kable(tx1, row.names= T, align=c("l", "l", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Looking at modertators interaction with marriage
ireg_just_mod_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
ireg_full_control_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + MALE + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Male", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
#############################################################################################################################################################################################################################################################
#For subsets wheere we can't use all controls
#############################################################################################################################################################################################################################################################
ireg_full_control_gend <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
ireg_full_control_gend_i <- function(dv, df, mod, modname){
dv <- as.numeric(dv)
tx1 <- df %>% lm(dv ~ married + mod + age + Years_PrimaryPartner + age*married + married*mod, data = .)
tx1 <- xtable(tx1)
colnames(tx1)[colnames(tx1)=="Pr(>|t|)"] <- "p_value"
colnames(tx1)[colnames(tx1)=="t value"] <- "t_value"
tx1 <- tx1 %>%
mutate(p_value = round(p_value, 4)) %>%
mutate(t_value = round(t_value, 3)) %>%
mutate(p_value= cell_spec(p_value, "html", background = ifelse(p_value < .01, "gold", "white"))) %>%
mutate(t_value= cell_spec(t_value, "html", background = ifelse(t_value < -2.5, "#FF6347",
ifelse(t_value > 2.5, "lightgreen", "white"))))
rownames(tx1) <- c("Intercept", "Married: True", modname, "Age (years)", "Duration", "Married X Age", paste("Married X", modname))
kable(tx1, row.names= T, align=c("l", "l", "r", "r", "r") ,
booktabs=TRUE, escape = F) %>%
kable_styling(font_size=8)
}
Menopause doesn’t remove marriage effect, and any effect is likely due to age.
Want Graphs
bin_graphs_want(female, female$postmeno, "Menopause Status", c("Pre Menopause", "Post Menopause"),
c("Unmarried, Pre", "Married, Pre", "Unmarried, Post", "Married, Post"))

Like Graphs
bin_graphs_like(female, female$postmeno, "Menopause Status", c("Pre Menopause", "Post Menopause"),
c("Unmarried, Pre", "Married, Pre", "Unmarried, Post", "Married, Post"))

Frequency Graphs
bin_graphs_freq(female, female$postmeno, "Menopause Status", c("Pre Menopause", "Post Menopause"),
c("Unmarried, Pre", "Married, Pre", "Unmarried, Post", "Married, Post"))

Want - Only Menopause
reg_just_mod_i(female$want, female, female$postmeno, "Menopause")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
27.820409
|
0.7494864
|
37.119
|
0
|
|
Married: True
|
-5.305510
|
0.7624238
|
-6.959
|
0
|
|
Menopause
|
-4.303908
|
0.6492579
|
-6.629
|
0
|
Want – Full Controls
reg_full_control_gend(female$want, female, female$postmeno, "Menopause")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
33.6748401
|
1.2119710
|
27.785
|
0
|
|
Married: True
|
-4.3213696
|
0.7725891
|
-5.593
|
0
|
|
Menopause
|
-0.7868144
|
0.8512848
|
-0.924
|
0.3556
|
|
Age (years)
|
-0.1575124
|
0.0261521
|
-6.023
|
0
|
|
Duration
|
-0.0070232
|
0.0080199
|
-0.876
|
0.3814
|
Like - Only Menopause
reg_just_mod_i(female$totlike, female, female$postmeno, "Menopause")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.917864
|
0.9591764
|
40.574
|
0
|
|
Married: True
|
-4.903643
|
0.9751163
|
-5.029
|
0
|
|
Menopause
|
-2.936073
|
0.8399695
|
-3.495
|
5e-04
|
Like – Full Controls
reg_full_control_gend(female$totlike, female, female$postmeno, "Menopause")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
41.5508777
|
1.5897668
|
26.136
|
0
|
|
Married: True
|
-4.5731014
|
1.0079795
|
-4.537
|
0
|
|
Menopause
|
-1.3677219
|
1.1346274
|
-1.205
|
0.2284
|
|
Age (years)
|
-0.0721802
|
0.0347618
|
-2.076
|
0.0382
|
|
Duration
|
0.0027988
|
0.0101813
|
0.275
|
0.7835
|
Frequency - Only Menopause
reg_just_mod_i(female$freq_num, female, female$postmeno, "Menopause")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.5496615
|
0.1434452
|
24.746
|
0
|
|
Married: True
|
-0.4410055
|
0.1443420
|
-3.055
|
0.0023
|
|
Menopause
|
-0.8174278
|
0.1219319
|
-6.704
|
0
|
Frequency – Full Controls
reg_full_control_gend(female$freq_num, female, female$postmeno, "Menopause")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
5.0329825
|
0.2475783
|
20.329
|
0
|
|
Married: True
|
-0.1349138
|
0.1525934
|
-0.884
|
0.3769
|
|
Menopause
|
0.0841373
|
0.1536656
|
0.548
|
0.5842
|
|
Age (years)
|
-0.0386300
|
0.0055250
|
-6.992
|
0
|
|
Duration
|
-0.0061284
|
0.0042411
|
-1.445
|
0.1488
|
Sexual Desire Has A Strong Effect, But Doesn’t Interact Strongly With Marriage
Graphs
# (5 - desire )because scale is reverse
sex_data$SexDesNum = 5 - as.numeric(sex_data$SexualDesire)
contsmall(sex_data, sex_data$SexDesNum, "Desire", "")

Want - Only Desire
reg_just_mod_i(sex_data$want, sex_data, sex_data$SexDesNum, "Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
18.647156
|
0.4734482
|
39.386
|
0
|
|
Married: True
|
-4.002852
|
0.3503039
|
-11.427
|
0
|
|
Desire
|
4.876286
|
0.1940516
|
25.129
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$SexDesNum, "Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
24.4420191
|
0.6294354
|
38.832
|
0
|
|
Married: True
|
-1.9573497
|
0.3749207
|
-5.221
|
0
|
|
Desire
|
4.1776388
|
0.1948553
|
21.44
|
0
|
|
Age (years)
|
-0.1403201
|
0.0105117
|
-13.349
|
0
|
|
Duration
|
-0.0094075
|
0.0049039
|
-1.918
|
0.0552
|
|
Male
|
2.3952621
|
0.3449966
|
6.943
|
0
|
Like - Only Desire
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$SexDesNum,"Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
30.602984
|
0.5645460
|
54.208
|
0
|
|
Married: True
|
-2.864904
|
0.4165267
|
-6.878
|
0
|
|
Desire
|
3.742157
|
0.2313409
|
16.176
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$SexDesNum, "Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
32.3017405
|
0.7817763
|
41.318
|
0
|
|
Married: True
|
-2.2376063
|
0.4627385
|
-4.836
|
0
|
|
Desire
|
3.5873083
|
0.2422867
|
14.806
|
0
|
|
Age (years)
|
-0.0394997
|
0.0129927
|
-3.04
|
0.0024
|
|
Duration
|
-0.0034131
|
0.0059663
|
-0.572
|
0.5673
|
|
Male
|
0.3066047
|
0.4284108
|
0.716
|
0.4743
|
Frequency - Only Desire
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$SexDesNum, "Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.6049192
|
0.0867832
|
30.016
|
0
|
|
Married: True
|
-0.6116625
|
0.0644030
|
-9.497
|
0
|
|
Desire
|
0.5116272
|
0.0361937
|
14.136
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$SexDesNum, "Desire")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.7782237
|
0.1147580
|
32.923
|
0
|
|
Married: True
|
-0.1557964
|
0.0687353
|
-2.267
|
0.0235
|
|
Desire
|
0.4545019
|
0.0359141
|
12.655
|
0
|
|
Age (years)
|
-0.0268896
|
0.0019727
|
-13.631
|
0
|
|
Duration
|
-0.0016330
|
0.0011773
|
-1.387
|
0.1655
|
|
Male
|
-0.0269566
|
0.0625570
|
-0.431
|
0.6666
|
Enjoyment Has A Strong Effect, But Doesn’t Interact Strongly With Marriage
Graphs
# (5 - desire )because scale is reverse
sex_data$SexEnjoyNum = 5 - as.numeric(sex_data$EnjoySex)
contsmall(sex_data, sex_data$SexEnjoyNum, "Enjoyment", "")

Want - Only Enjoyment
reg_just_mod_i(sex_data$want, sex_data, sex_data$SexEnjoyNum, "Enjoyment")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
16.192875
|
0.4906732
|
33.001
|
0
|
|
Married: True
|
-3.940167
|
0.3367836
|
-11.699
|
0
|
|
Enjoyment
|
4.935075
|
0.1679286
|
29.388
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$SexEnjoyNum, "Enjoyment")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
22.0290395
|
0.6105196
|
36.082
|
0
|
|
Married: True
|
-1.7136855
|
0.3574128
|
-4.795
|
0
|
|
Enjoyment
|
4.4609243
|
0.1633201
|
27.314
|
0
|
|
Age (years)
|
-0.1486891
|
0.0098929
|
-15.03
|
0
|
|
Duration
|
-0.0093570
|
0.0046705
|
-2.003
|
0.0452
|
|
Male
|
2.5321332
|
0.3237855
|
7.82
|
0
|
Like - Only Enjoyment
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$SexEnjoyNum,"Enjoyment")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
26.529810
|
0.5739821
|
46.221
|
0
|
|
Married: True
|
-2.566266
|
0.3924580
|
-6.539
|
0
|
|
Enjoyment
|
4.670185
|
0.1962675
|
23.795
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$SexEnjoyNum, "Enjoyment")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
28.2380293
|
0.7503679
|
37.632
|
0
|
|
Married: True
|
-1.8756361
|
0.4368953
|
-4.293
|
0
|
|
Enjoyment
|
4.5887135
|
0.2008934
|
22.842
|
0
|
|
Age (years)
|
-0.0408328
|
0.0121019
|
-3.374
|
8e-04
|
|
Duration
|
-0.0036877
|
0.0056276
|
-0.655
|
0.5124
|
|
Male
|
0.1451025
|
0.3978127
|
0.365
|
0.7153
|
Frequency - Only Enjoyment
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$SexEnjoyNum, "Enjoyment")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.4514043
|
0.0928991
|
26.388
|
0
|
|
Married: True
|
-0.6100057
|
0.0641409
|
-9.51
|
0
|
|
Enjoyment
|
0.4749193
|
0.0322321
|
14.734
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$SexEnjoyNum, "Enjoyment")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.6381487
|
0.1157157
|
31.44
|
0
|
|
Married: True
|
-0.1388800
|
0.0682496
|
-2.035
|
0.042
|
|
Enjoyment
|
0.4408183
|
0.0312785
|
14.093
|
0
|
|
Age (years)
|
-0.0283410
|
0.0019380
|
-14.624
|
0
|
|
Duration
|
-0.0011378
|
0.0011684
|
-0.974
|
0.3303
|
|
Male
|
0.0018551
|
0.0611802
|
0.03
|
0.9758
|
Masturbation Orgasm Enjoyment Has A Positive Effect, But Doesn’t Account For Marriage Effect
Graphs
# (5 - desire )because scale is reverse
sex_data$MastOrgNum= as.numeric(sex_data$MasturbationOrgasm)
contsmall(sex_data, sex_data$MastOrgNum, "Masturbation Orgasm Satisfaction", "")

Want - Only Masturbation Enjoyment
reg_just_mod_i(sex_data$want, sex_data, sex_data$MastOrgNum, "Masturbation Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
23.8541722
|
0.9152326
|
26.064
|
0
|
|
Married: True
|
-4.8092933
|
0.4590795
|
-10.476
|
0
|
|
Masturbation Orgasm Satisfaction
|
0.8482631
|
0.1280314
|
6.625
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$MastOrgNum, "Masturbation Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
28.4886412
|
1.0772789
|
26.445
|
0
|
|
Married: True
|
-2.6059747
|
0.4896120
|
-5.323
|
0
|
|
Masturbation Orgasm Satisfaction
|
0.7978845
|
0.1244737
|
6.41
|
0
|
|
Age (years)
|
-0.1554759
|
0.0138270
|
-11.244
|
0
|
|
Duration
|
-0.0135746
|
0.0072982
|
-1.86
|
0.0631
|
|
Male
|
3.4221777
|
0.4625076
|
7.399
|
0
|
Like - Only Masturbation ENjoyment
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$MastOrgNum,"Masturbation Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.6800127
|
1.0323338
|
34.562
|
0
|
|
Married: True
|
-4.2784736
|
0.5158773
|
-8.294
|
0
|
|
Masturbation Orgasm Satisfaction
|
0.4251481
|
0.1446775
|
2.939
|
0.0034
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$MastOrgNum, "Masturbation Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
38.0353428
|
1.2616197
|
30.148
|
0
|
|
Married: True
|
-3.2172197
|
0.5733830
|
-5.611
|
0
|
|
Masturbation Orgasm Satisfaction
|
0.3846776
|
0.1466499
|
2.623
|
0.0088
|
|
Age (years)
|
-0.0692634
|
0.0161885
|
-4.279
|
0
|
|
Duration
|
-0.0086168
|
0.0084393
|
-1.021
|
0.3074
|
|
Male
|
1.1528404
|
0.5420863
|
2.127
|
0.0336
|
Frequency - Only Masturbation Enjoyment
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$MastOrgNum, "Masturbation Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.9017329
|
0.1538718
|
18.858
|
0
|
|
Married: True
|
-0.7302272
|
0.0781658
|
-9.342
|
0
|
|
Masturbation Orgasm Satisfaction
|
0.1142339
|
0.0216544
|
5.275
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$MastOrgNum, "Masturbation Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.9566666
|
0.1820058
|
21.739
|
0
|
|
Married: True
|
-0.1213259
|
0.0906225
|
-1.339
|
0.1809
|
|
Masturbation Orgasm Satisfaction
|
0.0823007
|
0.0207977
|
3.957
|
1e-04
|
|
Age (years)
|
-0.0220462
|
0.0028197
|
-7.819
|
0
|
|
Duration
|
-0.0157764
|
0.0035621
|
-4.429
|
0
|
|
Male
|
0.1670280
|
0.0779068
|
2.144
|
0.0322
|
Orgasm Frequency Doesn’t Interact Strongly With Marriage
Graphs
# (5 - desire )because scale is reverse
sex_data$OrgFreqNum= as.numeric(sex_data$orgasm)
contsmall(sex_data, sex_data$OrgFreqNum, "Orgasm Frequency", "")

Want - Only Orgasm Frequency
reg_just_mod_i(sex_data$want, sex_data, sex_data$OrgFreqNum, "Orgasm Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.160239
|
0.3995932
|
42.944
|
0
|
|
Married: True
|
-4.542637
|
0.2520150
|
-18.025
|
0
|
|
Orgasm Frequency
|
3.033123
|
0.0873044
|
34.742
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$OrgFreqNum, "Orgasm Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
23.3990326
|
0.4763179
|
49.125
|
0
|
|
Married: True
|
-2.3569892
|
0.2610402
|
-9.029
|
0
|
|
Orgasm Frequency
|
2.6540077
|
0.0882931
|
30.059
|
0
|
|
Age (years)
|
-0.1497854
|
0.0073795
|
-20.297
|
0
|
|
Duration
|
-0.0133419
|
0.0045783
|
-2.914
|
0.0036
|
|
Male
|
2.1070190
|
0.2384758
|
8.835
|
0
|
Like - Only Orgasm Frequency
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$OrgFreqNum,"Orgasm Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
24.417086
|
0.4463002
|
54.71
|
0
|
|
Married: True
|
-3.416966
|
0.2788408
|
-12.254
|
0
|
|
Orgasm Frequency
|
3.617943
|
0.0975657
|
37.082
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$OrgFreqNum, "Orgasm Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
26.4151109
|
0.5520139
|
47.852
|
0
|
|
Married: True
|
-2.5421131
|
0.3007581
|
-8.452
|
0
|
|
Orgasm Frequency
|
3.7727030
|
0.1029708
|
36.639
|
0
|
|
Age (years)
|
-0.0478062
|
0.0085128
|
-5.616
|
0
|
|
Duration
|
-0.0062815
|
0.0051968
|
-1.209
|
0.2268
|
|
Male
|
-1.5583933
|
0.2761368
|
-5.644
|
0
|
Frequency - Only Orgasm Frequency
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$OrgFreqNum, "Orgasm Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.5688061
|
0.0729298
|
35.223
|
0
|
|
Married: True
|
-0.6122975
|
0.0467211
|
-13.105
|
0
|
|
Orgasm Frequency
|
0.2854054
|
0.0158894
|
17.962
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$OrgFreqNum, "Orgasm Frequency")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.8686373
|
0.0871396
|
44.396
|
0
|
|
Married: True
|
-0.1426012
|
0.0476117
|
-2.995
|
0.0028
|
|
Orgasm Frequency
|
0.2608895
|
0.0158124
|
16.499
|
0
|
|
Age (years)
|
-0.0304286
|
0.0014041
|
-21.672
|
0
|
|
Duration
|
-0.0029655
|
0.0010478
|
-2.83
|
0.0047
|
|
Male
|
-0.0109262
|
0.0429835
|
-0.254
|
0.7994
|
Controlling For Orgasm Satifaction Reduces the MarriedXAge Effect On Like
Graphs
# (5 - desire )because scale is reverse
sex_data$OSatisNum= as.numeric(sex_data$o_satis)
contsmall(sex_data, sex_data$OSatisNum, "Orgasm Satisfaction", "")

Want - Only Orgasm Satisfaction
reg_just_mod_i(sex_data$want, sex_data, sex_data$OSatisNum, "Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
12.447766
|
0.5226481
|
23.817
|
0
|
|
Married: True
|
-4.221283
|
0.2530234
|
-16.683
|
0
|
|
Orgasm Satisfaction
|
2.058860
|
0.0596488
|
34.516
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$OSatisNum, "Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
18.1304975
|
0.5731339
|
31.634
|
0
|
|
Married: True
|
-2.0897140
|
0.2572007
|
-8.125
|
0
|
|
Orgasm Satisfaction
|
1.8528570
|
0.0561864
|
32.977
|
0
|
|
Age (years)
|
-0.1528182
|
0.0072466
|
-21.088
|
0
|
|
Duration
|
-0.0136211
|
0.0045070
|
-3.022
|
0.0025
|
|
Male
|
3.8784567
|
0.2217693
|
17.489
|
0
|
Like - Only Desire
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$OSatisNum,"Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
16.632359
|
0.5719960
|
29.078
|
0
|
|
Married: True
|
-2.939208
|
0.2715586
|
-10.823
|
0
|
|
Orgasm Satisfaction
|
2.724751
|
0.0653649
|
41.685
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$OSatisNum, "Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
18.6726570
|
0.6644204
|
28.104
|
0
|
|
Married: True
|
-2.1766104
|
0.2936740
|
-7.412
|
0
|
|
Orgasm Satisfaction
|
2.6606840
|
0.0655776
|
40.573
|
0
|
|
Age (years)
|
-0.0510101
|
0.0082883
|
-6.154
|
0
|
|
Duration
|
-0.0070540
|
0.0050697
|
-1.391
|
0.1642
|
|
Male
|
0.9469191
|
0.2542443
|
3.724
|
2e-04
|
Frequency - Only Desire
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$OSatisNum, "Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
1.7723861
|
0.0933139
|
18.994
|
0
|
|
Married: True
|
-0.5637650
|
0.0460243
|
-12.249
|
0
|
|
Orgasm Satisfaction
|
0.2378468
|
0.0106365
|
22.361
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$OSatisNum, "Orgasm Satisfaction")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.1499045
|
0.1035681
|
30.414
|
0
|
|
Married: True
|
-0.1140092
|
0.0469062
|
-2.431
|
0.0151
|
|
Orgasm Satisfaction
|
0.2067647
|
0.0100109
|
20.654
|
0
|
|
Age (years)
|
-0.0306168
|
0.0013778
|
-22.221
|
0
|
|
Duration
|
-0.0026494
|
0.0010319
|
-2.568
|
0.0103
|
|
Male
|
0.1580627
|
0.0398160
|
3.97
|
1e-04
|
Desire In First 6 Months Doesn’t Account For Marriage Effect
Graphs
# (5 - desire )because scale is reverse
sex_data$Desire6mNum= as.numeric(sex_data$Desire6m)
contsmall(sex_data, sex_data$Desire6mNum, "Desire In First 6 Months", "")

Want - Only Desire First 6 months
reg_just_mod_i(sex_data$want, sex_data, sex_data$Desire6mNum, "Desire In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.096119
|
0.9031557
|
18.929
|
0
|
|
Married: True
|
-5.687971
|
0.3783083
|
-15.035
|
0
|
|
Desire In First 6 Months
|
1.456562
|
0.1104948
|
13.182
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$Desire6mNum, "Desire In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
22.7396530
|
0.9160375
|
24.824
|
0
|
|
Married: True
|
-2.8815693
|
0.3937859
|
-7.318
|
0
|
|
Desire In First 6 Months
|
1.4389073
|
0.1024854
|
14.04
|
0
|
|
Age (years)
|
-0.1876308
|
0.0108295
|
-17.326
|
0
|
|
Duration
|
-0.0084214
|
0.0051484
|
-1.636
|
0.102
|
|
Male
|
4.1107977
|
0.3514142
|
11.698
|
0
|
Like - Only Desire First 6 Months
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Desire6mNum,"Desire In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
24.642035
|
0.9992061
|
24.662
|
0
|
|
Married: True
|
-4.341071
|
0.4175127
|
-10.397
|
0
|
|
Desire In First 6 Months
|
1.738176
|
0.1222049
|
14.223
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$Desire6mNum, "Desire In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
27.1186707
|
1.0813486
|
25.079
|
0
|
|
Married: True
|
-3.1362111
|
0.4631881
|
-6.771
|
0
|
|
Desire In First 6 Months
|
1.7329313
|
0.1210803
|
14.312
|
0
|
|
Age (years)
|
-0.0819798
|
0.0127377
|
-6.436
|
0
|
|
Duration
|
-0.0033131
|
0.0059839
|
-0.554
|
0.5799
|
|
Male
|
1.7048559
|
0.4145947
|
4.112
|
0
|
Frequency - Only Desire First 6 Months
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Desire6mNum, "Desire In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.8656564
|
0.1587122
|
18.056
|
0
|
|
Married: True
|
-0.7568512
|
0.0667302
|
-11.342
|
0
|
|
Desire In First 6 Months
|
0.0949953
|
0.0194140
|
4.893
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$Desire6mNum, "Desire In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.9895131
|
0.1657643
|
24.067
|
0
|
|
Married: True
|
-0.2478231
|
0.0709576
|
-3.493
|
5e-04
|
|
Desire In First 6 Months
|
0.0967646
|
0.0183225
|
5.281
|
0
|
|
Age (years)
|
-0.0309254
|
0.0020102
|
-15.384
|
0
|
|
Duration
|
-0.0015657
|
0.0012095
|
-1.295
|
0.1956
|
|
Male
|
0.1734454
|
0.0627147
|
2.766
|
0.0057
|
Enjoyment In First 6 Months Doesn’t Account For Marriage Effect
Graphs
# (5 - desire )because scale is reverse
sex_data$Enjoy6mNum= as.numeric(sex_data$Enjoy6m)
contsmall(sex_data, sex_data$Enjoy6mNum, "Enjoyment In First 6 Months", "")

Want - Only Enjoyment First 6 Months
reg_just_mod_i(sex_data$want, sex_data, sex_data$Enjoy6mNum, "Enjoyment In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
17.600876
|
0.8749073
|
20.117
|
0
|
|
Married: True
|
-5.633394
|
0.3783057
|
-14.891
|
0
|
|
Enjoyment In First 6 Months
|
1.404376
|
0.1076104
|
13.051
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$Enjoy6mNum, "Enjoyment In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
22.9556805
|
0.8688730
|
26.42
|
0
|
|
Married: True
|
-2.7071923
|
0.3916028
|
-6.913
|
0
|
|
Enjoyment In First 6 Months
|
1.4764366
|
0.0997520
|
14.801
|
0
|
|
Age (years)
|
-0.1973365
|
0.0108076
|
-18.259
|
0
|
|
Duration
|
-0.0072448
|
0.0051256
|
-1.413
|
0.1577
|
|
Male
|
4.0211451
|
0.3501869
|
11.483
|
0
|
Like - Only Enjoyment First 6 Months
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$Enjoy6mNum,"Enjoyment In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
22.736715
|
0.9547917
|
23.813
|
0
|
|
Married: True
|
-4.342174
|
0.4097966
|
-10.596
|
0
|
|
Enjoyment In First 6 Months
|
2.000748
|
0.1172859
|
17.059
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$Enjoy6mNum, "Enjoyment In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
25.3985017
|
1.0113144
|
25.114
|
0
|
|
Married: True
|
-2.9314170
|
0.4528799
|
-6.473
|
0
|
|
Enjoyment In First 6 Months
|
2.0512033
|
0.1163932
|
17.623
|
0
|
|
Age (years)
|
-0.0965107
|
0.0125029
|
-7.719
|
0
|
|
Duration
|
-0.0018641
|
0.0058572
|
-0.318
|
0.7503
|
|
Male
|
1.5307319
|
0.4062194
|
3.768
|
2e-04
|
Frequency - Only Enjoyment First 6 Months
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$Enjoy6mNum, "Enjoyment In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
2.8159234
|
0.1531233
|
18.39
|
0
|
|
Married: True
|
-0.7569702
|
0.0666090
|
-11.364
|
0
|
|
Enjoyment In First 6 Months
|
0.1025751
|
0.0188500
|
5.442
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$Enjoy6mNum, "Enjoyment In First 6 Months")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.8244912
|
0.1562899
|
24.471
|
0
|
|
Married: True
|
-0.2403842
|
0.0705246
|
-3.409
|
7e-04
|
|
Enjoyment In First 6 Months
|
0.1249421
|
0.0178052
|
7.017
|
0
|
|
Age (years)
|
-0.0319008
|
0.0020045
|
-15.914
|
0
|
|
Duration
|
-0.0013633
|
0.0012035
|
-1.133
|
0.2574
|
|
Male
|
0.1616137
|
0.0624611
|
2.587
|
0.0097
|
Being Turned On Before Sex Accounts For Much Of The Sex Effect
Graphs
# (5 - desire )because scale is reverse
sex_data$satis4num= as.numeric(sex_data$satis4)
contsmall(sex_data, sex_data$satis4num, "Turned On Before Physical Contact", "")

Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$satis4num, "Turned On Before Physical Contact")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
15.9229435
|
0.4036400
|
39.448
|
0
|
|
Married: True
|
-1.0129108
|
0.2175881
|
-4.655
|
0
|
|
Turned On Before Physical Contact
|
4.5599432
|
0.0756962
|
60.24
|
0
|
|
Age (years)
|
-0.1061855
|
0.0061907
|
-17.153
|
0
|
|
Duration
|
-0.0132336
|
0.0037664
|
-3.514
|
4e-04
|
|
Male
|
1.7464225
|
0.1921945
|
9.087
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$satis4num, "Turned On Before Physical Contact")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
19.4283996
|
0.4669062
|
41.611
|
0
|
|
Married: True
|
-1.0122283
|
0.2517480
|
-4.021
|
1e-04
|
|
Turned On Before Physical Contact
|
5.5485125
|
0.0877020
|
63.265
|
0
|
|
Age (years)
|
-0.0017742
|
0.0071579
|
-0.248
|
0.8042
|
|
Duration
|
-0.0070453
|
0.0043255
|
-1.629
|
0.1034
|
|
Male
|
-1.4392747
|
0.2223679
|
-6.472
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$satis4num, "Turned On Before Physical Contact")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.3456015
|
0.0852527
|
39.243
|
0
|
|
Married: True
|
-0.0338006
|
0.0462491
|
-0.731
|
0.4649
|
|
Turned On Before Physical Contact
|
0.4017724
|
0.0158974
|
25.273
|
0
|
|
Age (years)
|
-0.0272295
|
0.0013663
|
-19.929
|
0
|
|
Duration
|
-0.0022821
|
0.0010075
|
-2.265
|
0.0235
|
|
Male
|
-0.0223819
|
0.0403171
|
-0.555
|
0.5788
|
Comfort Discussing Doesn’t Change The Sex Effect
Graphs
# (5 - desire )because scale is reverse
sex_data$comfortnum= as.numeric(sex_data$comfort)
contsmall(sex_data, sex_data$comfortnum, "Comfort Discussing Sex", "")

Want - Only Comfort
reg_just_mod_i(sex_data$want, sex_data, sex_data$comfortnum, "Comfort Discussing Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
22.038983
|
0.4781837
|
46.089
|
0
|
|
Married: True
|
-4.289796
|
0.2850571
|
-15.049
|
0
|
|
Comfort Discussing Sex
|
1.263746
|
0.0746269
|
16.934
|
0
|
Want – Full Controls
reg_full_control(sex_data$want, sex_data, sex_data$comfortnum, "Comfort Discussing Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
27.5253786
|
0.5417739
|
50.806
|
0
|
|
Married: True
|
-2.0636434
|
0.2890627
|
-7.139
|
0
|
|
Comfort Discussing Sex
|
1.0721162
|
0.0701183
|
15.29
|
0
|
|
Age (years)
|
-0.1670982
|
0.0081050
|
-20.617
|
0
|
|
Duration
|
-0.0113350
|
0.0048903
|
-2.318
|
0.0205
|
|
Male
|
4.1498890
|
0.2500652
|
16.595
|
0
|
Like - Only Comfort
reg_just_mod_i(sex_data$totlike, sex_data, sex_data$comfortnum,"Comfort Discussing Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
32.876552
|
0.5393171
|
60.96
|
0
|
|
Married: True
|
-3.464737
|
0.3215002
|
-10.777
|
0
|
|
Comfort Discussing Sex
|
1.017450
|
0.0841676
|
12.088
|
0
|
Like – Full Controls
reg_full_control(sex_data$totlike,sex_data, sex_data$comfortnum, "Comfort Discussing Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
35.5261171
|
0.6483568
|
54.794
|
0
|
|
Married: True
|
-2.4036640
|
0.3459299
|
-6.948
|
0
|
|
Comfort Discussing Sex
|
0.9356042
|
0.0839127
|
11.15
|
0
|
|
Age (years)
|
-0.0771634
|
0.0096995
|
-7.955
|
0
|
|
Duration
|
-0.0060454
|
0.0058524
|
-1.033
|
0.3017
|
|
Male
|
1.6058617
|
0.2992604
|
5.366
|
0
|
Frequency - Only Comfort
reg_just_mod_i(sex_data$freq_num, sex_data, sex_data$comfortnum, "Comfort Discussing Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
3.0165581
|
0.0820622
|
36.759
|
0
|
|
Married: True
|
-0.5723779
|
0.0493282
|
-11.603
|
0
|
|
Comfort Discussing Sex
|
0.1227013
|
0.0128012
|
9.585
|
0
|
Frequency – Full Controls
reg_full_control(sex_data$freq_num, sex_data, sex_data$comfortnum, "Comfort Discussing Sex")
|
|
Estimate
|
Std. Error
|
t_value
|
p_value
|
|
Intercept
|
4.2759821
|
0.0939608
|
45.508
|
0
|
|
Married: True
|
-0.1271953
|
0.0501522
|
-2.536
|
0.0112
|
|
Comfort Discussing Sex
|
0.1009304
|
0.0120289
|
8.391
|
0
|
|
Age (years)
|
-0.0315795
|
0.0014637
|
-21.575
|
0
|
|
Duration
|
-0.0021007
|
0.0010731
|
-1.958
|
0.0503
|
|
Male
|
0.2034341
|
0.0427465
|
4.759
|
0
|